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Length scales in the many-body localized phase and their spectral signatures
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We compute and compare the decay lengths of several correlation functions and effective coupling constants
in the many-body localized (MBL) phase. To this end, we consider the distribution of the logarithms of these
couplings and correlators: In each case, the log coupling follows a normal distribution with mean and variance
that grow linearly with separation. Thus, a localization length is asymptotically sharply defined for each of
these quantities. These localization lengths differ numerically from one another, but all of them remain short
up to the numerically observed MBL transition, indicating stability of the MBL phase against isolated ergodic
inclusions. We also show how these broad distributions may be extracted using interferometric probes such as
double-electron-electron resonance and the statistics of local spin precession frequencies.
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I. INTRODUCTION

Many-body localized (MBL) systems violate many of our
expectations from equilibrium statistical mechanics: They do
not thermalize under their own intrinsic dynamics [1–4], have
extensively many quasilocal conserved quantities [5–7], and
retain the memory of their initial state at arbitrarily late times
[8]. These properties of MBL systems are stable to arbitrary
(static) local perturbations; in this sense, MBL systems consti-
tute a dynamical phase of matter, the properties of which have
been extensively studied in the past decade [3,9–11]. Most of
these studies have considered one-dimensional systems, for
which the MBL phase has been proved to exist under minimal
assumptions [12,13].

The properties of the MBL phase are often characterized
in terms of a localization length ξ . For instance, the growth
of entanglement entropy starting from a product state follows
[3,9,10] S(t ) ∼ ξ log t ; the high-temperature limit of the low-
frequency ac conductivity is expected to behave as σ (ω) ∼
ω2−ξ log 2 for a spin- 1

2 system [14]; and an instability to isolated
ergodic grains is believed [15,16] to set in when ξ = 1/ ln 2.
We have used the same symbol for these various quantities,
but they are related to different correlation functions, and there
is reason to doubt whether all correlations decay with the same
ξ (as implicitly assumed by the referenced works in this para-
graph in using the same symbol). Indeed, whether it makes
sense to posit a well defined ξ in the MBL phase is unclear:
Based on numerical studies [17–23], analyses of rare-region
effects [24], and the structure of the locator perturbation the-
ory [25], we expect all physical quantities in the MBL phase to
exhibit strong fluctuations. This work addresses and clarifies
these issues by analyzing how the probability distributions of
correlation functions and effective coupling constants evolve
with spatial separation in the MBL phase. These distributions
are extracted numerically, using exact diagonalization and the
Wegner-Wilson flow (WWF) method. We find that in each
case, the logarithm of the correlation function or coupling

[26] follows a normal distribution, with a mean and variance
that grow linearly with spatial separation. These features
are common to MBL and Anderson insulators; however, in
the MBL case no simple relation seems to exist between the
coefficients controlling the growth of the mean and variance.
(By contrast, in Anderson insulators, for suitably defined
quantities, the two coefficients are related by single-parameter
scaling [27–29].) The fact that variance only grows linearly
in separation r guarantees that the inverse localization length
for each coupling is sharply defined, with a distribution that
narrows at large r. Thus, one can ask how this quantity varies
depending on the coupling. The corresponding spatial decay
rate R = exp(−1/ξ ) exhibits simple dependencies on disor-
der strength anticipated by the structure of the perturbative
“forward approximation” [25] (Fig. 1). Importantly, all these
lengths remain quite short inside the MBL phase previously
identified in numerical studies. Our results suggest that this
regime of disorder is also stable against rare disorder effects
nucleating ergodic runaways [15].

Although the distribution for 1/ξ narrows for large sepa-
ration, the couplings themselves become increasingly broadly
distributed (log-normal), as noted above, with variance grow-
ing linearly in r. We develop protocols for extracting these
broad distributions using an interferometric probe related
to double-electron-electron resonance (DEER) [30–32]. We
show that a log-normal distribution of couplings implies that
the disorder-averaged DEER response decays logarithmically
in time, and also affects the statistics of local precession
frequencies.

Section II sets up the notation, including model and meth-
ods, and also observables of interest. In Sec. III we present ev-
idence for the ubiquity of broadening log-normal distributions
that enable our definition of length scales shown in Fig. 1. Re-
sults on local spectra and spin echoes are presented in Secs. IV
and V, respectively. We conclude with the discussion of the
likely significance of our results and some future directions.
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FIG. 1. Spatial decay rates as a function of inverse disorder
strength for effective coupling Jz and correlators xx and xX in the
MBL phase (see also Figs. 2 and 5, MBL/ergodic transition 1

Wc
≈

0.14). Dashed lines are fits to expected strong disorder behavior
( 45

W 2 , 2.3
W , 3.3

W ). Estimated uncertainty is indicated by shading. Gray
dotted lines correspond to localization lengths 1/ log 2 and 1/ log 4,
which are distinct estimates for the onset of the avalanche instability
(Sec. III). Inset: Plot of

√
R ∼ 1/W for Jz coupling.

II. DEFINITIONS

A. Model Hamiltonian: P bits and L bits

We consider Heisenberg spin chains subject to ran-
dom fields in the z direction, described by the following
Hamiltonian:

H =
L−1∑
i=1

σ x
i σ x

i+1 + σ
y
i σ

y
i+1 + σ z

i σ z
i+1 +

L∑
i=1

hi σ
z
i , (1)

where σα
i are Pauli matrices, hi is drawn from the distribution

h ∈ [−W,W ], and the system size is L. We are interested
mainly in the so-called full MBL (FMBL) regime, where the
entire spectrum of the system is MBL for W � 10 [3,4,33,34],
but will also include a value of W = 8 in the transition regime.
Although the model conserves total σ z magnetization and we
may restrict ourselves to one with a fixed value of magneti-
zation, many of the correlators of interest mix magnetization
sectors; hence, our results will be presented for the full model
taking all sectors into account. We shall refer to the Pauli σ

operators as the physical bits or P bits.
As described earlier, the FMBL phase possesses a com-

plete set of “local” L bits [5] [τ z
i , H] = 0 for i ∈ [1, L] and

corresponding Pauli raising and lowering operators τ±
i . The

Hamiltonian can be rewritten as [5,6]

H̃ = E0 +
∑

i

Biτ
z
i +

∑
i> j

Ji jτ
z
i τ

z
j +

∑
i> j>k

Ji jkτ
z
i τ

z
j τ

z
k + · · · .

