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Kramers-Kronig relations for magnetoinductive waves
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Kramers-Kronig relations for propagating modes are a fundamental property of many but not all structures
supporting wave propagation. While Kramers-Kronig relations for a transfer function of a causal system are
always satisfied, it was discovered in the past that Kramers-Kronig relations for individual modes of a system
may fail, e.g., in leaky structures. Our aim in this paper is to scrutinize whether magnetoinductive waves
propagating in discrete metamaterial structures by virtue of interelement coupling satisfy Kramers-Kronig
relations. Starting with the dispersion relations of magnetoinductive waves in the nearest-neighbor approximation
we investigated the real and imaginary parts of two complex functions: the propagation coefficient and the
transfer function. In order to show that the real and imaginary parts of these functions are related to each other
by the Kramers-Kronig relations we had to modify the functions by deducting from them the values of the
functions at infinite frequencies. It was shown that these modified functions and their Kramers-Kronig pairs
perfectly coincided. The much more complicated case of magnetoinductive wave propagation with long-range
coupling assumed was also investigated. The mode structure was derived for interactions up to the third neighbor.
It was shown that the Kramers-Kronig relations are not applicable to the individual modes, but are valid for the
transfer functions of the waveguide after solving the excitation problem and taking all the modes into account.
Our method can be applied to practically relevant cases enabling rapid evaluation of transfer functions, e.g., in
metamaterials used for wireless power transfer.
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I. INTRODUCTION

It all started with Kramers and Kronig. They worked in-
dependently although they knew each other. Their respective
papers were published close to a hundred years ago, in 1926
and 1927. The chronology is actually in reverse order of the
names: Kronig [1] published his paper a year before Kramers
[2]. Kronig was Dutch, Kramers was German.

Kronig investigated both the propagation and the attenua-
tion of x rays due to electrons treated by a semiclassical theory
[1], and derived a relationship between them. Kramers [2]
used similar arguments but he could also justify the integral
relationship between absorption and propagation by relying
on Cauchy’s theory of the functions of complex variables.
The interesting thing is that neither author mentions causality
(that the effect cannot precede the cause) which nowadays is
the usual starting point in deriving the Kramers-Kronig (KK)
relations. The causality condition was, in fact, treated later by
Kronig [3]. He showed that the dispersion relation is both a
necessary and sufficient condition for causality to be satisfied.
For a more rigorous treatment of causality see Toll [4]. A
somewhat different derivation is given in [5]. An application
to ferrites is offered in [6].
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Since the 1920s there has been a large amount of work
concerned with one or another aspect of the KK relations.
Those interested were both experimenters and theoreticians.
If experimenters managed to measure either propagation or
refraction as a function of frequency, they acquired the means
of predicting the absorption characteristics as a function of
frequency, and vice versa. [see, e. g., [7–9]]. The subject
of acoustic waves was often revisited [10–12]. A topic of
interest was also the actual evaluation of the two integral
expressions. As far as we know there was only one case,
that of the Debye relaxation equations [13], when the residue
theorem could be applied and analytical solutions could be
obtained. This means that numerical solutions abound and the
question is what approach to use. A combination of the finite
element method with the Runge-Kutta technique was used
by Montagna et al. [14], the truncation of the integrals was
discussed by Waters et al. [15]. A Fourier series method was
given by Johnson [16]. The various numerical methods were
compared by Ohta and Ishida [17]. A fast-Fourier transform
technique was introduced by Lucas et al. [18].

To what physical phenomena could the KK relations ap-
ply? They must be causal but that is obvious. No engineer
would ever consider a situation when the effect comes before
the cause. A further condition that no wave can propagate
faster than the velocity of light in vacuum is not very burden-
some either. Krylov [12] states a more relevant restriction that
KK is generally invalid when energy leaks from an acoustic
waveguide. In contrast, it is claimed by Haakestaed et al. [5]
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that for weakly guiding dielectric waveguides, when the index
contrast is small, the KK relations are applicable. We should
also mention a further, not widely known, criterion that needs
to be satisfied for the KK relations to be valid not only to real
and imaginary parts of a transfer function but also to its phase
and logarithm of its modulus: the equivalent network has to
be a minimum phase network [19]. Such network satisfies the
condition that it blocks signal propagation when it is cut at
any point.

