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Motivated by recent quantum gas microscope experiments for fermions in optical lattices, we present
proof-of-principle calculations showing that it is possible to obtain the complete information about the quantum
state on a small subsystem from equilibrium determinantal quantum Monte Carlo simulations. Both diagonal
(in the occupation number basis) and off-diagonal elements of the reduced density matrix are calculated for
a square plaquette, which is embedded in a much larger system of the two-dimensional Hubbard model, both
at half filling and in the doped case. The diagonalization of the reduced density matrix is done by exploiting
the point group symmetry and particle number conservation, which allows one to attach symmetry labels to
its eigenvalues. Knowledge of the probabilities of plaquette occupation number configurations is useful for
meticulous benchmarking of quantum gas microscope experiments. As the quantum state on the plaquette is
exact and self-consistently embedded in an exact, correlated bath, the present approach connects to various
cluster approximation techniques.
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I. INTRODUCTION

Quantum state tomography refers to the task of reconstruct-
ing the full quantum state of a system from measurements,
which, by definition, is a task that scales exponentially in the
system size. Tomography has been used to characterize small
quantum systems consisting of a few qubits, such as trapped
ion chains [1], molecules in nuclear magnetic resonance
experiments [2], superconducting circuits [3], and photonic
systems [4,5]. More efficient quantum tomography techniques
based on compressed sensing [6] and matrix product states [7]
have been proposed, facilitating the reconstruction based on
incomplete data [4,8,9].

For cold atoms in optical lattices emulating strongly corre-
lated solid state models such a global characterization of the
state is neither feasible nor meaningful. Still, the local state on
a subsystem of sites A, encoded by its reduced density matrix
ρA = TrB=Ā(ρ), which is given by the partial trace of the
global density matrix ρ = e−βĤ/Z over the complement sys-
tem B, can provide valuable information if subjected to a to-
mographic measurement. Here, we present proof-of-principle
determinantal quantum Monte Carlo (DQMC) calculations
for a square plaquette of the Fermi-Hubbard model which is
embedded in a much larger system.

Cold-atom experiments with quantum gas microscopes
have reached a regime where local antiferromagnetic cor-
relations in the two-dimensional Fermi-Hubbard model and
the effect of doping away from half filling can be explored
[10–13]. In particular, signatures of polarons [13,14] have
been reported. The finite-temperature phase diagram of the 2D
Fermi Hubbard model for intermediate interaction strength
[15] is very challenging due to the fermionic sign problem,
which is aggravated exponentially by decreasing tempera-
ture. The temperatures currently realized in fermionic quan-
tum gas microscope experiments are still within reach of

numerically exact DQMC simulations, and detailed compari-
son of full particle number distribution functions [16] has been
made.

There are numerous ramifications that motivate computing
the equilibrium probabilities of individual microstates, i.e.,
the diagonal elements of ρA. By superimposing a specific
experimental measurement protocol, the effect of parity pro-
jection [17], i.e., the inability to distinguish doubly occupied
sites and holes in the imaging process, on the experimentally
observed particle configurations can be assessed. Remarkably,
a scheme for measuring the second moment of the density
matrix, its purity Tr(ρ2

A), without exponential effort has been
demonstrated in bosonic cold-atom experiments [18,19] and
generalized to fermionic systems [20]. Measurement proto-
cols for accessing the full entanglement spectrum in cold-
atom systems have also been proposed [21]. In view of this
and recent progress in using machine learning with neural net-
works to reconstruct a full quantum state of bosonic systems
[22] from a limited number of experimental measurements
[23,24], numerical access to all (diagonal and off-diagonal)
elements of ρA is of potential interest. Alternative numerical
approaches relying on the replica representation of Rényi
entropies [25] Tr[ρn

A] require complicated modifications in
the topology of the simulation cell, whereas the brute force
numerical scheme described here does not affect the core
of the DQMC algorithm and all diagonal and off-diagonal
elements of the reduced density matrix, as well as its eigen-
values, the entanglement spectrum, can be obtained. However,
computational and memory resources that grow exponentially
with the subsystem size limit the latter to maximally Ns = 9
sites [26].

From a methodological point of view, there are connections
with various types of numerical cluster approaches. Equations
(6) and (7) below give the exact state on a cluster that is
self-consistently embedded in a correlated bath and can be
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used to compare with computationally less expensive methods
that solve the cluster system exactly, but treat the bath degrees
of freedom only approximately. In Refs. [27,28], using an
auxiliary-field quantum Monte Carlo solver in the context
of cellular dynamical mean-field theory, the entanglement
spectrum was computed for a triangular plaquette of the
kagome Hubbard model, revealing an emergent composite
degree of freedom due to geometric frustration. The method
used there is very similar in spirit to the one presented in this
work.

Finally, a strong motivation for studying the detailed struc-
ture of a local quantum state comes from the phenomenol-
ogy of the high-temperature phase of the repulsive Hubbard
model (or more generally of high-Tc superconductors) where
for temperatures β � 4–5, where DQMC simulations are
still possible due to a mild sign problem [29], a pseudogap
develops in the single-particle spectral function [30]. The
pseudogap in the attractive Hubbard model is well understood
in terms of local bound pairs of fermions without long-range
phase coherence, the gap being associated with the binding
energy of the pair. A natural question is whether similar
preformed objects are responsible for the pseudogap observed
in the repulsive Hubbard model [30] (or more generally in
the normal state of high-Tc superconductors) and which sig-
natures of correlated phases are contained in the local density
matrix [31].

The structure of this paper is as follows. In Sec. II, we de-
scribe the algorithm for projecting the reduced density matrix
ρA on a subsystem A from the global density matrix which
is sampled in the DQMC procedure. The symmetries of the
reduced density matrix on a square plaquette and the transfor-
mation to the irreducible representation basis are discussed in
Sec. III. In Sec. IV the issue of error bars is addressed. Finally,
Sec. V contains the results for the tomographic reconstruction
of ρA on a square plaquette of the Hubbard model: At half
filling, we present the diagonal and off-diagonal elements of
ρA as a function of Hubbard interaction U/t for both high
and low temperatures. Away from half filling, where the com-
putational cost of DQMC simulations is affected by the sign
problem, we show the doping dependence of ρA for U/t = 6
and a relatively high temperature of T = 0.25t , which corre-
sponds to the lowest temperature achieved so far in fermionic
cold-atom experiments [10]. Section VI concludes with an
outlook.

II. BORN’S RULE FOR MANY-BODY STATES

The Hamiltonian studied in the following is that of the
single-band Hubbard model

H = −t
∑

〈i, j〉,σ=↑,↓
(c†

i,σ c j,σ + H.c.)