(2)
The conserved charges τ z’s may be thought of as obtained
from σ z with appropriate dressing by (small) quantum fluc-
tuations due to off-diagonal terms (in the z basis) [25].
Multispin interactions Ji jk... induced by these virtual exchange
processes should decay exponentially with the end-to-end
distance among the spins (and therefore with the number of
spins involved). In the regime where W � 1 we expect the

dressing to be weak; therefore, we expect the local fields Bi

to be close to the microscopic hi, and the high-order terms in
Eq. (2) to fall off rapidly.

B. Observables

1. Couplings

An alternative and useful representation of the L-bit Hamil-
tonian is obtained by focusing on subsystems of few spins
treating the rest as a static environment, thereby trading in-
finitely many multispin interactions for distributions of few
spin terms. For example, if the subsystem is just a single L bit
at site j,

Hj|env = Bj|envτ
z
j , (3)

where the total number of Bj’s (and Hj’s) is 2L−1, with each
rearrangement of environment’s spins, |env, contributing to a
spectral shift of an otherwise sharp local line. The statistics
of these local fields is interesting and will be examined in
Sec. IV. If we instead look at two-spin subsystems with
separation r = j − k (henceforth we drop the subscript |env)

Hj,k = Bjτ
z
j + Bkτ

z
k + Jz

j,kτ
z
j τ

z
k , (4)

we can access the distribution of the two spin couplings,
which is expected to exhibit a “flow” previously described as
an evolution to a broad 1/ f law in the MBL phase [17] as r →
∞. The flow reverses toward narrow (approximately Gaus-
sian) distributions in the ergodic phase with the critical regime
appearing as a family of nonflowing “scale-invariant” distri-
butions [17]. Importantly, the bulk of previously computed
results [17] did not use the effective two-spin distributions
described here but rather a variant with only the fluctuations
in the intervening region (i.e., only r spins book ended by
the two-spin subsystem) accounted for. While the prior choice
was physically motivated, e.g., with distributions’ cardinality
growing ∼2r as the more and more spins “mediate” the
two-spin coupling, we found empirically in this work that
including all spins (and thereby fixing the cardinality to 2L−2

for all r) significantly changes (reduces) finite-size effects and
vastly improves the overall quality of simple exponential fits,
enabling for unambiguous extraction of length scales.

2. Transverse correlators

In addition to distributions of one- and two- L-bit terms in
H we will be interested in two transverse correlators σ x

j σ
x
k

and σ x
j τ

x
k , which we will refer to as xx and xX (note that

XX is trivial by construction). Both of these correlators are
interesting, albeit for different reasons: xx involves physical
P bits and can therefore be measured directly, while xX is
important in studying effects of MBL subsystems weakly
coupled to other degrees of freedom, e.g., the argument and
the analysis of the instability due to isolated ergodic grains
[15] makes plausible assumptions about xX . Importantly, in
what follows we only consider the amplitude of these corre-
lators, i.e., averages of |〈n|σ x

i σ x
j |n〉|. These are not instanta-

neous equilibrium observables, as they can only be extracted
from the Edwards-Anderson–type “persistence in time” order

parameter, |O| ≡
√

limT →∞
∫ T

0 dt〈O(t )O(0)〉/T , e.g., with
O = σ x

i σ x
j : This point has been extensively discussed and
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used in the context of eigenstate order in Hamiltonian prob-
lems [31,35,36]. Finally, we note that all averaging in this
paper is done by computing expectation values in eigenstate
and then performing the equal weight (infinite-temperature)
Gibbs average and finally averaging over disorder realizations.

C. Wegner-Wilson flow

A priori there is no unique way for constructing the dressed
operators τ z; this is because the similarity transformation
that diagonalizes H needs to come with a single, consistent
labeling scheme that assigns an L-bit label to each of the 2L

eigenstates of H (out of the 2L! possible labeling schemes).
However, a posteriori, physical constraints help sieve out
a good method for constructing this transformation: Well-
defined spatial locality of couplings J , and tightness of fields
B about the physical onsite potentials. By any definition of
localization, these are reasonable requirements to be satisfied.
The renormalization-group-like technique of Wegner-Wilson
flow (WWF) [17,37,38] achieves these admirably. In localized
systems specifically, there are clear reasons as to why WWF
works well, as discussed in the literature: This has to do
with the order in which off-diagonal matrix elements are
eliminated and the reversibility of the flow.1

Let the WWF parameter be labeled as κ; then the flow
equation that transforms H → H̃ is given by

dH (κ )

dκ
= G(κ, H ), (5)

where the function G := [H, η] is chosen so that (a) there is
good stability in the flow as κ : 0 → ∞, and (b) the parts
of the spectrum that we want to eliminate fall off quicker if
they have larger energy separation. A canonical choice of the
generator η [37,38], in particular for diagonalizing the entire
system [17], is given by

η(κ ) = [V (κ ), H (κ )], (6)

where V (κ ) is the off-diagonal part of H (κ ), and η(κ ) =
−η(κ )† is an antiunitary generator.

With these flow equations [and the understanding that
H (0) = H and H (∞) = H̃ ] the transformation relating the
two representations (1) and (2) is given by

H̃ = U −1HU, (7)

where columns of U contain the L-bit representations of the
eigenstates in the correct order as defined in the original P-bit
representation. Then, the dressed spin operators are given by

τα = UσαU −1 (8)

1WWF can also be considered as an adiabatic flow between infinite
and finite disorder where the invariant object is the entire set of
bit string labels of all many-body eigenstates; these are conserved
by definition under the flow and allow to interpret the results even
outside the localized phase. Once defined, WWF continues to work
across the phase diagram and allows for a seamless discussion of
observables and their distributions; that is very convenient, but may
be confusing or ambiguous, e.g., if the L bits are strongly smeared.

for α = x, y, z The transformation matrix U that holds these
L-bit representations is governed by a similar flow equation

dU (κ )

dκ
= Uη, (9)

with U (0) = 1. Columns of U along with the diagonal of H̃
completely characterize the spectrum of the problem.2

III. DISTRIBUTIONS AND LOCALIZATION LENGTHS

This section makes two essential points. First, log-normal
distributions are natural and pervasive in localized problems.
Second, unlike in the Anderson localized (single-particle)
case, multiple length scales are required to characterize dis-
tributions in many-body problems.