The range of topics to which the KK relations are ap-
plicable is quite wide. A list would contain nonlinear op-
tics [14,20,21], hollow waveguides with infinitely conducting
walls [5,12], slightly lossy coaxial waveguides [18], different
kind of acoustic waveguides [12], transfer functions of any
physically realizable linear circuits and systems, interferom-
eters [22], dielectric waveguides, index guiding waveguides,
Bragg reflection waveguides [5], relations between reflectance
and phase [23], and extraction of metamaterial parameters
[24]. It has been shown by Kirby et al. [25] that attenuation
can be reversed even for the case of “slow” or “stopped light.”
Going further it was proved in Refs. [26,27] that the KK
relations can be applied to negative refractive index materials.
In particular, Wuestner et al. [27] showed their relevance to
amplifying light in a left-handed material known as a fishnet
structure.

In fact, whenever a new structure capable of supporting
any kind of wave is discovered, then it is legitimate to ask
the question whether the KK relations are applicable, and
then supply the proof. That brings us to magnetoinductive
waves, relatively recently discovered, for which we shall de-
rive the relevant relations. Magnetoinductive waves supported
by 1D, 2D, and 3D structures of magnetically coupled split
ring resonators were first reported in 2002 [28,29]. They
were born as part of the research on metamaterials. We
shall introduce them in Sec. II. Similar waves on coupled
resonant elements have also been reported: on optical cavities
[30], on electrically coupled metamaterial elements [31], and
on arrays of spherical nanoparticles [32]. We shall show in
Secs. III and IV that the KK relations are valid in the nearest-
neighbor approximation even for large ohmic losses. Then,
in Sec. V we consider the KK relations for long-range cou-
pling proving they are valid for a general excitation problem
rather than for individual modes. Conclusions are drawn in
Sec. VI.

II. MAGNETOINDUCTIVE WAVES IN THE
NEAREST-NEIGHBOR APPROXIMATION

The physics of the operation of magnetoinductive waves
is quite simple. They can propagate on a discrete set of
current carrying resonant elements, like coils or split ring
resonators. In the one-dimensional case there are two distinct
configurations, axial and planar, as shown in Figs. 1(a) and
1(b). The current In flowing in element n is then coupled via its
magnetic field to elements n − 1 and n + 1 when we rely on
nearest-neighbor interaction. The equivalent circuit is shown
in Fig. 1(c). We can attempt the solution in the form

In = I0e j(ωt−kan), n = −∞, . . . ∞, (1)

(c)
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FIG. 1. (a) Axial, (b) planar configuration of magnetoinductive
waveguides, and (c) equivalent circuit.

where ω is the frequency, t is time, k is the complex propaga-
tion coefficient

k = kr + jki, (2)

kr and ki are the wave number and attenuation constant re-
spectively, a is the separation between the elements, and n are
integers. Writing down the relevant Kirchhoff’s equations for
three neighboring elements

ZIn + jωM(In−1 + In+1) = 0, (3)

where

Z = jωL

(
1 − ω2

0

ω2
− j

ω0

ωQ

)
(4)

is the self-impedance, L is the self-inductance, Q is the quality
factor, ω0 is the resonant frequency of the ring, and M is the
mutual inductance between neighboring elements, we find the
dispersion equation as

ζ + κ cos(ka) = 0, (5)

where ζ = Z/ jωL is the normalized self-impedance and κ =
2M/L is the coupling constant between neighboring elements.
The coupling constant κ is real but can be positive or negative.
When we derived (5) we assumed that it was positive for
axial, and negative for planar configurations [see Figs. 1(a)
and 1(b)].