+μ

N∑
i=1

(ni,↑ + ni,↓) + U
N∑

i=1

ni,↑ni,↓, (1)

where c†
i,σ creates a fermion with spin σ at site i, and ni,σ =

c†
i,σ ci,σ . Here, t is the hopping matrix element between nearest

neighbors 〈i, j〉, μ is the chemical potential, and U is the on-
site repulsive (U > 0) or attractive (U < 0) interaction. The

partition sum

Z = Tr(e−βH) (2)

is sampled with the determinantal quantum Monte Carlo
method [32–34]. We briefly sketch the essential conceptual
steps in the derivation of this procedure, referring to the
exhaustive literature (see, e.g., Refs. [33,34]) for more details.
After discretizing inverse temperature β = Nτ�τ into Nτ

imaginary time slices and separating the single-body kinetic
term in the Hamiltonian from the two-body interaction term
via a Trotter-Suzuki decomposition, a Hubbard-Stratonovich
(HS) transformation is applied to the interaction term convert-
ing it into a single-particle term which is coupled to a fluc-
tuating space- and imaginary-time-dependent potential given
by auxiliary-field variables. Thanks to the HS transformation
the partition sum contains only exponentials of bilinear (i.e.,
free) fermionic operators. Then, the free fermions can be
integrated out for each auxiliary-field configuration using the
well-known formula for the grand-canonical fermionic trace,
which results in

Z =
∑
{s}

∏
σ=↑,↓

det
(
1 + Bσ

Nτ
Bσ

Nτ −1 · · · Bσ
1

)
(3)

=
∑
{s}

w
↑
{s}w

↓
{s}. (4)

Here, Bσ
l ≡ e−�τV σ

l ({sl })e−�τK is an N × N matrix represen-
tation of the single-particle propagator at time slice l after
HS transformation, with V σ

l ({sl}) denoting the potential term
and K the kinetic term of the single-particle Hamiltonian after
HS transformation [34], while {s} ≡ {si,l}i=1,...,N ;l=1,...,Nτ

is the
space-time configuration of auxiliary-field variables, which is
sampled with a Monte Carlo technique.

It can be shown (see, e.g., Ref. [34]) that the weight wσ
{s}

is given by the inverse determinant of the equal-time single-
particle Green’s function

[
Gσ

{s}(τ = l�τ )
]

i, j ≡ 〈ci,σ c†
j,σ 〉{s}

= [(
1+ Bσ

l Bσ
l−1 · · · Bσ

1 Bσ
Nτ

· · · Bσ
l+1

)−1]
i, j

,

(5)

which constitutes the central quantity of the DQMC algo-
rithm. Furthermore, for the Hubbard model the HS transfor-
mation can be chosen such that the weight of an auxiliary-field
configuration {s} factorizes between spin species [34].

Thus, loosely speaking, the DQMC framework consists of
computing a large sum over free-fermion systems in varying
external potentials: It suffices to compute any quantity (in
any single-particle basis) for free fermions and average over
Monte Carlo samples. This is a huge conceptual simplifica-
tion compared to path-integral methods. The generality of
the free-fermion decomposition [35] allows one to carry the
measurement part of the DQMC algorithm to its extreme by
calculating the full quantum state on a small subsystem A, that
is, all elements of the reduced density matrix ρA. This amounts
to performing exact diagonalization inside the measurement
part of the Monte Carlo procedure.
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The diagonal and off-diagonal elements of the reduced
density matrix in the Fock basis can be written as

〈α|ρ|α〉 =
∑
{s}

Tr(ρ{s} �̂α ), (6)

〈β|ρ|α〉 =
∑
{s}

Tr(ρ{s} 	̂α→β ), α �= β. (7)

Here, �̂α = |α〉〈α| are projectors onto individual Fock states

|α〉 = |α↑〉 ⊗ |α↓〉 = |n1,↑, n1,↓; n2,↑, n2,↓; . . . ; nNs,↑, nNs,↓〉
(8)

on the subsystem A with Ns sites [36] and 	̂α→β = |β〉〈α| is
a transition operator between two Fock states |α〉 and |β〉. ρ{s}
is the global density matrix of the free-fermion system with
auxiliary-field configuration {s}, which is sampled via Monte
Carlo.

In a state of a noninteracting Fermi system, Wick’s theorem
applied to a product of n pairings of fermionic operators
results in the determinant formula

〈(
ci1 c†

j1

)(
ci2 c†

j2

) · · · (cin c†
jn

)〉
0 = det

(
G(0)

iα jβ

)
(9)

with α, β = 1, . . . , n, where the equal-time Green’s func-
tion of the noninteracting Fermi system is G(0)

iα jβ
(τ = 0) =

〈ciα (τ = 0)c†
jβ

(0)〉0. This formula is the basis for evaluating
the expectation values of the projectors and transition opera-
tors in Eqs. (6) and (7) and thus extracting the elements of the
reduced density matrix from an equilibrium state, which in
the DQMC framework is encoded in a sum over free-fermion
systems parametrized by auxiliary-field configurations {s}.

Since for one auxiliary-field configuration {s} the reduced
density matrix factorizes between spin species,

(〈β↑| ⊗ 〈β↓|)ρ↑
A,{s} ⊗ ρ

↓
A,{s}(|α↑〉 ⊗ |α↓〉)

= 〈α↑|ρ↑
A,{s}|β↑〉〈α↓|ρ↓

A,{s}|β↓〉, (10)

at most 2 × 2Ns × 2Ns matrix elements need to be computed to
express all 4Ns × 4Ns elements of ρA,{s}. (In this crude estimate
we have disregarded the block diagonal structure of ρσ

A,{s}
with respect to particle number Nσ

A which reduces the size
of the largest particle number block for one spin species to
( Ns


Ns/2�) · ( Ns


Ns/2�) with 
x� denoting the largest integer that is
smaller than x.) Therefore, the limiting factor is the memory
requirement for storing all elements of ρA,{s} for Monte Carlo
averaging, rather than the computation of individual elements.
The presence of point group symmetry operations which leave
subsystem A invariant or spin inversion symmetry leads to an
additional block diagonal structure of ρA (see Sec. III A).

In the following, we discuss the computation for a single
spin component, thereby dropping all spin indices in the
notation. We use hats to distinguish the number operator n̂i =
c†

i ci from the occupation number ni and write

�̂α =
∏
i∈Ns

[n̂ini + (1 − n̂i )(1 − ni )]

=
∏

i occupied

n̂i

∏
j unoccupied

(1 − n̂ j ). (11)

The transition operator 	̂α→β can be written as

	̂α→β = T̂α→β �̂α, (12)

where �̂α projects onto the Fock state |α〉, which is then
converted into |β〉 by a combination of appropriately chosen
creation and annihilation operators

T̂α→β = (−1)p

⎛
⎜⎜⎜⎝

1∏
c = N+

i1 < i2 < · · · < iN+

c†
ic

⎞
⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎝

1∏
a = N−

j1 < j2 < · · · < jN−

c ja

⎞
⎟⎟⎟⎠. (13)

The sequences of site indices I+ = {i1, i2, . . . , iN+} and I− =
{ j1, j2, . . . , jN−}, ordered according to the chosen fermion or-
dering, denote the lattice sites where the N+ creation and N−
annihilation operators must act to convert |α〉 into |β〉. Since
ρA is block diagonal with respect to the total particle number
NA,σ = ∑

i∈A ni,σ for each spin species σ (see Sec. III A),
there must be as many creation as annihilation operators and
N+ = N−. The fermionic phase

(−1)p =
N+∏

ic=1

eiπ
∑

ic<l<Ns
n(γ )

l

N−∏
ja=1

eiπ
∑

ja<k<Ns
n(α)

k (14)

with n(α) the vector of occupation numbers for state |α〉 and
n(γ ) for state |γ 〉 ≡ ∏1

a=N− c ja |α〉 ensures that T̂α→β |α〉 =
|β〉. Given that N+ = N−, one can bring the operator product
in Eq. (13) into the paired form as it appears on the left-hand
side of Eq. (9) by commuting fermionic operators. From this
an additional phase factor arises:

(−1)p′ = (−1)
∑N+

i=1 i = (−1)
N+

2 (N++1). (15)

With regard to a practical implementation for the evalua-
tion of the expectation values in the right-hand side of Eqs. (6)
and (7) for one particular auxiliary-field configuration {s}, a
few remarks are in order: The fact that an occupied site (“occ”
in the code listing in Appendix D) is represented by a projector
of the form n̂i = (1 − cic

†
i ) (for unoccupied sites 1 − n̂i =

cic
†
i ) means that the expectation value of the total projector

onto a Fock state Eq. (11), when multiplied out, is a sum of
terms which can be written as a binary tree for the occupied
sites where each leaf is of the form of Eq. (9). The branches of
the binary tree need to be summed over to obtain the projector
Eq. (11). In combination with T̂α→β , the projector �̂α needs
only be realized on sites that are unaffected (“ua” in the code
listing in Appendix D) by the hopping operators in T̂α→β

since the hopping operators already guarantee that occupation
number states α′ �= α are eliminated by the action of T̂α→β .