A. Warmup: Single-particle and noninteracting fermions

It is well known that the wave-function intensity G = |ψ |2
(or measurable conductance) of Anderson localized single-
particle states in one dimension (1D) is log-normally dis-
tributed [27–29]

P(log G) =
√

ξ2

8πr
exp

[
− (log G + 2r/ξ1)2

8r/ξ2

]
, (10)

with r denoting spatial separation. Remarkably, both the mean
and variance of G are controlled by the same ξ = ξ1 = ξ2,
the localization length, that fully characterizes the localized
phase [27–29]. That this length (or rather its inverse) is
sharply defined is made clear by considering a distribution
for 1/ξ ≡ − log G/(2r) which narrows to a δ function in the
limit r → ∞. The fluctuations in 1/ξ remain important for
some observable quantities, e.g., they are known to alter the
prefactor to the Mott ac conductivity of disordered systems
[39]. Importantly, ξ in Eq. (10) varies somewhat with energy
even at strong disorder and appreciably at weak disorder.
This, combined with specifics of averaging, may result in
significantly different statistics in noninteracting many-body
problems, e.g., at low but finite temperature in a weakly
interacting regime.

With an eye to interacting spin chains, we consider infinite-
temperature correlators in the noninteracting many-fermion
problem in order to understand the distinction between xx

2A technical note is in order here: While taking the limit κ →
∞ is not practically possible, we implement the flow using an
adaptive 4,5 Dormand-Pince algorithm until the error estimate of
H (κ ) → H (κ + dκ ) is below some threshold − log10 ε = 3 ∼ 6,
concomitantly chopping away off-diagonal elements that are smaller
than nε, where n = O(1) > 1. The latter aspect is required in order
to speed up the convergence to the effective Hamiltonian; n < 1,
on the other hand, will result in very minimal chopping away,
and hence much slower convergence. As long as n = O(1), the
chopping is not too aggressive. Due to these approximations, the
eigenvalues and eigenvectors are only approximate; they are matched
to machine-precision eigenvalues and eigenvectors obtained from
exact diagonalization (ED) using the Hungarian matching algorithm
[45], i.e., bipartite graph matching for maximum sum of weights in
the overlap of UU T

ED.
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FIG. 2. Log-normal statistics of Jz, 〈σ xτ x〉, 〈σ xσ x〉 in L = 8, 10, 12 (black, blue, red) chains with W = 25. (a)–(c) Decay with distance of
the median of the logarithm of couplings at three disorder strengths, with a straight line on a semilog scale indicating exponential dependence.
Different system sizes overlap signaling insignificant finite-size effects; the mean of logarithm (crosses, closed circles, open circles) are also
shown which are largely indistinguishable from logarithm of median, except for Jz where the crosses and pluses tend to deviate for largest
r (due to numerical underflow). Perturbation theory, shown as thick brown lines at short distances, extrapolated beyond short distance with
dashed brown lines, confirms the quantitative difference between xx and xX correlators. The localization length fits (thin lines) from fitting
the last 60% of the decays of the three couplings in each panel are indicated in the legends. (d)–(f) Distribution of the three couplings;
overbar symbols refer to the data being normalized by its standard deviation and median, so as to achieve data collapse across various ranges
r = 6 (circle), 8 (square), 10 (diamond) and disorder strengths W = 25 (green), 15 (blue), 8 (red); system size is fixed at L = 10 here. The
black line is a normal distribution with zero mean and unit variance.

and xX correlators. We define locator fermion annihilation
operator on site j, c j , and also that of the unique eigenstate
“attached” to site j in perturbation theory γ j . The point we
wish to make is that xx and xX spin correlators defined above
are analogous (without a Jordan-Wigner phase) to

〈n|c+
i c j |n〉 =

∑
k

f (k)ψ∗
k (i)ψk ( j), (11)

〈n|c+
i γ j |n〉 = f ( j)ψ∗

j (i), (12)

respectively. [Note: f (α) = 0, 1 is the occupation of each
single-particle state α in |n〉.] Comparing typical decay rates
of the two correlators we expect the first one to decay slower
since it involves a sum over many orbitals and is dominated
by the slowest-decaying orbitals that contribute. Fluctuations
in the single-particle localization length, and particularly its
energy dependence, imply that the length scale in Eq. (11)
should systematically exceed that in Eq. (12).

B. Many-body case

We now present one of the central results: In Fig. 2, the
distributions of xx and xX correlators and of Jz

i, j effective

couplings sampled over many-body eigenstates and disorder
realizations. Their apparently log-normal shape and linear
growth (with separation) of both mean-log and var-log nat-
urally leads to a spectrum of length scale parameters, two per
observable. Following the noninteracting example we expect
xx to decay slower than xX and also display weaker fluctu-
ations, as it “pre-averages” over single-particle fluctuations.
These expectations are clearly borne out (see Figs. 1 and 2 for
averaged quantities, Fig. 5 for median and variance variation
with distance for the three correlators and disorder strengths,
Fig. 6 for their distributions without normalising by standard
deviation, and Fig. 7 for a single sample). Finally, we expect
and observe that the spatial decay rate of the typical Jz is
e−1/ξ1 ∼ 1/W 2. At strong disorder, the leading contribution
to the typical Jz comes from Hartree shifts of the nearly
site-localized orbitals. These Hartree shifts induced by site
i at site j scale as the square of the amplitude of orbital
i at site j; since the amplitudes decay as (1/W )| j−i|, the
effective interaction Jz decays as (1/W 2)|i− j|. This difference
in dependence on 1/W is borne out as seen in Fig. 1; the
error bars are determined by the uncertainties of fitting various
segments and various system sizes.
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Two comments are in order. First, all length scales are
quite short, suggesting that most of the numerically observed
localized phase (for W � 10, corresponding to W � 5 in the
notation of Ref. [4]) is stable against the inclusion of ergodic
grains. The exact threshold for the critical localization length
in the generic interacting case is not fully settled. In the
case of noninteracting L bits [16], the instability happens
when ξ = 1/ log 2. When the L bits are interacting, a given
L bit at a distance r from the ergodic inclusion can couple
to the inclusion via many distinct processes3 (depending on
whether the r − 1 intermediate L bits get flipped or not)
and a conservative estimate of when the instability sets in
is ξ = 1/ log 4. Both criteria are marked in Fig. 1. Second,
much of the ensemble-averaged physics is present in single
samples as well; see Fig. 7 where we present the decays of
the three observables for two different samples with different
disparate ξ values, one small and one big. We find that the
xx and xX decays still follow the same trend with respect to
each other, in particular Eq. (A10), as we see from the middle
column of plots. Moreover, the right column of Fig. 7 shows,
upon comparing with its middle column, that quicker decays
of couplings (stronger localization) results in a broader spread
of local field splittings (see next section for its definitions) and
hence a broader spread of Jz couplings.