The solution of (5) for ω or k is straightforward and gives
two waves traveling in opposite directions:

ak1,2 = ± cos−1(y), (6)
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FIG. 2. Dispersion curves of magnetoinductive waves for posi-
tive (solid green curves) and negative (dashed black curves) coupling
constants in the case of positive group velocities: (a) The real part and
(b) the imaginary part of the complex propagation coefficient against
normalized frequency.

with

y = −ζ

κ
= 1

κ

[
s−2 + j

Qs
− 1

]
, s = ω

ω0
. (7)

We should be careful in selecting the correct sign for a
particular wave because some of the waves, those which grow
in the direction of propagation, are not physically realizable
with passive structures. For the wave carrying a signal (power)
in the direction of positive n and having Vg > 0 (Vg is the
group velocity), we should select

ak =
{

ak1 = cos−1(y), if κ > 0,

ak2 = − cos−1(y), if κ < 0.
(8)

This ensures that aki < 0 and the magnetoinductive wave
decays while propagating away from the source as dictated
by causality. When Vg < 0 (meaning that power propagates in
the negative n direction), the selection of the signs should be
opposite, giving aki > 0 and attenuation of the power along
the propagation direction toward negative n to comply again
with causality. The positive sign of κ corresponds to a forward
wave, and the negative sign to a backward wave. The former
occurs in the axial configuration, and the latter in the planar
configuration. The dispersion characteristics for these two
cases are shown in Fig. 2 for Vg > 0, κ = ±0.3, Q = 100
and for positive frequencies. One can see that the signs of
Vg and the phase velocity are opposite indeed if κ < 0. The
attenuation of magnetoinductive waves is minimum within the
passband. It would be exactly zero in the passband from s =
1/

√
1 + |κ| to s = 1/

√
1 − |κ| in the absence of ohmic losses.

In contrast to microwave waveguides which have lossless
propagation only above a certain cut-off frequency, lossless
Magnetoinductive waves exist only in a passband. In the stop
bands kr quickly approaches either zero or ±π .

III. KRAMERS-KRONIG RELATIONS FOR THE
TRANSFER FUNCTION OF MAGNETOINDUCTIVE

WAVES IN THE NEAREST-NEIGHBOR APPROXIMATION

The system under consideration is physically realizable
and obeys the causality principle. There are all reasons to
expect that the transfer function for the currents or voltages
for a single element of the periodic structure T (ω) = Tr + jTi

satisfies the KK relations

Tr(ω) = − 1

π
P

∫ +∞

−∞

Ti(ω′)
ω′ − ω

dω′, (9)

Ti(ω) = 1

π
P

∫ +∞

−∞

Tr(ω′)
ω′ − ω

dω′, (10)

where P stands for principal value. Note that there is another
equivalent form of the KK relations where the limits of the
integrals are between 0 and ∞. We found from experience
that there is better convergence for the symmetric limits when
the integrals are calculated numerically. Besides, this form of
the KK relations is better suited for calculations using FFT.
Note further that the signs in front of the principal values of
the integrals in (9) and (10) differ from those often used in
publications by physicists (see [33], for instance). The reason
is that those authors assume that the Fourier transform relating
T (ω) to the system impulse response has the plus sign in the
exponent ( jωt) while many of the engineering textbooks use
the minus sign [19,34]. Since we use the time factor e jωt in
(1) we should use the definition of Fourier transform adopted
in those textbooks. This implies that the KK relations can
be derived from Cauchy’s theorem by closing the integration
contour not over the upper half of the complex ω plane as it is
done in [33] but over the lower half-plane.