The algorithm for computing 〈β|ρA|α〉{s} between the oc-
cupation number states |α〉 and |β〉 for a single Hubbard-
Stratonovich configuration {s} is summarized in the pseu-
docode listing in Appendix D, where the main task consists
of collecting the correct row and column indices for the
submatrices that enter the determinant formula Eq. (9). The
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FIG. 1. Monte Carlo time series of the probability P for one of
the two plaquette Néel states. Note the violation of P � 1 for rare
outliers. U/t = 7.2, βt = 4, system size L × L with L = 12.

final result for a matrix element of ρA in the interacting sys-
tem is obtained by summing over all Hubbard-Stratonovich
configurations {s}. As an illustration, the Monte Carlo time
series of the diagonal element of ρA corresponding to one
of the two Néel states on a plaquette is displayed in Fig. 1.
There are rare outliers that exceed to maximum probability
of 1. The histogram of probabilities on the right is slightly
bimodal but smooth; the mean value is around PNéel ≈ 0.12.
For a projective measurement one would expect a binary
distribution of probabilities with only the probabilities 0 or
1 appearing.

III. SYMMETRIES OF THE REDUCED DENSITY MATRIX

The form of the global density matrix

ρ = 1

Z
e−β(H−μN ) with Z = Tr(e−βH )

implies that a symmetry operation represented by a unitary
operator U which obeys the commutation relation [H −
μN,U ] = 0 is trivially also a symmetry of the global density
matrix:

U †ρU = ρ. (16)

In the following it is discussed how symmetries of the Hamil-
tonian affect the block diagonal structure of the reduced
density matrix ρA of a subsystem A. Details on the exact di-
agonalization of the Hubbard model by means of symmetries
are discussed in Refs. [37,38]; an analytical diagonalization
exploiting all symmetries was carried out in Ref. [39] for a
single plaquette of the Hubbard model and in Ref. [40] for a
plaquette of the t-J model.

A. Particle number conservation

The eigenstates of the reduced density matrix retain their
good quantum numbers when the corresponding operator
of the total system is a direct sum of the operators of its
subsystems [41]. This is the case for the particle number
N̂σ = N̂A,σ + N̂B,σ (or the z component of the total spin M̂ =
N̂↑ − N̂↓) and consequently ρA is block diagonal with respect
to the quantum numbers NA,σ = ∑

i∈A ni,σ . For brevity, we
denote particle number sectors on the subsystem A in the
following by (N↑, N↓), where Nσ ≡ NA,σ .

TABLE I. Irreducible representations of the symmetry group D4.

Mulliken symbol Dimension Basis function Symmetry

A1 1 (x2 + y2)z2 s
A2 1 (x2 + y2)z s
B1 1 x2 − y2 dx2−y2

B2 1 xy dxy

E 2 x, y px, py

B. Lattice symmetry: Point group D4

We focus in the following on the point group symmetry
of the square lattice, the non-Abelian dihedral group D4 with
h = 8 group elements

D4 = {E,C2z,C4z,C−1
4z ,C2x,C2y,C2xy,C2xȳ} (17)

comprising the identity E and (assuming that the square is
lying in the x-y plane) rotations by π around the x, y, and z
axes, C2x,C2y, and C2z, rotations by π around the diagonal
lines x = y and x = −y, C2xy and C2xȳ, and clockwise and
counterclockwise rotations by π/2 around the z axis, C4z and
C−1

4z .
The group D4 has five irreducible representations, four

one-dimensional representations with the Mulliken symbols
A1, A2, B1, and B2, and one two-dimensional representation E .
For later reference, they are listed in Table I together with their
symmetries (see [42] for the character table and the irreducible
representation matrices of E ).

We denote by LA(B) the geometric object consisting of the
lattice sites in subsystem A (or in its complement B). Consider
the subgroup G̃ of lattice symmetry operations that can be
written as

R = R(A)R(B) with R(A)LA = LA and R(B)LB = LB,

(18)
where R(A) (R(B)) acts only on sites in A (B). By

PR = P(A)
R ⊗ P(B)

R (19)

we denote the corresponding operator that acts on wave
functions in second quantization rather than lattice sites [cf.
Eq. (B1) below]. Then the general invariance of the global ρ

under all elements R of the point group G

P†
R ρ PR = ρ (20)

implies for the subgroup G̃ of elements R′ which can be
written in the specific form Eq. (18) that

TrB
(
P(A)

R′
† ⊗ P(B)

R′
†
ρ P(A)

R′ ⊗ P(B)
R′

) = TrB(ρ) ≡ ρA

⇒ P(A)
R′

†
TrB

(
P(B)

R′
†
ρ P(B)

R′
)
P(A)

R′ = ρA (21)

⇒ P(A)
R′

†
ρAP(A)

R′ = ρA.

In the last step the basis independence of the trace operation
and the definition of the reduced density matrix was used.
Thus, ρA is invariant under all joint lattice symmetries R′ of
LA and LB that map each subset of lattice sites separately
back onto itself according to Eq. (18). If either LA or LB

has reduced symmetry (e.g., a square plaquette embedded in a
rectangular system or a rectangular plaquette inside a square
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FIG. 2. Transformation of the reduced density matrix ρA=� from the occupation basis (left column) to the representation basis (right
column) of the symmetry group D4h. First row U = 0, βt = 4; second row U = 6t, μ = 3t, βt = 4. The total system size is L × L with
L = 12. The insets show the enlarged particle number blocks (N↑ = 2, N↓ = 2) and (N↑ = 1, N↓ = 3) in the lower left and upper right corner,
respectively. Note that the block (2, 2) in the inset is decomposed with respect to the irreducible representations of D4h while in the main panel
only the symmetry group D4 is used.

system), then only the largest common symmetry subgroup
G̃ of the point group G is inherited by ρA. An illustrative
example is shown in the inset of Fig. 3, where the plaquette
LA possesses the full symmetry of the square, but due to
its location at the corner of a system with open boundary
conditions the complement lattice LB is only invariant under
C2xȳ, which is reflected in the symmetries of the diagonal
elements of ρA (see main panel of Fig. 3).

Particle number sectors with N↑ = N↓ can be further de-
composed according whether the states are even or odd under
spin the inversion symmetry S . The symmetry group of these
sectors is D4h = D4 × S , allowing a finer symmetry labeling
(see Appendix C for a discussion of spin and pseudospin
inversion symmetry).

Once all basis vectors |φ(n)
iλ 〉 have been constructed, the re-

duced density matrix can be transformed from the occupation
to the representation basis via

ρ
(representation)
A = S†ρ

(occupation)
A S (22)

with the transformation matrix Sα,(n,i,λ) = 〈α|φ(n)
iλ 〉. Here,

|φ(n)
iλ 〉 is the basis state corresponding to the λth copy of

ith row of the nth irreducible representation. The group-
theoretical techniques for constructing these basis vectors are
detailed in Appendix B.

As can be seen from Fig. 2, when written in the irreducible
representation basis, the reduced density matrix ρA does not
have nonvanishing matrix elements between states of different
symmetry and acquires a block diagonal form. More impor-
tantly, we are in a position to attach symmetry labels to the
eigenvalues of ρA.