To summarize, each two-point object of interest may be
efficiently “labeled” using two length scales, ξ1 and ξ2, encod-
ing typical decay and growth of fluctuations. The first of these
connects to the established body of work where properties of
the MBL phase were understood using L-bit phenomenology,
albeit with a potentially important caveat that different observ-
ables are controlled by numerically different decay lengths.
It is an interesting exercise to reexamine and correct these
prior results to account for fluctuations. In some cases we
expect the corrected answer to be qualitatively similar to
the mean-field one. For example, the logarithmic growth of
entanglement will now come with strong but subdominant
fluctuations, the so called “logarithmic light cone” will be
smoothed out on scales ∼√

log t , i.e., there is a broad but
still discernible boundary demarcating entangled spins in real
space. Unless the two lengths turn out vastly different (they
are not in our case but may be in other models) the mean-field
theory is still a reasonable if incomplete description in such
cases. The more interesting possibility, perhaps (of course!), is
to find examples of phenomena where these fluctuations inval-
idate mean-field expectations entirely; we focus on two such
cases next.

IV. LOCAL SPECTRAL FUNCTIONS

Local spectra can be defined and measured experimen-
tally via autocorrelations of single-spin operators, e.g., Gibbs
averaged

Axx(ω) =
∫

dt eiωt
〈
σ x

j (t )σ x
j (0)

〉
. (13)

These are generally complicated convolutions of spectra and
matrix elements. For a chain of L spins we expect ∼22L

3D. A. Huse (private communication).

broadly distributed contributions to Axx(ω). In MBL systems,
with well- (or at least usefully) defined L bits, ∼2L of these
values are parametrically larger than the rest. We can vastly
simplify (“clean up”) the situation by considering spectral
functions of L bits [its relationship to Axx(ω) will be explained
at the end of this section]

AXX (ω) =
∫

dt eiωt
〈
τ x

j (t )τ x
j (0)

〉
, (14)

thereby removing the fluctuations of the matrix elements and
vastly reducing the number of terms, down to 2L, with AXX

equal to the probability distribution of twice the local fields
in Eq. (3), P(2Bj ). The spectral line starts infinitely sharp
in noninteracting systems and becomes splintered by L-bit
interactions. We will focus on the distribution of spectral
shifts (i.e., spacings between adjacent frequencies), P(δBj =
Bj+1 − Bj ), to elucidate local spectral correlations.

We find that P(δB) appears to follow log-normal statistics
with a dramatic overall increase in the dynamical range upon
entering the MBL phase [see Fig. 3(a)] implying a simple
1/ f power law as before, albeit with system size L providing
regularization instead of separation r in two point observables.
We argue below that to reproduce this power law one must
include fluctuations of the Jz couplings.

To start, it is helpful to visualize the local spectrum as a
splintering process using a spectral tree [40] [see Fig. 3(b)].
Here, the root of the tree is the frequency of the isolated site j
(average of Bj over all the environment spins, corresponding
to the local onsite potential), and each generation corresponds
to incrementally turning on (exponentially decaying) inter-
actions to further neighbors (or, equivalently, only averaging
interactions with progressively distant spins). Since each site
has a spectral tree associated with it, we have chosen the
rightmost boundary site from each sample (so that the starting
value in each tree is approximately the onsite potential at
x = 10); note that the boundary sites show the strongest split-
ting because of the largest available distances. Deep inside
the MBL phase we expect a very rapid decay of the coupling
and the tree not to cross itself, with half of δB’s equal to
(twice) some interaction term with the most distant spin, a
quarter of δB’s corresponding to sums and differences of two
interaction terms, etc. Put differently, there is a considerable
“which path” or “branching” memory which should manifest
in a fractal-like structure of local MBL spectra and a nontrivial
nonuniversal power-law distribution P(δB) ∼ |δB|−1−ξ1 log 2

(see Appendix). By contrast, when interactions are strong, we
do not expect any branching memory, with each δB obtained
from a random combination of many J’s; adjacent frequencies
correspond to configurations that differ by several spin flips,
hence, P(δB) should obey Poisson statistics in the ergodic
phase. This transition takes place, within the mean-field pic-
ture, at e−1/ξ1 = 1

2 (note that here we are considering the
special case of an edge spin [40]). The degree of self-crossing
in the spectral tree can be quantified, in fact, if we examine the
distribution of Hamming distances corresponding to each δB
(see Appendix for details on its computation). These appear
quite short in the MBL phase [see Fig. 3(c)], and are smaller
than the fully ordered mean-field prediction of 〈dH 〉 = 2,
which can occur due to rearrangements of L bits. The fully
ordered mean-field case is easily seen to have a distribution
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FIG. 3. (a) Spectral shift statistics for W = 25, 15, 8 (red, blue, magenta; vertically shifted for clarity) in the localized phase; for a fixed
disorder strength, the three curves (dotted, dashed, full) correspond to increasing range (L = 8, 10, 12). (b) Spectral tree showing absolute
values of the fields and the splittings for a single sample with small ξ . A larger ξ of the exponential decay of couplings will result in more
crossings in the sample’s tree. (c) Distribution of Hamming distances for L = 12 chain for various disorder strengths, W = 25, 15, 8 [red
(circle), blue (square), black (diamond), respectively]. The dashed lines of the same color show the fits of the respective symbols to an
exponential distribution, which become progressively better as W increases. Inset: Mean Hamming distances as a function of W for various
L = 8, 10, 12 [red (circle), diamond (blue), triangle (black)], which unambiguously demonstrate its decrease as W increases. (d) Mean-field
tree distributions of spectral shifts P(δB) from L = 18 chain of mean-field couplings for localization length ξ = 1, with open brown being
purely mean-field and closed blue including fluctuations in couplings exp(−r/ξ + √

rδ), with δ = [−2, 2] drawn randomly. The expected
P(δB) ∼ (δB)−1−ξ log 2 is shown by the dashed black line, and 1/x power law is shown by the red full line.