In order to check the applicability of (9) and (10) to
magnetoinductive waves we need to find the transfer function
T for a single period of the waveguiding structure. It is easy to
do it bearing in mind (1), but again we should exercise some
care in considering the direction of the signal propagation
for different waves. For the waves with Vg > 0, the signal
propagates in the positive direction of n, and

T = e− jka = e− jkrae kia, (11)

so the real and imaginary parts of the transfer function are

Tr = cos(kra)e kia and Ti = − sin(kra)e kia. (12)

For the waves with Vg < 0, the input and the output for the
single element of the periodic structure should be swapped,
and the sign in the exponent in (11) should also be changed.
This ensures |T (ω)| � 1 in all cases. There is however a
further problem. It follows from (1) and (11) that T (ω) �= 0
when the frequency tends to infinity. It can be found as

T (∞) = ±
√

1 − κ2 − 1

|κ| , (13)

where + should be taken for κ > 0 and − should be taken for
κ < 0.

The fact that T (ω) does not vanish as ω → ∞ invali-
dates the proof of the KK relations because it can no longer
be claimed that the integral in the complex plane over a
semicircle with an infinitely large radius equals zero. The
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FIG. 3. (a) The real part and (b) the imaginary part of the transfer
function against normalized frequency for κ = 0.3. Solid green
curves: Dispersion. Dashed black curves: Kramers-Kronig pairs.

difficulty can be overcome if we apply (9) and (10) to the
function T (ω) − T (∞). We may now determine (9) and (10)
by calculating numerically the Hilbert transform. We shall
use the convolution theorem and the fast Fourier transform
as proposed in [18] in the form

Tr(ω) = FFT−1{ j sgn(t ) FFT[Ti(ω)]} + T (∞), (14)

Ti(ω) = FFT−1{− j sgn(t ) FFT[Tr(ω) − T (∞)]}. (15)

To be able to use (14) and (15), we need to extend the
transfer function (11) and (12) to negative frequencies bearing
in mind that Tr(ω) is an even function and Ti(ω) is an odd
function to ensure a real impulse response. We use MATLAB®

to calculate (14) and (15) with the number of frequency points
N = 215 and the step �s = 0.0005. In Figs. 3 and 4 the
solid green curves are calculated from the dispersion relations
(12), whereas the dashed black curves are calculated from
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FIG. 4. (a) The real part and (b) the imaginary part of the transfer
function against normalized frequency for κ = −0.3. Solid green
curves: Dispersion. Dashed black curves: Kramers-Kronig pairs.
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FIG. 5. (a) The real part and (b) the imaginary part of the com-
plex propagation coefficient against normalized frequency for κ =
0.3. Solid green curves: Dispersion. Dashed black curves: Kramers-
Kronig pairs.

the KK relations as given by (14) and (15) for κ > 0 and
κ < 0, respectively. As may be seen, the solid green and the
dashed black curves perfectly coincide proving the validity of
the KK relations to magnetoinductive waves. It maybe worth
noting that the integration limits s = ±214�s = ±8.192 are
sufficient in approximating the infinite limits.

IV. KRAMERS-KRONIG RELATIONS FOR THE
MAGNETOINDUCTIVE PROPAGATION CONSTANT IN

THE NEAREST-NEIGHBOR APPROXIMATION

The situation might be quite different for the KK relations
for the propagation constant. We know from circuit theory
[19,33] that KK relations work for the ln(|T (ω)|) = aki and
arg[T (ω)] = −akr only in the case of minimum phase cir-
cuits. Can the 1D periodic structure consisting of coupled
SRRs supporting the magnetoinductive waves be viewed as
a minimum phase network? In the case of nearest-neighbor
coupling, its equivalent circuit looks like a chain of trans-
formers with capacitors connected to each other [Fig. 1(c)].
This means that a single break in any location of the struc-
ture would fully block the propagating signal. This property
indicates that the structure is a minimum phase circuit indeed
[19]. So we could expect the KK relations to be applicable to
the propagation constant of magnetoinductive waves as well.
Let us check it. A problem is how to take the values of akr

and aki for negative frequencies. We know that for a KK pair
one of them should be an even function and the other one
an odd function. But which is which? As follows from (12),
aki(ω) should be even and akr(ω) should be odd since Tr is
even and Ti is odd. They are plotted as solid green curves
against normalized frequency in Figs. 5 and 6 in the range
−3 < s < 3 for κ > 0 and κ < 0, respectively, for the waves
with Vg > 0 using (8).