IV. ERROR BARS

Due to statistical fluctuations ρA cannot be perfectly Her-
mitian; however, the deviations from Hermiticity, �H = ρA −
ρ

†
A, are smaller than the error bars of the corresponding

off-diagonal elements, and ρA is found to be normalized,
Tr(ρA) = 1 ± ε, with an inaccuracy ranging from ε � 10−5

(0 � U � 4) to ε ≈ (1–3) × 10−2 (large U , 4 � U � 10) for
βt = 4. For low temperatures the inaccuracy is slightly larger
(ε ≈ 3 × 10−2) for all values of U (see insets in Fig. 6
below). Furthermore, ρA is positive semidefinite within sta-
tistical uncertainty, as required for a valid density matrix.
Error bars have been obtained with the bootstrap method,
in which the matrix diagonalization is repeated ∼103 times,
each time adding Gaussian noise with a standard deviation of
the size of the deviation from Hermiticity |〈β|�H |α〉| to each
matrix element 〈β|ρA|α〉. The well-resolved symmetry-related
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FIG. 3. Probabilities P(s) of particle number configurations s
in Fock space on a plaquette that is located at the corner of a
large 12 × 12 system with open boundary conditions. The binary
representation of the integer s encodes the Fock space configuration.
Upper left panel: The most probable states are the two Néel states,
followed by the remaining 12 spin-only states. Main panel: Plaquette
states with charge fluctuations. The asymmetric location of the
plaquette leads to a disruption of symmetries that would be present
in a translationally invariant system, which is clearly visible in the
probabilities. Symmetry-related states have the same probability.
T/t = 0.35,U/t = 7.2, μ/t = 3.0.

degeneracies seen in Figs. 6(a) and 6(b) below indicate that
this error analysis is sound [43].

V. QUANTUM STATE TOMOGRAPHY FOR A PLAQUETTE
IN THE HUBBARD MODEL

A simple argument [44] for an isolated plaquette al-
ready shows how local antiferromagnetic correlations favor d-
wave pairing correlations, namely the operator that connects
the antiferromagnetic four-particle ground state |4〉 to the
two-hole ground state |2〉 must have dx2−y2 symmetry. The
matrix element

〈2|�d |4〉 �= 0 (23)

is large when the pairing operator �d = (c3,↑c2,↓ − c3,↑c4,↓ +
· · · ) has the sign structure for d-wave symmetry. On the
other hand 〈2|�s|4〉 = 0 for an s-wave pairing operator. The
following sections investigate the quantum state on a plaquette
of the Hubbard model embedded in a bath of 12 × 12 sites
which are treated numerically exactly.

Probabilities of individual occupation number configura-
tions are shown in Sec. V A. Sections V B and V C present the
eigenstates of the plaquette reduced density matrix, with local
correlations resolved according to symmetry sectors.

A. Diagonal elements of ρA=�

Figure 3 shows the probabilities P(s) of all plaquette
configurations s on a plaquette which is located at the
corner of a system with open boundary conditions. The
integer s ∈ {0, 1, . . . , 255} encodes the Fock configuration
on a plaquette through its binary representation [b(s)] =
[n↑

4 n↑
3 n↑

2 n↑
1 n↓

4 n↓
3 n↓

2 n↓
1 ] where nσ

i is the occupation number for

spin σ at one of the four sites (shown in the upper right
inset) and the notation [ ] converts integer codes into bit
representations.

The most probable states, the states with integer code
[105] and [150], are the two Néel states; they are followed
by the 12 other spin-only states which together would span the
Hilbert space in a Heisenberg-like description. From the upper
left panel of Fig. 3 one can see that for U = 7.2, T/t = 0.35,
and half filling, on a plaquette there are ∼24% Néel states,
∼40% spin-only states (excluding the two Néel states), and
the remaining ∼36% are states with charge fluctuations.

The arrangement with the plaquette at the corner, shown
in the upper right inset in Fig. 3, does not possess the
full symmetry of the square, the only symmetry operations
which respect Eq. (18) being {E ,C2xȳ}. This is reflected in
asymmetries of the probabilities for plaquette configurations
with a single hole (see main panel of Fig. 3 with plaquette
configurations drawn next to representative data points): In
the presence of a boundary the hole prefers to have many
neighbors rather than sit at the boundary which would limit
the number of possible hopping processes. Therefore, among
the configurations shown, the one with the hole located pre-
cisely at the corner has the lowest probability. Note that
configurations that are related by the symmetry operation
{E ,C2xȳ} do occur with the same probability.

Figure 4 shows the probabilities of selected plaquette
occupation number states in the repulsive Hubbard model
at half filling for low temperature βt = 16 or 24 (a) and
high temperature βt = 4 (b) as a function of the interaction
strength U/t . Here, periodic boundary conditions are used so
that the full symmetry of the square is preserved. Occupation
number states that are related by symmetries are grouped into
classes of states, which are labeled by the bit code [b(s)] of
the member with the smallest bit code within the class. A list
of all 34 classes of symmetry-related states with the bit codes
of their representatives can be found in Appendix A.

At low temperature [Fig. 4(a)], two data sets for different
temperatures, βt = 24 for U/t � 5 and βt = 16 for U/t � 6,
have been combined, which is indicated by different colors
of the background shading. For U/t � 3, the most probable
states are the two Néel states. The second most important class
of states [30] comprises those states with three particles of
one spin and one particle of the opposite spin. Taking into
account spin-inversion symmetry there are eight such states
and their probabilities have been summed up in Fig. 4. This
explains why this class of states appears with higher probabil-
ity in Fig. 4 than the class of states [60], consisting of only
four states, namely the spin configurations that are ferromag-
netically aligned in one direction and antiferromagnetically
aligned in the other one. The multiplicities of different classes
of states, which are essential for interpreting Fig. 4, are also
given in Appendix A.

To illustrate that detailed information can be gleaned from
configurational probabilities we consider next in Fig. 4 the
classes [27] and [54], which both have a multiplicity of
16 states. The class of states [27], comprising plaquette
configurations with a neighboring doublon-hole pair and the
singly occupied sites in a ferromagnetic configuration, has
smaller probability than states [54] representing a neigh-
boring doublon-hole pair with the singly occupied sites ar-
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FIG. 4. Probabilities of selected plaquette configurations as a
function of interaction (at half filling). The numbers in square brack-
ets [ ] denote the bit-coded representative of a class of symmetry-
related plaquette configurations (see Appendix A). The probability
shown for a particular representative is the sum of probabilities of all
configurations in the corresponding class.

ranged in an antiferromagnetic configuration. Note also that
the classes of states [19] and [55] have exactly the same
probability due to particle-hole symmetry at half filling.

The plaquette probabilities at high temperature βt = 4
[Fig. 4(b)] are qualitatively very similar to those at low
temperature, indicating that local correlations of the low-
temperature phase are already well developed at βt = 4.

In Fig. 5(a) the doping dependence of the plaquette prob-
abilities is presented for experimentally relevant inverse tem-
perature βt = 4 and for repulsive interaction U/t = 2, 4, and
7.2. Error bars in Fig. 5(a) are deduced from the spread of
data points within one class of states which should have the
same probability due to symmetry. The selected plaquette
configurations have at least one doubly occupied site so that
for large Hubbard repulsion they represent the intermedi-
ate virtual states through which pairwise and ring exchange
interactions in an effective spin Hamiltonian are mediated

FIG. 5. (a) Doping dependence of the probability of selected
plaquette configurations with at least one doubly occupied site;
βt = 4, U/t = 2, 4, 7.2. The total system size is L × L with L = 12.
The aggregated probabilities are the sum over all states that are
related by lattice or spin inversion symmetry (see Appendix A).
Note the nonmonotonic behavior at quarter filling 〈n〉 = 0.5 in panel
(a) for U/t = 7.2. (b) Typical pathways of ring exchange processes
in fourth-order perturbation theory, where some of the plaquette
configurations in (a) appear as intermediate states. Away from half
filling also third-order spin exchange processes with intermediate
states such as [19] or [25] are present.