of PMF(dH ) = 2−dH . Away from this fully ordered mean-field
limit, we observe [Fig. 3(c)] that the actual data exhibit a
generalized exponential behavior

P(dH ) = (κ − 1)κ−dH , (15)

with κ = κ (W ), a nondecreasing function of disorder
strength. Note that Eq. (15) is a valid probability distribu-
tion defined at the positive integers, with 〈dH 〉 = κ

κ−1 . We
therefore observe that while the tree remains essentially non-
crossing as anticipated by the mean-field model, the spectral
statistics are much more universal, with a simple power law
of −1.

To understand this result, we now allow multiplicative
disorder in the coupling strength, to mimic log-normal dis-
tributions with growing variance (as detailed in the previ-
ous section). The thereby modified L-bit description may be
simulated straightforwardly numerically; see Fig. 3(d). We
clearly observe the existence of a simple 1/ f power law.
Indeed, in principle, there should also be a crossover from

a nonuniversal to the asymptotic 1/ f power law (at smallest
δB’s): This requires ξ2/ξ1  1 which is not the case for spin
chains studied here.

While the local L-bit spectral function is not directly
measurable, when ξ1 < 1 one can approximate it well by
taking a physical spectral function, measured by standard
spectroscopic means, and dropping all spectral lines below a
certain threshold intensity when computing gaps. In practice,
extremely small splittings will not be resolvable, so one can
only measure the “tree” out to a depth set by experimental
resolution. Assuming that the experimental resolution is 500
times the microscopic energy scales (as is reasonable for
present-day experiments with ultracold atoms and supercon-
ducting qubits [41,42]), and that 1/ξ1 = 2

3 , one can resolve up
to four generations of the tree, which should be adequate to
test the predicted hierarchy of gaps. The protocol to measure
the energy spectrum of a set of spins or qubits consists of
creating local excitations (through, say, a magnetic π/2 pulse)
and measuring the time-dependent vibrational response: A
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simple Fourier transform will then reveal the characteristic
modes (eigenenergies) of the system [41]. In order to con-
struct the tree, and the corresponding splittings, up to some
desired level, the strongest 2L spectral lines may be retained.

V. ECHOES AND L-BIT DYNAMICS

The existence of L bits may be demonstrated using several
related but inequivalent dynamical protocols [19,23,31,43].
The one of interest here is a local Hahn echo which consists
of a familiar (e.g., from NMR) sequence of pulses, however,
with all three pulses applied on the same site j of the chain

|t〉 = Rπ/2
j e−iHt/2Rπ

j e−iHt/2Rπ/2
j |↑〉, (16)

where Rφ
j = exp(iφσy/2) and |↑〉 is a state with site j fully

polarized (either via quench or by premeasurement.) With
these manipulations the persistent echo is obtained in the
MBL phase

Dj (t → ∞) ≡ 〈
t |σ z

j |t
〉
> 0. (17)

The initial state may be a unique state, e.g., a particular
product state that is easy to prepare or an eigenstate which
might be subsequently averaged over to simulate a thermal
distribution (which may be imposed by coupling weakly to
the environment). The only difference with textbook NMR
discussion of Hahn echo is that there the pulses apply glob-
ally and can only rephase the decoherence from chemical
shifts. Applying pulses locally in MBL systems effectively
performs Hahn rephasing in the total static field comprised of
local single-body and interaction components. As previously
discussed [31], the existence of the echo may be interpreted
similarly to a finite quasiparticle residue in Fermi liquids
which guarantees that calculations done in the renormalized
model are directly measurable by coupling to actual degrees
of freedom. MBL states in finite chains even at moderate
disorder tend to support a reasonably visible echo amplitude,
e.g., at W = 8 typical Dj is about 0.5 (it is 1 for the perfect
echo performed with exact L-bit rotations).

Building on this, we design a two-spin echo [similar to
the double-electron-electron resonance (DEER)] to extract the
information about the distribution of couplings Jjk between
two L bits at a specified distance r = | j − k|. To start, we
ignore the difference between L bits and P bits, i.e., assume
Dj = 1. In this protocol, one performs a local Hahn spin echo
on spin j; however, simultaneous with the π pulse applied to
spin j in this protocol, one also applies a π pulse to spin k:

|t〉 = Rπ/2
j e−iHt/2Rπ

j Rπ
k e−iHt/2Rπ/2

j |↑〉. (18)

All couplings acting on j except those due to k remain echoed
out as above, allowing one to measure Jjk without having it
masked by the stronger couplings due to spins closer to j
which allows for the signal to decohere in time following

Djk (t ) = 〈eiJjkt 〉 =
∫

dJ Pjk (J )eiJt . (19)

0.0

0.5

1.0

-1 5 10 15 20

D
EE

R
 si

gn
al

 D
L/

2-
r/2

, L
/2

+r
/2

(t)

log(t)

r=3
r=4
r=5
r=6

WWF

0

5

10

15

0 4 8  12

log(ttyp.)

Range r

DEER
WWF

FIG. 4. P-bit DEER signal for W = 15 and L = 8 compared
against Fourier transform of the distribution of L bit Jz (Sec. II B 1).
We rescaled the former signal by a small factor to line up the traces
at short test times.