Here we should make an important comment regarding the
κ > 0 case. As one can see from the upper graph in Fig. 5,
akr(ω) does not actually look like an odd function. This is
because we have added 2π to it at ω < 0. We can do it
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FIG. 6. (a) The real part and (b) the imaginary part of the
complex propagation coefficient against normalized frequency for
κ = −0.3. Solid green curves: Dispersion. Dashed black curves:
Kramers-Kronig pairs.

due to the discrete nature of the medium where the wave
propagates. As a result, we obtain a dispersion characteristic
fully equivalent to the original odd function but it has an
important advantage: kr(−∞) = kr(∞). This allows us to
apply the same approach to the propagation constant as the
one we applied to the transfer function to make the KK
relations work: subtract k(∞) from k(ω). As a result, they can
be written as follows:

kr(ω) = FFT−1{ j sgn(t ) FFT[ki(ω) − ki(∞)]} + kr(∞),

(16)

ki(ω) = FFT−1{− j sgn(t ) FFT[kr(ω) − kr(∞)]} + ki(∞),

(17)

where

akr(∞) = π if κ > 0 and akr(∞) = 0 if κ < 0,

(18)
and aki(∞) = ln[|T (∞)|].

The solid green curves (Figs. 5 and 6) for the real and imag-
inary parts of the propagation coefficient are calculated from
the dispersion relations (8) for κ = 0.3 and −0.3, respectively.
The dashed black curves are determined from the KK relations
(16) and (17). Again, the solid green and the dashed black
curves may be seen to coincide.

All the above curves in Figs. 3–6 are calculated for Q =
100. Practically the same accuracy of matching between the
original curves and those calculated using KK relations is
achieved for a significantly lower value of Q = 10 as well.
We shall not show the curves because they do not offer any
new information but they are significant in the sense that the
KK relations are still applicable for quite large ohmic losses.

V. KRAMERS-KRONIG RELATIONS: LONG-RANGE
COUPLING, MODAL APPROACH

In the case of nearest-neighbor coupling, there is only
one mode that is supported by the 1D chain of coils or split

ring resonators. In this case, the transfer function for this
mode (11) is also the transfer function for the actual physical
signal propagating in the structure that obeys the causality
principle. Most magnetoinductive lines can be analyzed by
relying on nearest-neighbor interactions but not all of them.
Sometimes higher order interactions do matter as discussed in
Refs. [35,36]. Let us see what happens in this situation.

In the general case, one could take into account Nc interac-
tions, i.e., interactions up to Nc neighbors in both directions.
According to [29], the dispersion equation for the magnetoin-
ductive waves in the long-range coupling case can be derived
from Kirchhoff’s equations for each of the 2Nc + 1 elements
between m − Nc and m + Nc:

ζ +
Nc∑

n=1

κn cos(nka) = 0, (19)

where κn is the coupling constant between the mth element
and (m ± n)th element. Let us take Nc = 3 as an example.
To solve the dispersion equation for k as a function of ω we
introduce a new unknown y = cos(ka) and rewrite (19) as a
polynomial in terms of y:

4κ3y3 + 2κ2y2 + (κ1 − 3κ3)y − s−2 − j

sQ
+ 1 − κ2 = 0.