[45–47]. A typical pathway of hopping processes leading in
fourth-order perturbation theory to ring exchange interactions
is illustrated in Fig. 5(b).

The overall trend is that the amplitude of states with charge
fluctuations is reduced with increasing Hubbard repulsion.
The amplitude of states with neighboring doublon-hole pairs
decreases as t/U , in accordance with second-order pertur-
bation theory. Plaquette configurations with a doublon-hole
pair on diagonally opposite corners ([53]), occurring as
intermediate states in ring-exchange pathways [Fig. 5(b)],
have a very small probability at all fillings, which is for large
U/t approximately an order of magnitude smaller than that
of states with neighboring doublon-hole pairs ([27],[54]),
as to be expected on the basis of fourth-order perturbation
theory.

Based on Fig. 5(a), very detailed observations regarding
correlation effects can be made. For example, a signal for
local correlation lies in the differences of probability between
similar configurations such as [23] and [53] or [19] and
[25], which would be equally likely, if the singly and doubly
occupied sites were placed on the lattice randomly, with say
probability pd for a doubly occupied site and ps for a singly
occupied one. It is important to note that [19] has multiplicity
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FIG. 6. Eigenvalues {λn}4Ns =256
n=1 of the reduced density matrix

ρA=� on a plaquette at half filling and inverse temperature (a) βt = 4
and (b) βt = 24 (for |U |/t � 5) or βt = 16 (for |U |/t � 6). Eigen-
values are labeled according to irreducible representations of the
symmetry group D4 of the square as well as spin inversion symmetry.
The plaquette is embedded in an L × L system with L = 12 and
periodic boundary conditions. The inset shows the normalization
Tr(ρA=�) and purity Tr(ρ2

A=�) of the reduced density matrix.

16, whereas [25] has multiplicity 8 (see Appendix A). Thus,
the observation that the classes [19] and [25] have almost
the same probabilities in Fig. 5(a) indicates that the probabil-
ity per individual configuration of states [25] is kinetically
enhanced compared to states from [19], since the former
allow for more hopping processes on the plaquette. Note also
in Fig. 5(a) at U/t = 7.2 the discontinuous jump at quarter
filling 〈n〉 ≈ 0.5.

B. Off-diagonal elements of ρA=�

With the knowledge of all off-diagonal elements of the
reduced density matrix, we can compute the entanglement
spectrum and resolve it according to symmetry sectors.

Figure 6 shows the eigenvalue spectrum of the plaquette
reduced density matrix ρA=� at half filling as a function of
Hubbard interaction for high (a) and low (b) temperature. The
16 most important eigenstates of ρA=� are labeled by their
symmetry sectors (NA,↑, NA,↓)M where (NA,↑, NA,↓) is the par-
ticle number sector and M is the Mulliken symbol describing
the symmetry of the state under the operations of the symme-
try group D4h which combines the symmetries of the square
and spin inversion symmetry. The data for high temperature in
Fig. 6(a) are presented for the repulsive Hubbard model, while

for the low-temperature data in Fig. 6(b) we have chosen the
language of the attractive Hubbard model. At half filling, both
models are exactly equivalent; the eigenstates of ρA=� for the
repulsive Hubbard model are related to those of the attractive
model by the spin-down particle-hole transformation

ci,↓ → (−1)ic†
i,↓, ci,↑ → ci,↑, (24)

where (−1)i ≡ (−1)ix+iy is a staggered phase factor for one
of the two sublattices of the square lattice. We point out
that equivalent states in both models behave differently under
symmetry operations of the point group, which is reflected
in their Mulliken symbols. There is a one-to-one correspon-
dence between the Mulliken symbols of equivalent states in
the repulsive and attractive model, for example states with
symmetry (2, 2)A2,u in the language of the positive-U model
correspond to states with symmetry (2, 2)B2,g in the negative-
U model, etc. We stress that in the presentation of Figs. 6(a)
and 6(b) the same colors do not necessarily imply that the
states are equivalent in the two models [48].

The insets in Figs. 6(a) and 6(b) show the normalization
Tr(ρA=�) and the purity Tr(ρ2

A=�) of the plaquette reduced
density matrix. The purity increases with interaction strength,
signaling that the state becomes closer to the T = 0 limit-
ing case of a product state of nonentangled plaquettes. For
noninteracting fermions (U = 0) the plaquette is most mixed
with its environment; then there is a pronounced upturn in
Tr(ρ2

A=�) around U = 5, which levels off for U → 10. The
purity at βt = 4 [Fig. 6(a)] is by a factor of two smaller than
at βt = 24 [Fig. 6(b)], as to be expected due to thermal en-
tropy. ρA=� is normalized within error bars, which, however,
increase for larger U and lower temperature.

Focusing first on results for high temperature Fig. 6(a),
we observe that at U = 0 the 16 most important eigen-
states are all degenerate and clearly separated from the
remaining eigenstates with lower weight. As the inter-
actions are switched on, the multiplet splits into two
singlet-triplet type sequences, namely the four states |s(1)〉 ∈
(2, 2)B1,g and {|t (1)

0 〉 ∈ (2, 2)A2,u, |t (1)
− 〉 ∈ (1, 3)A2, |t (1)

+ 〉 ∈
(3, 1)A2}, and the four states |s(2)〉 ∈ (2, 2)A1,g and {|t (2)

0 〉 ∈
(2, 2)B2,g, |t (2)

− 〉 ∈ (1, 1)A1,g, |t (2)
+ 〉 ∈ (3, 3)A1,g}, and into a

degenerate octet of eigenstates with p-wave symmetry (la-
beled by the irreducible representation label E ).

The states with p-wave symmetry are both spin and pseu-
dospin doublets, which together with the fact that their ir-
reducible representation E is two-dimensional explains their
eightfold degeneracy [39]. The degeneracy will be lifted
either by applying an external magnetic field or by shift-
ing the chemical potential away from the half filling point
μ = U

2 . It is remarkable how well the degeneracy of the
octet is preserved in the Monte Carlo data of Figs. 6(a)
and 6(b).

In comparison with the grand-canonical eigensystem of
an isolated four-site Hubbard model, which is worked out
analytically in Ref. [39], the succession of energy levels
appears changed in Figs. 6(a) and 6(b) in that the “entan-
glement energy” of the octet is lower (i.e., it has a higher
weight in the thermal state) than that of the low-weight
singlet-triplet structure {|s(2)〉, |t (2)

±,0〉} for |U | < 6. This shows
that the method presented here can resolve fine differences
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between the energy spectrum of an isolated plaquette [39]
and of a plaquette embedded in a much larger system. Note
that it is not simply the difference in temperature between
the ground state spectrum of Ref. [39] and our “entangle-
ment energy” spectrum, which could explain this discrep-
ancy, since it occurs also at β = 24 in Fig. 6(b) and since
temperature cannot change the relative order of the statistical
weights.

For U > 4, the degeneracy of the high-weight triplet |t (1)
±,0〉

is lifted, and concomitantly the purity of the reduced density
matrix increases [see inset Fig. 6(a)]. The fact that the octet of
eigenstates remains perfectly degenerate in the interval 4 �
U � 6 supports the picture that the lifting of the degeneracy
in |t (1)

±,0〉 is not merely an artifact of larger error bars. The low-
weight singlet state |s(2)〉 ∈ (2, 2)A1,g shows nonmonotonic
behavior as a function of U and its weight appears to increase
again for U > 6. However, the error bars are too large to draw
any conclusions.