The time dependence of the averaged DEER response is
precisely the Fourier transform (i.e., characteristic function)
of the probability distribution of Jjk so the DEER protocol
allows for a concrete test of our predictions concerning the
distribution functions. What should we expect for [D jk (t )] as-
suming a log-normal distribution of J? We expect that [D jk (t )]
decays from nearly 1 to zero albeit logarithmically slowly, as
implied by the 1/J prefactor in the log-normal distribution. It
is especially illuminating to consider the dependence of the
decay profile on the separation between the two spins in the
echo r = | j − k|: First, the signal’s half-life, t1/2, is directly
determined by the typical (log-mean) coupling at that separa-
tion (log t1/2 ≈ log 1/Jtyp); second, the log-slope reflects the
fluctuations, which decreases as inverse root variance

Djk (t ) ∝ −
√

ξ2

r
log t . (20)

Our results at moderate disorder W = 15 (Fig. 4) are clearly
consistent with these expectations.

VI. DISCUSSION

In this work we explored multiple ways of characterizing
localization lengths and their distributions in the MBL phase.
We found that localization lengths extracted from distinct
observables do not coincide in general, but all of them remain
short throughout the MBL phase. Thus, the apparent MBL
phase at small system sizes seems stable with respect to rare
configurations of disorder hosting thermalizing grains; this is
consistent with a scenario in which the true MBL critical point
occurs at comparable disorder to the numerically observed
one.

The spatial correlation functions and couplings from which
we extracted localization lengths share the feature of having
log-normal distributions at large separation, with a width that
broadens as the separation increases. This feature was noticed
in previous work as an approach to a 1/ f distribution; here,
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FIG. 5. DEER decays of couplings for L = 8, 10, 12 (black, blue, red) and 2W = 25, 15, 8 (left to right) using median of J (squares), mean
of log J (circles, mostly indistinguishable from squares), and variance of log J (triangles). A straight line indicates exponential decay, with the
two exponential decay lengths from exponential fit of L = 12 data indicated as above: As disorder increases, ξ decreases. Dotted lines are fits
to medians, dashed lines are fits to variances, and full brown thick lines are predictions from perturbation theory for the typical values of ξ for
r = 2, 3 (the thick brown dotted-dashed line shows this perturbation theory prediction, both for log-means and the variances, that is linearly
extended to the next site r = 4 for the median). Top row: Decay of Jz couplings in L-bit Hamiltonian. Second row: Decay of 〈σ x

0 τ x
r 〉 correlator.

Note that the decay lengths are about the same as in the top panel for Jz coupling, more so within the localized phase. The variances are quite
well behaved with about the same decay length scale. Third row: Decay of 〈σ x

0 σ x
r 〉 correlator. Note that the decay lengths are about the same

as in the top panel for Jz coupling, more so away from the localized phase. The variances here, however, have strong finite-size effects and
are larger than for the median of J and mean of log J . In all rows (where finite-size effects are under control), ξ increases with decreasing W
except for fluctuations of mixed operators in the middle row, i.e., their variance increases with increasing disorder.

we identify it as a broadening log-normal, a type of behavior
that is qualitatively similar to what happens in Anderson local-
ization [27,28]. The interplay between interaction effects and
these broad distributions gives rise to qualitatively modified
spectral signatures: Both the statistics of local spectral lines
and the response to the “DEER” spin-echo protocol differ
qualitatively from naive predictions that ignore the broadening
of distributions. We expect similar qualitative modifications
for other physical quantities (e.g., post-quench response func-
tions and ac conductivity) in which localization lengths appear
in the exponent; these consequences will be explored in future
work.

Note added. Recently, a related work was posted [44],
which presented a different algorithm for extracting L bits and
the distribution of localization lengths.
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APPENDIX

1. Further details on Sec. II B: Two-spin coupling protocol

In our work, to expound on Eq. (4), the representa-
tion of the L-bit representation is by subsuming multispin

115136-8



LENGTH SCALES IN THE MANY-BODY LOCALIZED … PHYSICAL REVIEW B 100, 115136 (2019)

(a) W = 25 (b) W = 15 (c) W = 8

FIG. 6. Distribution of logarithm of couplings (Jz [red (circles)], 〈σ xτ x〉 [blue (triangles)], 〈σ xσ x〉 [magenta (squares)]) for L = 10 at
distance r = 8, and corresponding normal distributions (lines) whose parameters are determined from the data. Inset shows square root of
logarithm of the vertical axis, with lines being fits to straight lines; deviations from straight lines are indicative of deviations from log-normality
of the corresponding coupling (strongest for xx coupling).

interactions into a function that further dresses an effective
two-spin model:

H̃ = E0 +
∑

i

Biτ
z
i +

∑
i

∑
r

Jz
r τ

z
i

(
r−1∑
m=1

m∏
k=1

τ z
i+k

)
τ z

i+r . (A1)

Here too the interactions are beyond nearest neighbor; with
this rerepresentation, however, we will find a much more
systematic variation of the couplings with system size, and
hence a better definition of localization regions in space.

In this protocol we are interested in generating the cou-
plings Jz

r as written in Eq. (A1). For a given sample and any
range r, there are 2L−2 such couplings. For each state ψ (L−2)

in the 2L−2-dimensional Hilbert space, we take

ψr1,r2 = ψ (L−2) ⊗ {r1, r2}, (A2)

where r1, r2 denote up or down spins (four combinations),
with the constraint that their site positions x(ri ) on the lattice
are given by

x(r1) − x(r2) = r. (A3)

Then, for each ψ (L−2) we solve the linear equation

⎡
⎢⎣

+1 −1 −1 +1
+1 +1 −1 −1
+1 −1 +1 −1
+1 +1 +1 +1

⎤
⎥⎦ ×

⎡
⎢⎣

E0

J1

J2

J̃12

⎤
⎥⎦ =

⎡
⎢⎣

Eψ0,0

Eψ0,1

Eψ1,0

Eψ1,1

⎤
⎥⎦, (A4)

where the Eψr1,r2 ’s are the eigenvalues corresponding to that
L-bit configuration obtained from Wegner flow. Then, Jz :=
J̃12 gives the renormalized coupling from the four states ψr1,r2 .
This is repeated over all ψ (L−2), and x(r1), x(r2) [again such
that Eq. (A2) is satisfied]. See Fig. 5 for change of median,
mean, and variance of these Jz couplings with distance (as
well as for the xx and xX couplings discussed in the main
text) for various disorder strengths; in Fig. 6, we display their
distributions from which these three statistical measures were
extracted.