(20)
Obviously the order of the polynomial is determined by the

order of the long-range coupling Nc. The number of the roots
ym of the polynomial is bound to be equal to Nc, three in our
case. If Q � 1 then the roots are either almost real or almost
complex conjugate. Each of them gives rise to a solution for
the propagation constant km similar to (6),

akm = ± cos−1(ym), m = 1, . . . , Nc. (21)

Here we assume that the coupling constants are positive
and take their values from Ref. [29]: κ1 = 0.3, κ2 = 0.086,
κ3 = 0.035. The dispersion curves for the three modes are
shown in Fig. 7 for Q = 100. The solid red curve (k1) cor-
responds to the fundamental mode, analogous to that of the
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FIG. 7. (a) The real part and (b) the imaginary part of the propa-
gation coefficients of the fundamental mode k1 (solid red curves) and
the higher-order modes k2 (solid green curves) and k3 (dashed black
curves).
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magnetoinductive wave in the nearest-neighbor approxima-
tion, the solid green curve (k2) and the dashed black curve
(k3) correspond to the higher-order modes with significantly
higher decay rate in the passband. It is important to note that,
unlike in the nearest-neighbor coupling case, these modes
cannot be excited separately in a causal way, hence the KK
relations are not satisfied for the real and imaginary parts
of km (this situation was discussed in [5]). We have run the
numerical program implementing (16) and (17) and have
indeed found that the KK relations fail in all three cases.

Clearly what we need is to find the full solution of an exci-
tation problem taking all three modes jointly into account. As
an example, we shall consider a voltage source of amplitude
V connected in series to the 0th element of a semi-infinite
magnetoinductive waveguide as an input signal source. The
current in the mth element will then be assumed in the form

Im =
{

I01e− jk1ma + I02e− jk2ma + I03e− jk3ma, m � 1,

I0, m = 0,

(22)
where I0i (i = 1, 2, 3) are the modal amplitudes. The prop-
agation constants in (22) should be selected in such a way
that k1,2,3 i = Im(k1,2,3) < 0 (as shown in Fig. 7) in order to
satisfy the condition that the mode amplitudes decline in the
direction going away from the signal source. We have four
unknowns hence we need four equations to find them. These
will be Kirchhoff’s equations applied to the first four elements
as follows:

ζ I0 + κ1

2
I1 + κ2

2
I2 + κ3

2
I3 = V

jωL
, for m = 0, (23)

ζ I1 + κ1

2
(I0 + I2) + κ2

2
I3 + κ3

2
I4 = 0, for m = 1, (24)

ζ I2 + κ1

2
(I1 + I3) + κ2

2
(I0 + I4) + κ3

2
I5 = 0, for m = 2,

(25)

ζ I3+ κ1

2
(I2 + I4)+ κ2

2
(I1+I5)+ κ3

2
(I0+I6) = 0, for m = 3.

(26)

Note however that apart from I0 the unknowns we wish
to find are I0i (i = 1, 2, 3). Thus, what we finally need are
four linear equations with variables I0 and I0i. This is a rather
long derivation; we shall therefore show the derivation for
only one element in the 4 × 4 matrix in any detail. Let us
choose Eq. (24) for further manipulations. We can substitute
the values of Im from (22) into (24). Note that each of the
terms Im will have a component I01. Next, we shall find the
coefficients of I01. They may be obtained from (24) as

ζe− jk1a + κ1

2
e−2 jk1a + κ2

2
e−3 jk1a + κ3

2
e−4 jk1a

= e− jk1a

(
ζ +

3∑
n=1

κn

2
e− jnk1a

)
. (27)

Let us now rewrite Eq. (19) for k = k1 that is one of the
roots, in the form

ζ +
3∑

n=1

κn

2
e− jnk1a = −

3∑
n=1

κn

2
e jnk1a (28)
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FIG. 8. (a) The real part and (b) the imaginary part of the
transadmittance of the first element. Solid green curves: Dispersion.
Dashed black curves: Kramers-Kronig pairs.

that will give us the final form for the coefficient of I01,

X01 = −
3∑

n=1

κn

2
e j(n−1)k1a. (29)

Using analogous derivations for all the coefficients of I0

and I0i we end up with the linear equations as follows:

⎡
⎢⎢⎢⎣

Zn X01 X02 X03
κ1
2 X11 X12 X13

κ2
2 X21 X22 X23

κ3
2 − κ3

2 − κ3
2

κ3
2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

I0

I01

I02

I03

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

V
jω0Ls

0

0

0

⎤
⎥⎥⎥⎦, (30)
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FIG. 9. (a) The real part and (b) the imaginary part of the transad-
mittance of the second element. Solid green curves: Dispersion.
Dashed black curves: Kramers-Kronig pairs.
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FIG. 10. (a) The real part and (b) the imaginary part of the
transadmittance of the third element. Solid green curves: Dispersion.
Dashed black curves: Kramers-Kronig pairs.

where

X0i =
3∑

n=1

κn

2
e− jkina, (31)

X1i = −
3∑

n=1

κn

2
e jki (n−1)a, (32)

X2i = −
3∑

n=2

κn

2
e jki (n−2)a. (33)

We are now in a position to apply the KK relations. We
found the relations not to be satisfied for any of the modes on
their own. The reason is that the modes are not causal in the
sense that they cannot be independently excited by a physical
signal source located in one of the waveguiding elements.
On the other hand, we can define a transfer function, say the
transadmittance for the mth element, in terms of the modal
amplitudes as

Ym = Im

V
= 1

V

3∑
i=1

I0ie
− jmkia. (34)

Then its real and imaginary parts can be expected to satisfy
the KK relations. This is indeed the case as shown in Figs. 8–
10. The solid green curves show the actual functions. The
dashed black curves are obtained by using the KK relations
similar to (14)–(17). The agreement may be seen to be perfect.

We have been pleased to see that such complicated functions
of frequency can be reproduced by the KK relations. They also
work for any other transfer function of the magnetoinductive
waveguide defined for the voltage V or the current I0 as an
input signal.

Finally, we wish to note that we have also calculated the
KK pairs for an infinite line excited in the middle by all three
modes taken together. The resulting curves look quite similar
to those in Figs. 8–10 although there are some differences.
Again, for all the transfer functions taking into account all
three modes, we found the KK relations satisfied with the
same accuracy as for the semi-infinite case.

VI. CONCLUSIONS

The applicability of the Kramers-Kronig relations to mag-
netoinductive waves has been investigated. Starting with the
nearest-neighbor approximation, we looked at both the real
and imaginary parts of the complex propagation coefficient,
and also at the real and imaginary parts of the transfer function
for a single period of the waveguiding structure. We were
successful in proving numerically the KK relations but had
to introduce some modifications, because neither function
vanished as the frequency tended to infinity, a condition for the
validity of the KK relations. The difficulties were overcome
by deducting the functional value at infinity from the actual
function. We could then prove that these modified functions
calculated from the dispersion equation coincided with those
determined with the aid of the KK relations.

We also looked at the applicability of the KK relations to
magnetoinductive waves with long-range coupling. We found
that the relations were not applicable to the individual modes
supported by the 1D structure. However, they were shown to
be valid for the transfer functions of the waveguide defined
for the voltage or the current of the input signal source after
solving the excitation problem and taking all the modes into
account.

The results of this work would enable rapid evaluation,
e.g., of the transfer function for signal and power transfer via
magnetoinductive waves. It is the transfer function that plays
the practical role in real-world applications of magnetoinduc-
tive waves including medical imaging [37] or wireless power
transfer [38]. We plan to investigate the applicability of the
Kramers-Kronig relations to realistic scenarios that may find
applications, e.g., in designing on-the-go wireless charging
for electric cars along the road. We believe our technique
of proving the validity of the Kramers-Kronig relations for
magnetoinductive waves may be further generalized to deal
with other types of slow waves such as surface plasmons
or waves of electric or magnetic coupling in nanostructured
metamaterials like those described in Refs. [30–32].
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