In Fig. 6(b) entanglement spectra for two low temperatures,
βt = 24 (for |U |/t � 5) and βt = 16 (for |U |/t � 6), are
combined. Due to issues of ergodicity at large Hubbard
interactions it was not possible to reach lower temperatures
for |U |/t � 6. The eigenvalue spectra {λn} have a qualitatively
similar dependence on U both for high and low temperature.
In both cases, multiplets of degenerate states that exist in
the sector with charge fluctuations for small U mix for large
|U |/t and give rise to a broad structureless “band” of small
eigenvalues, from which a low-lying singlet state seems to
separate off. However, large error bars prevent a conclusive
statement.

When discussing now the low-temperature spectrum of
ρA=� displayed in Fig. 6(b), we refer to the Mulliken sym-
bols shown next to Fig. 6(b). It must be stressed again
that equivalent states in the repulsive and attractive Hub-
bard model, i.e., states related by the spin-down particle-hole
transformation Eq. (24), are labeled by different Mulliken
term symbols. For the positive-U Hubbard model, the singlet-
triplet type structures are composed of the four states |s(1)〉 ∈
(2, 2)A1,g and {|t (1)

0 〉 ∈ (2, 2)B2,g, |t (1)
+ 〉 ∈ (3, 3)A1,g, |t (1)

− 〉 ∈
(1, 1)A1,g} and the four states |s(2)〉 ∈ (2, 2)B1,g and {|t (2)

0 〉 ∈
(2, 2)A2,u, |t (2)

+ 〉 ∈ (3, 1)A2, |t (2)
− 〉 ∈ (1, 3)A2}. In between the

two singlet-triplet structures there is again an octet of degener-
ate states. A remarkable difference from the high-temperature
spectrum is that the degeneracy of the high-weight triplet
is lifted at smaller |U |/t , namely at |U |/t = 2 for βt = 24
compared to U/t = 4 for βt = 4. The weight of |t (1)

0 〉 in-
creases rapidly; the subsequent decrease at |U |/t = 6 must
be attributed to the change in temperature from βt = 24 to
βt = 16 when changing from the data set with βt = 24 for
|U |/t � 5 to the data set with βt = 16 for |U |/t � 6.

C. Doping dependence

Next, we turn to the doping dependence of the plaquette
entanglement spectrum, which is displayed in Fig. 7 for the
repulsive Hubbard model at U/t = 6 and high temperature
βt = 4. The DQMC algorithm suffers from a sign problem
[33] in the repulsive Hubbard model when particle-hole sym-
metry is broken by tuning the chemical potential away from

the half-filling point μ = U
2 . Nevertheless, at relatively high

temperature around βt = 4 simulations are still possible due
to a mild sign problem [29] that can be offset by acquiring
more statistics in longer Monte Carlo runs. Figure 7 shows
the eigenvalue spectrum {λn}4Ns

n=1 of the plaquette (Ns = 4)
reduced density matrix ρA=� with colored stripes indicating
blocks of fixed particle number (N↑, N↓).

In the following, the most important eigenstates from the
respective symmetry multiplets are listed explicitly. At half
filling, the leading eigenstate of the plaquette reduced density
matrix has dx2−y2 -wave (B1g) symmetry, whereas around quar-
ter filling, 〈n〉 ≈ 0.5, it has s-wave (A1g) symmetry (see first
and fourth row of Fig. 7). The invariant subspace labeled by
(2, 2)B1g consists of four states and (2, 2)A2u consists of three
states (see Table III), but it turns out that a single state from
each symmetry multiplet has by far the largest coefficient,
namely,

(2, 2)B1,g � |ψ1〉 ∼ 1√
2

(| ↓ ↑↑↓〉 + | ↑↓↓↑〉) + · · · ,

(25a)

(2, 2)A2,u � |ψ2〉 ∼ 1√
2

(| ↓↑↑↓〉 − | ↑↓↓↑〉) + O(t/U ).

(25b)

Dots in Eq. (25a) indicate states from the same symmetry
multiplet without double occupancy but with much smaller
weight. Thus, the leading eigenvectors of ρA=� in the particle
number sector (2, 2) at half filling are the symmetric and
antisymmetric combinations of the two Néel states, as to be
expected. Note that for U � 6 an additional p-wave doublet
(Ex

u , Ey
u ) appears in the particle number sector (2, 2) (see first

row of Fig. 7). The leading eigenvectors in the particle number
sector (1, 1) at quarter filling are

(1, 1)A1,g � |ψ3〉 ∼ 1
2 (| ↑ h h ↓〉 + |h ↑↓ h〉

+ |h ↓↑ h〉 + | ↓ h h ↑〉) + · · · , (26)

i.e., two holes in diagonally opposite corners, which maxi-
mizes their kinetic energy, and a set of states with smaller
weight with two neighboring holes, which have p-wave sym-
metry (labeled by Ex(y)

u(g) in the fourth row in Fig. 7). The
character of the leading eigenstates in the particle number
sectors (2, 2) and (1, 1) as described by Eqs. (25a) and (26)
hardly changes with doping. The leading eigenstate from the
symmetry sector (1, 3)A2

(1, 3)A2 � |ψ4〉 ∼ 1
2 (| ↑ ↓↓↓〉 + | ↓↑↓↓〉

− | ↓↓↑↓〉 − | ↓↓↓↑〉) + O(t/U ) (27)

and its spin-reversed counterpart from the symmetry sector
(3, 1)A2 are degenerate with the leading eigenstate from
(2, 2)A2,u [Eq. (25b)] up to U/t � 4 (at βt = 4). Finally, we
list the state

(2, 2)A1,g � |ψ5〉 ∼ 1
2 (| ↑ ↑↓↓〉 + | ↑↓↑↓〉

+ | ↓↑↓↑〉 + | ↓↓↑↑〉) + O(t/U ), (28)

with spins that are ferromagnetically aligned along one co-
ordinate axis and antiferromagnetically in the other direction
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FIG. 7. Eigenvalue spectrum {λn}4Ns

n=1 of the reduced density matrix ρA=� for a plaquette (Ns = 4), organized into particle number sectors,
which are indicated by colored segments. U/t = 6, βt = 4, and total linear system size L = 12; rows from top to bottom correspond to
decreasing filling 〈n〉. For clarity, only eigenvalues larger than 0.01 are labeled by the irreducible subspace to which the corresponding
eigenvector belongs. Error bars (not shown) are on the order of 1%–5%.

and which separates off from the “band” of low-lying states
for large |U | [see Fig. 6(a)].

VI. CONCLUSION AND OUTLOOK

We have provided proof-of-principle calculations that it is
possible in an equilibrium DQMC simulation to obtain the full
reduced density matrix of a small subsystem embedded in a
much larger system that can be interpreted as the exact corre-
lated bath. The sequence of “entanglement energy” levels of
the embedded plaquette is shown to differ from the sequence
of levels for an isolated plaquette [39].

The calculated configurational probabilities allow detailed
benchmarking of current fermionic quantum gas microscope
experiments.