2. Further details on Sec. II B: Multispin coupling protocol

In this protocol we are interested in generating the cou-
plings Jz

r as in the previous section but with an additional
index that denotes the number of coupled τ z operators. For
a given sample and range r, there are 2r such couplings.

Consider L bits 0000, 0001, 0010, . . . such that τi|0〉 =
−1|0〉. Then, after diagonalizing,

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

+1 −1 . . .

+1 +1 . . .
...

... . . .

+1 −1
+1 −1

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

E0

J1
...

J12

J13
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎣

E0000

E0001
...

⎤
⎥⎦. (A5)

The Ji, Ji, j, Ji, j,k . . . can be obtained by solving the above
linear equation. The right-hand side includes simply eigenval-
ues from WWF. The left-hand-side matrix is known a priori
because of ordering of L bits in the given sector.

For r = L there are equal number 2L−2 of Jz and Jz
ms

couplings; using L = 3, 4 we can show that these two sets of
couplings, written below as a vector, are related by

Jz
ms =

(
L−2∏
i=1

⊗a

)
Jz, (A6)

where a = 1
2 [

1 1
−1 1]. So, we see that even for the largest

range, the two sets of couplings will be different numerically:
However, their decay tendencies are qualitatively similar.

3. Spectral trees: Mean field and beyond

In a general MBL system, the location of the spectral
line depends on the global configuration of L bits, via the
interaction terms in Eq. (A1). The state of every L bit j �= i
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affects that of L bit i, though the effect falls off exponentially
with the separation as exp(−| j − i|/ξ ). The effects of the
other spins on the local field at site i can be understood
in terms of a spectral “tree” with 2L−1 nodes at the edge,
each corresponding to the effective local field in a many-body
eigenstate.

The structure of this spectral tree was first discussed in
Ref. [40], in a treatment that implicitly assumed a unique,
sharply defined localization length; we refer to this, below, as
a “mean-field” treatment. According to this treatment, when
ξ < 1/(2 ln 2), the splittings due to distant lines fall off suffi-
ciently fast that the thermally averaged spectral function does
not fill in; instead, it forms a fractal structure with spectral
gaps at all frequency scales [40]. This can be seen as follows:
The typical splittings at scale L are ∼ exp(−L/ξ ), and those
at scale L + 1 are exp[−(L + 1)/ξ ]. When exp(−1/ξ ) � 1/4,
the branches at stage L + 1 coming from the four different
nodes at stage L typically do not cross. The resulting thermally
averaged spectral function has gaps at scales exp(−n/ξ ) for
all n, analogous to a Cantor set.

This “mean-field” treatment can be used to derive the dis-
tribution of gaps between adjacent spectral lines in the local,
thermally averaged L-bit spectral function. A simple version
of this argument, valid for ξ  1, is as follows. Consider the
probability of a given spectral gap δ exceeding some threshold
δ0, i.e., P(δ > δ0); these gaps correspond to splittings at very
early stages in the spectral tree, and thus to events at distances
r � r0 ≈ const − ξ log δ0. The total number of such splittings
scales as P(δ > δ0) ≈ 2r0 ∼ δ−ξ log 2. Differentiating this to
get the probability distribution, we find that

P(δ) ∼ δ−1−ξ log 2. (A7)

This analytic prediction agrees with numerical simulations of
the mean-field theory (including multiplicative noise of order
unity, which is inevitably present because of the randomness
of matrix elements). While the mean-field theory predicts a
continuously varying exponent that is always greater than
unity, numerically we find that P(δ) ∼ 1/δ throughout the
MBL phase. In the main text, we have “fixed” this mean-field
picture by including noise in the exponent, so that there is a
crossover from Eq. (A7) to 1/δ behavior at a given δB (which
depends on the strength of the noise); see Fig. 3(b).

Beyond mean field, in our case, the local fields are given
by Bi of Eq. (A1). They are generated by taking the difference
in eigenvalues of L-bit states that are flipped at site i:

Bi = E...1i ... − E...0i ...; (A8)

this equation is only true on average because upon taking
the difference on the right-hand side, a whole bunch of
Jz couplings will also enter into the mix that dress the Bi

fields.
To be concrete, at first order in perturbation theory of

couplings, these are split into Bi ± 2� for i in the bulk and
Bi ± � for i at the boundaries. Already at this level, we see
how the level spacing δB is proportional to the coupling J .

Introducing further spins generates more splittings; this will
become clearer if we employ the multispin couplings Jz

i jk...
for

a boundary spin. At first order, the splitting is ±Jz
12 ≈ �; at

next order, the upper branch (Bi + Jz
12) has new splittings of

±(Jz
13 + Jz

123), whereas the lower branch (Bi − Jz
12) has new

splittings of ±(Jz
13 − Jz

123), and so on. A spectral tree will thus
be built up at each site, whose splittings are determined by
combinations of Jz couplings.

4. Hamming distance

The Hamming distance is defined as the number of spin
flips required to go from one spin configuration (whether L
bit or P bit) to another. For example, the states 1011 and
0111 have a Hamming distance of two between them. Clearly,
there is some arbitrariness in how we choose from which
pair the states to construct the Hamming distance; however,
following our discussion of local fields and their splittings
[especially Figs. 3(a) and 3(b)] we see that adjacent pairs of
L-bit states (ordered by their local fields) are a good indicator
of localization, i.e., the broader the distribution of P(δB), the
smaller the typical ξ , and the stronger the localization.

This immediately implies that adjacent states in a strongly
localized system will be connected to each other by fewer
number of spin flips than in an ergodic system (where the
median field splitting is much larger). This expectation is
borne out, as displayed in the inset of Fig. 3(c) where we
display the mean Hamming distances as a function of disorder
strength for three system sizes L = 8, 10, 12. There appear
to be stronger finite-size effects as we approach the ergodic
phase, which considerably decrease as we wade deeper into
the localized phase.