The possibility of computing the full quantum state of a
subsystem is a unique feature of the DQMC framework, which
is based on the free-fermion decomposition [35]. Due to the
factorization of the Monte Carlo weight into a spin-↑ and
spin-↓ part, the computational cost for obtaining all elements
of ρA scales like 2 × (2Ns × 2Ns ), rather than 4Ns × 4Ns , in
one Monte Carlo sample. However, the storage requirement
for all elements is 4Ns × 4Ns , which is forbidding for, e.g.,

Ns = 9. If individual (particle number and point group) sym-
metry sectors are targeted by performing the transformation
Eq. (22) in every Monte Carlo step rather than computing all
elements of ρA in the occupation number basis, the number of
nonvanishing matrix elements of ρA that need to be kept for
Monte Carlo averaging can be reduced to an × an, where an is
the number of copies of the nth irreducible representation that
appear in the decomposition of a given particle number sector
[see Eq. (B3)]. The additional cost of the basis transformation
Eq. (22) in every Monte Carlo step can be compensated by a
finer granularity of the parallelization. This would give access
to 3 × 3 subsystems that can already capture the effect of next-
nearest-neighbor hopping t ′, which needs to be included to de-
scribe qualitatively the electronic band structure of cuprates.
At least for temperatures, where DQMC simulations are still
possible in spite of the sign problem [29], one may thus hope
to gain some insight into the role of local correlations in the
high-temperature phase of a prototypical model for high-Tc

superconductors, whose pseudogap regime and anomalous
normal state commonly referred to as the “strange” metal
phase are still poorly understood [49].

A model for which quantum state tomography on a pla-
quette is particularly meaningful is the plaquette Hubbard
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FIG. 8. Representative configurations for the classes of
symmetry-related plaquette configurations.

model studied in Refs. [50,51], which interpolates between
isolated plaquettes and a uniform square lattice taking the
interplaquette hopping as a tunable parameter. The presented
approach may also prove useful for computing dynamical
properties such as the spectral function or optical conductivity
without the need for analytical continuation of imaginary-
time correlation functions, in some form of cluster approxi-
mation (see, e.g., Ref. [52]), albeit with an exact correlated
bath.
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APPENDIX A: LIST OF SYMMETRY-RELATED CLASSES
OF STATES FOR A SINGLE PLAQUETTE

Each of the 256 plaquette states is labeled by an integer
x between 0 and 255 with the convention that its binary
representation [x] corresponds to the occupation numbers on
the plaquette; the four least significant bits denote occupa-
tion numbers for spin-↓ (see Fig. 8). The leftmost column
of Fig. 8 shows microscopic configurations of spin-↑ and
spin-↓ particles on the plaquette. States that are related by
a symmetry operation of the point group D4 of the square
or by spin inversion are grouped into classes of symmetry-
related states. The 34 classes are listed with a representative
spin configuration for each class, its bit-coded label, and the
number of symmetry-related states in the class (“multiplic-

ity”). We choose as a representative from each class the state
with the smallest bit-coded label. Special sets of states are
the two Néel states (labeled by [105]), the 16 states in the
spin-only subspace (with representatives [15], [30], [60],
and [105]), the states with neighboring doublon-hole pairs
in a spin-only background ([27], [54]), and the states with
diagonally opposite doublon-hole pairs in a spin-only back-
ground ([23], [53]).

APPENDIX B: GROUP-THEORETIC TECHNIQUES:
PROJECTION OPERATOR METHOD

The relation between transformation operators acting in the
many-body Hilbert space and the symmetry operations acting
on coordinates is provided by Wigner’s convention [42]

P̂R f (Rx) = f (x) ⇔ P̂R f (x) = f (R−1x), (B1)

where P̂R is the operator acting on wave functions in second
quantization while the symmetry operator R acts on indices of
creation and annihilation operators.

The fermion ordering in the definition of the states is
chosen such that site indices of creation operators increase
from right to left and creation operators for ↑-particles are
to the left of operators for ↓-particles, e.g., | ↑4 ↓3 ↑2 ↓1 〉 ≡
c†

4↑c†
2↑c†

3↓c†
1↓|vac〉. As an illustration of Eq. (B1) and of the

action of the symmetry operators P̂R on the many-body Hilbert
space, consider the example

Ĉ4z|0 0 ↑2 ↑1〉 = Ĉ4zc
†
2,↑c†

1,↑|vac〉
= c†

C−1
4z (2),↑c†

C−1
4z (1),↑|vac〉 = c†

1,↑c†
3,↑|vac〉

= −|0 ↑3 0 ↑1〉, (B2)

which shows how the matrix elements of P̂R can be con-
structed. In the particle number block (N↑, N↓), the oper-
ators P̂R are permutation matrices of size dim(N↑, N↓) ×
dim(N↑, N↓), where dim(N↑, N↓) = (Ns

N↑) · (Ns

N↓), with an addi-
tional sign structure coming from the fermionic exchanges.
Since the spatial symmetry operations do not affect the spin
states, it is convenient to write P̂R as the tensor product P̂R =
P̂R,↑ ⊗ P̂R,↓ with P̂R,σ acting only on creation operators of spin
σ . Having obtained a matrix representation of the symmetry
operators P̂R on the particle number sector (N↑, N↓), we can
decompose this subspace of Hilbert space further into the
irreducible invariant subspaces of D4 via the projection oper-
ator technique [42] (see also [40] for a detailed discussion).
In the decomposition of a reducible representation the nth
irreducible representation occurs an times, given by [42]

an = 1

h

∑
R

χ (n)(R)�χ (R), (B3)

where χ (n)(R) is the character of the group element R in the
nth irreducible representation and χ (R) ≡ Tr(PR) = ∑

i [PR]ii
is the character of R in the reducible matrix representation.
Applying the formula (B3) to each particle number sector
(N↑, N↓) of a square plaquette we obtain the group structure
presented in Table II.

We wish to decompose the particle number sector (N↑, N↓)
into blocks of states such that the application of a lattice
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TABLE II. Group structure of the Hilbert space for a single
square plaquette of the Hubbard model. Shown is the reduction of the
subspaces of fixed particle number (N↑, N↓) into irreducible invariant
subspaces of the symmetry group D4. The table is symmetric under
exchange of N↑ and N↓. Particle number sectors (N↑, N↓) above half
filling have the same group structure as their particle-hole symmetric
counterparts (Ns − N↑, Ns − N↓) with Ns = 4.

N↑, N↓ Dimension =
(

Ns

N↑

)
·
(

Ns

N↓

)
Irreducible representations

0, 0 1 A1

1, 0 4 A1 ⊕ B2 ⊕ E
2, 0 6 A2 ⊕ B2 ⊕ 2E
1, 1 16 3A1 ⊕ A2 ⊕ B1 ⊕ 3B2 ⊕ 4E
3, 0 4 A2 ⊕ B1 ⊕ E
2, 1 24 3A1 ⊕ 3A2 ⊕ 3B1 ⊕ 3B2 ⊕ 6E
4, 0 1 B1

3, 1 16 A1 ⊕ 3A2 ⊕ 3B1 ⊕ B2 ⊕ 4E
2, 2 36 6A1 ⊕ 4A2 ⊕ 6B1 ⊕ 4B2 ⊕ 8E

symmetry operation to a state mixes only states within the
same block.

Let |φ(n)
iλ 〉 denote a normalized basis state that transforms

according to the λth copy of the ith row in the nth irreducible
representation. Then each occupation number state |α〉 can be
expanded as

|α〉 =
c∑

n=1

ln∑
i=1

an∑
λ=1

b(n)
iλ

∣∣φ(n)
iλ

〉
, (B4)

where c is the number of irreducible representations, which is
equal to the number of conjugacy classes [42] (here, for D4,
c = 5), ln is the dimension of the nth irreducible representa-
tion, and λ labels the an different copies of the nth irreducible
representation.

The symmetry transfer operator is defined as [42]

P (n)
i j = ln

h

∑
R

�(n)(R)�i jPR, (B5)

where �(n)(R) is the matrix representation of the group ele-
ment R in the nth irreducible representation and the sum runs
over all group elements. P (n)

ii acts as a projector onto the ith
row of the nth irreducible representation, while P (n)

i j transfers
the ith row into the jth row according to [42]

P (n)
i j

∣∣φ(m)
kλ

〉 =
{∣∣φ(n)

jλ

〉
, if i = k and n = m,

0, else,
(B6)

and

P (n)
ii

∣∣φ(n)
iλ

〉 = ∣∣φ(n)
iλ

〉
. (B7)

Note that if there are several copies λ of the same irreducible
representation n, then the projection operator P (n)

ii applied to
a basis state |α〉 will return a basis state for only a single copy
λ(α):

P (n)
ii |α〉 ∼ ∣∣φ(n)

iλ(α)

〉
. (B8)

By letting P (n)
ii act on each state |α〉 of the particle num-

ber sector (N↑, N↓) and collecting all nonzero states that
are linearly independent, all copies of the nth irreducible
representation are generated. In this projection method, it
may happen that the same basis state (up to a global phase)
is generated multiple times. Thus, the basis vectors of all
irreducible representations can be constructed and combined
into a unitary matrix Sα,(n,i,λ) = 〈α|φ(n)

iλ 〉 which transforms the
reduced density matrix from the occupation number basis to
the representation basis according to Eq. (22) of the main text.

APPENDIX C: SPIN INVERSION SYMMETRY

For a finer symmetry labeling it is useful to implement the
spin inversion symmetry S = {E, σh}, where σh = ∏

i∈A σ x
i

flips all spins on subsystem A. All symmetry operations of the
lattice symmetry group D4 commute with the spin inversion
operation since they act on different degrees of freedom (site
indices of creation operators on the one hand and spin indices
on the other hand). Therefore, we can form the direct-product
group D4h = D4 × S with 16 group elements, the original
eight from D4, each multiplied by the identity or by spin
inversion, and organize the states into the irreducible invariant
subspaces of D4h. In order to apply the projection operator
method for generating the irreducible basis states, one needs
to know the irreducible representation matrices of D4h [see
Eq. (B5)]. It can be shown [42] that the direct product of
two irreducible representations forms an irreducible represen-
tation of the direct product group.

If the Hilbert space is first decomposed into subspaces
of fixed particle number H = ∏Ns

⊕N↑,N↓=0 H(N↑,N↓ ), then spin
inversion symmetry S can only be used for further block
diagonalization inside subspaces with equal spin populations
since it is obviously not possible to construct eigenstates of
σh that lie only in H(N↑,N↓ ) whenever N↑ �= N↓. Including spin
inversion leads to the finer group structure of the subspaces
with N↑ = N↓ = 1 and N↑ = N↓ = 2 shown in Table III where
the additional label g (u) indicates whether the basis function
is even (odd) under spin inversion.

TABLE III. Group structure of the spin-balanced subspaces of the single-plaquette Hubbard model.
The decomposition of the subspaces is done with respect to the irreducible invariant subspaces of D4h. The
subscript g (u) denotes a wave function that is even (odd) under flipping all spins on the plaquette.

N↑, N↓ Irreducible representations

1, 1 3A1,g ⊕ B1,g ⊕ 2B2,g ⊕ 2Eg ⊕ A2,u ⊕ B2,u ⊕ 2Eu

2, 2 5A1,g ⊕ A2,g ⊕ 4B1,g ⊕ 3B2,g ⊕ 4Eg ⊕ A1,u ⊕ 3A2,u ⊕ 2B1,u ⊕ B2,u ⊕ 4Eu
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On a bipartite lattice, the Hubbard model has an additional
global charge SU (2) pseudospin symmetry [53,54] which is
generated by the operators which convert doubly occupied
sites into holes (and vice versa) with a staggering factor.
Having first block-diagonalized the reduced density matrix
into sectors of fixed particle numbers, one could further
construct pseudospin doublets from states with the same
number of holes and doubly occupied sites on a plaquette
by forming symmetric and antisymmetric combinations of
“charge-flipped” states, in analogy to the use of spin-inversion
symmetry. We have, however, not used this additional pseu-
dospin inversion symmetry in the case of the repulsive Hub-
bard model. The generators of spin and pseudospin inversion
symmetry are transformed into each other by the spin-down
particle-hole transformation Eq. (24), which, at half filling,
maps the repulsive to the attractive Hubbard model, so that the
spin inversion symmetry in the repulsive Hubbard model turns
into pseudospin inversion symmetry in the attractive model.

Note that it is also possible to block-diagonalize the re-
duced density matrix in the basis of total spin and pseudospin
eigenstates, as was done for the Hubbard Hamiltonian of an
isolated plaquette in Ref. [39]. However, this is not compatible
with the block diagonalization with respect to particle number
sectors, which is the approach we have chosen here.

APPENDIX D: PSEUDOCODE FOR
COMPUTING 〈β|ρA|α〉{s}

The following code listing describes how to compute a
matrix element of the reduced density matrix ρA for a free-
fermion system in the external potential of auxiliary fields 〈s〉
given the single-particle Green’s function on subsystem A as
input. The main task consists of collecting the appropriate row
and column indices for the submatrices, which appear in the
determinant formula of Eq. (9). The symbols I+ and I− and
the meaning of the abbreviations “occ” and “ua” are defined
in the main text. The phase factors in line 23 are those from
Eqs. (14) and (15) in the main text. Note that the computation
of a many-body reduced density matrix from a single-particle
Green’s function obviously constitutes a blowup of redundant
information.

Algorithm 1. Reduced density matrix.

Result: Matrix element 〈β|ρA|α〉{s}between the occupation number
states|α〉 and |β〉.
Input:

• Occupation states |α〉 = |α↑〉 ⊗ |α↓〉 and |β〉 = |β↑〉 ⊗ |β↓〉
bit-coded integers [α↑], [α↓], [β↑], [β↓]

• Single-particle Green’s function G(0)(1 : Nsites,A, 1 :
Nsites,A; σ =↑,↓) for Hubbard-Stratonovich
configuration {s}, restricted to subsystem A.

1: for σ =↑,↓ do
2: [t1] = XOR([ασ ], [βσ ])
3: [t2] = NOT([t1])
4: [t−] = AND([t1], [ασ ])
5: I− = bitonesToSitelist([t−])
6: [t+] = NOT(AND([t1], [βσ ]))
7: I+ = bitonesToSitelist([t+])
8: [t3] = AND([ασ ], [t2])
9: Iocc, ua = bitonesToSitelist([t3])
10: Nocc = |Iocc, ua|
11: rσ = 0
12: for b = 0 : Nocc do �“branches” for occ. sites
13: Ibranch

occ, ua = {ik ∈ Iocc, ua | kth bit in [b] is set}
14: NBitonesBranch = |Ibranch

occ, ua|
15: Iproj = Ibranch

occ, ua ∪ Iunocc, ua

16: R = Iproj ∪ I− � List of sites for row indices
17: C = Iproj ∪ I+ � List of sites for column indices
18: k = |C|(= |R|)
19: for i = 1 : k do
20: for j = 1 : k do
21: G(0)

k (i, j) = G(0)(R(i), C( j); σ )
22: rσ = rσ + (−1)NBitonesBranch det (G(0)

k )
23: 〈β|ρA|α〉{s} = (−1)p↑ (−1)p′

↑ (−1)p↓ (−1)p′
↓ r↑ · r↓

Notation: [x] means that the integer x is to be replaced by
its binary bit string, where each bit indicates the occupation
of a lattice site. |I| denotes the number of elements in the
list I and bitonesTopSitelist([x]) is a routine that returns a
list of lattice sites corresponding to the positions in the
bit string [x] where the bit is set.
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