Moreover, interestingly, in the main panel of Fig. 3(c) we
see that the Hamming distances, sorted over all samples and
all states, follow a Poisson distribution as we enter deep into
the localized phase. This means that there is an emergent
pairwise statistical independence of spin flips among adjacent
states as we enter deeper into the localized phase. The expo-
nential distribution of spin flips conspicuously breaks down as
the disorder is decreased, and the ergodic phase is entered. The
reason for this change in distribution is unclear to us for now
but it provides us a clear spectroscopic probe of localization
that is readily amenable to spin-flip experiments.

The main upshot of this Appendix is that the Hamming
distances clearly demarcate localized vs ergodic physics,
whether through their means or the distributions.

5. Perturbation theory

Our starting point is a three-site chain with strong onsite
potentials, with the Hamiltonian H0 diagonal in these fields
and the interaction of strength �. Using second-order pertur-
bation theory in xy terms H1 = Jxy(σ x

0 σ x
1 + σ

y
0 σ

y
1 + σ x

1 σ x
2 +

σ
y
1 σ

y
2 ) we may perturbatively construct the eigenstates up

to second order in Jxy. Let us denote the difference in lo-
cal disorder fields between sites to be δ02, δ10, δ12, δ02; with
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Jp = 2Jxy, the eight fields of σ xσ x and σ xτ x correlators are

〈
σ x

0 σ x
1

〉 =
{

0, 0,
J3

p

4δ02(δ12 ± �)2
,± Jp

δ10 + �
,± Jp

δ10 − �

}
,

〈
σ x

0 σ x
2

〉 =
{

0, 0,
J2

p

2δ02(δ12 ± �)
,

J2
p

2(δ12 ± �)(δ10 ± �)
,− J2

p

2δ02(δ10 ± �)

}
;

〈
σ x

0 τ x
1

〉 =
{

Jp

2(δ10 ± �)
,− Jp

2(δ10 ± �)
,

Jp

2(δ10 ± �)
,− Jp

2(δ10 ± �)

}
,

〈
σ x

0 τ x
2

〉 =
{

0, 0,
J2

p

4δ02(δ12 ± �)
, 2 × J2

p

4(δ10 ± �)

[
1

δ12 ∓ �
− 1

δ02

]}
. (A9)

Note that it is vital to include the J3
p contribution in the first

line lest the zeros dominate while taking the typical values of
the above fields: This is because the denominators of these
J3

p terms can skew these otherwise parametrically smaller
fields to be comparable to the other terms proportional to Jp.
(This may be checked for a given small L system comparing
numerics and the above expressions.)

Taking Jxy = Jz = 1/W , with W � 1, we see that
the typical value of −(log 〈σ x

0 σ x
2 〉

〈σ x
0 σ x

1 〉 )−1 ≈ 0.54, 0.73 and

−(log 〈σ x
0 τ x

2 〉
〈σ x

0 τ x
1 〉 )−1 ≈ 0.33, 0.41 from these perturbative

treatments for W = 25, 15, respectively; these perturbation
theory predictions are plotted in Fig. 2(a) and shown as
dotted-dashed thick brown lines, both for the means and
variances.

While the analytical predictions for typical σ xσ x correla-
tors are in reasonable agreement with the numerical values
for W � 1, the agreement for the σ xτ x correlators is much
less impressive. This is presumably due to nonperturbative
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FIG. 7. Single sample analysis with small (top row) and large (bottom row) ξ for W = 25. Column (a) shows the onsite disorder potentials
hr [as defined in Eq. (1)] with the shaded pink area indicating the ±2� = ±2 area expected for the splitting in local potentials by the
interactions �, in first-order perturbation theory. The blue circles are the local fields obtained from WWF. Column (b) shows the decay of
the three correlators for the respective sample; the top figure clearly shows a stronger decay than the bottom figure for all three correlators with
the single-ξ fits over latter 60% of the exponentially decaying data shown as dashed lines of the same color for each correlator. This stronger
decay is reflected in the distribution of local field splittings as shown in column (c), which have a much broader distribution in the strongly
localized sample (top) than in the more delocalized sample (bottom). The black line indicates a 1/ f distribution.
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effects in the latter. Moreover, we see that the initial upturn
(strong finite-size effect) in the variance for σ xσ x correlators
at small r is nicely captured by the perturbation theory, as
is the absence of this upturn in the σ xτ x correlators; these
are indicated by the thick brown triangles joined by the thick
dotted-dashed lines.

Therefore, after averaging this inverse localization lengths
we find generically that

ξ−1
xx < ξ−1

xX , (A10)

thereby making the 〈σ x
0 τ x

2 〉 correlator decay faster than
〈σ x

0 σ x
2 〉. We have seen this to be true whether averaged over

all samples (Fig. 1) or in single samples (Fig. 7). Moreover,
we see from perturbation theory that as � → 0, (i) the two
localization lengths for σ xσ x and σ xτ x will be different; (ii)
ξ ∼ �κ , with κ ≈ 0.25 < 1. The linear dependence on �

(i.e., κ = 1) is satisfied only when �/W ≈ 0.1.

6. Variance measures

Unlike the medians or means, the variances over states and
samples do not commute, i.e., it depends whether we perform
the variance measurements over all states and samples, or

first mean over states and then variance over samples (inter-
sample variance), or first variance over states and then mean
over samples (intrasample variance). Therefore, in principle
from the variances alone there will be three length scales
ξvar., ξvar. mean, ξmean var., which correspond to the above three
ways, respectively. In the main text we presented only the first
of the three. However, it is clear that the full variance over
samples and states is simply the sum of the other two.

Moreover, we see that it is not always the case that
intersample fluctuations dominate; this seems only true for
〈σ x

0 σ x
r 〉 and 〈σ x

0 τ x
r 〉 correlators but not for Jz couplings. While

the latter two do not have strong transients at small r, the
P-bit correlator does. This is explained by the perturbative
structure of fields, already seen in Eq. (A9) where there is a
larger proportion of exact zero values in the correlators at a
given order. Indeed, we find that the results from perturbation
theory at small distances capture the numerical results for
variances too, qualitatively and quantitatively, discriminating
between intersample and intrasample fluctuations. Finally,
in all three measures of variances, we find that a linearly
growing variance leads to a broad distribution of these cou-
plings as well, whether in the intrasample or intersample
measure, i.e., the presence of broad distributions is a persistent
effect.
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