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Landau-Ginzburg theories of non-Abelian quantum Hall states from non-Abelian bosonization
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It is an important open problem to understand the landscape of non-Abelian fractional quantum Hall phases
which can be obtained starting from physically motivated theories of Abelian composite particles. We show
that progress on this problem can be made using recently proposed non-Abelian bosonization dualities in
2 + 1 dimensions, which morally relate U (N )k and SU(k)−N Chern-Simons-matter theories. The advantage
of these dualities is that regions of the phase diagram which may be obscure on one side of the duality can
be accessed by condensing local operators on the other side. Starting from parent Abelian states, we use
this approach to construct Landau-Ginzburg theories of non-Abelian states through a pairing mechanism. In
particular, we obtain the bosonic Read-Rezayi sequence at fillings ν = k/(kM + 2) by starting from k layers
of bosons at ν = 1/2 with M Abelian fluxes attached. The Read-Rezayi states arise when k clusters of the dual
non-Abelian bosons condense. We extend this construction by showing that Nf -component generalizations of the
Halperin (2,2,1) bosonic states have dual descriptions in terms of SU(Nf + 1)1 Chern-Simons-matter theories,
revealing an emergent global symmetry in the process. Clustering k layers of these theories yields a non-Abelian
SU(Nf )-singlet state at filling ν = kNf /(Nf + 1 + kMNf ).
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I. Introduction

Two-dimensional charged quantum fluids in a strong mag-
netic field exhibit an impressive array of topologically ordered
incompressible states at partial Landau level (LL) fillings ν, in
what is known as the fractional quantum Hall (FQH) effect.
Of these states, those exhibiting Abelian topological order
are readily understood through the notion of flux attachment
[1], which exactly relates fermions or (hard-core) bosons at
fractional LL filling to a theory of either composite fermions
[2,3] or bosons [4] in a reduced magnetic field. After flux
attachment, the Abelian FQH states may either be viewed as
integer quantum Hall (IQH) states of composite fermions or
as a condensate of composite bosons governed by a Landau-
Ginzburg (LG) theory.

Despite the success over the past several decades in un-
derstanding the Abelian FQH states, an understanding of
the dynamics which can lead to non-Abelian FQH states
has remained elusive. Such states cannot arise directly from
the application of flux attachment, which is by definition
Abelian. For example, while it is believed that the observed
ν = 5/2 FQH plateau is a non-Abelian state arising from
composite fermion pairing [5], the origin and nature of the
pairing instability leading to this state continues to be debated,
with seemingly contradictory results between experiment and
numerics [6–10]. Nevertheless, assuming a particular pairing
channel, a non-Abelian phase appears quite naturally [5,11].

Unfortunately, this physical picture does not appear to
translate simply to the other proposed non-Abelian states,
such as the Read-Rezayi (RR) states [12]. Wave functions for
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these states can be constructed using conformal field theory
(CFT) techniques [11], but it is not clear which of these states
can be obtained starting from a (physically motivated) field
theory of composite particles. To make matters worse, the
wave functions for generic non-Abelian states are typically
characterized by clustering of more than two particles [12,13].
Naïvely, from perturbative scaling arguments, such states
could not arise unless the clusters with fewer particles are
disallowed by symmetry. Most theories of interest do not
appear to have such a symmetry, implying that nonpertur-
batively strong interaction effects are required to give rise
to such states. While we note that projective/parton con-
structions can be used to formulate effective bulk theories of
non-Abelian states [14–16], in such constructions the electron
operator is fractionalized by hand, and it must be taken by
fiat that the fractionalized degrees of freedom are deconfined.
Consequently, although the projective approach can formally
generate many candidate states, it does not shed much light on
their dynamical origin.

Recent progress in the study of non-Abelian Chern-
Simons-matter theories in their large-N (“planar”) limit
[17,18] has led to the proposal of non-Abelian Chern-Simons-
matter theory dualities by Aharony [19], which take the shape
of level-rank dualities. Along with the Abelian web of dual-
ities they imply [20,21], these dualities constitute tools with
which it may be possible to make nonperturbative progress
on the above problem. Such dualities can relate theories
of Abelian composite particles to theories of non-Abelian
monopoles, and they have led to progress on several important
problems in condensed matter physics [22–30]. Of particular
importance for us, pairing deformations of a dual non-Abelian
theory can lead to non-Abelian topological phases which ap-
pear inaccessible to the original Abelian theory, in which this
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pairing corresponds to a highly nonlocal product of monopole
operators.

Our strategy is to use these non-Abelian dualities to be-
gin to map the landscape of non-Abelian topological phases
accessible from a “composite particle” picture, by way of
“projecting down” from a multilayer parent Abelian state.
This type of approach, in which the transition to the non-
Abelian phase can be physically interpreted as being driven by
interlayer tunneling [5,31–37] or pairing [38,39], has formed
the foundation of several lines of attack on the non-Abelian
FQH problem. Such projections have been implemented at
the formal level of the edge CFT (“ideal”) wave function
[40,41] and in coupled wire constructions [42,43]. Numerical
studies of bilayer systems have also lent support to this idea
[44–50]. However, a robust bulk LG description of generic
non-Abelian FQH states continues to be lacking. In one major
attempt to fill this gap, the authors of Ref. [38] constructed a
non-Abelian LG theory for a subset of the bosonic RR states
by considering layers of ν = 1

2 (bosonic) Laughlin states.
Using the well-known level-rank duality of the (gapped)
bulk Chern-Simons topological quantum field theory (TQFT)
[51–53] (see Ref. [54] for a review), the authors motivated
a description of these states involving SU(2) Chern-Simons
gauge fields coupled to scalar matter in the adjoint (matrix)
representation, obtaining the non-Abelian QH state by pairing
across the different layers. In this approach, the anyon content
of the non-Abelian state is furnished by the vortices of the
pairing order parameter. While this construction is conceptu-
ally appealing, it does not originate from a duality satisfied
by the parent Abelian LG theory, which describes a quantum
critical point, but, rather, a duality satisfied only deep in
the gapped Abelian FQH phase. Moreover, in order to give the
anyons electric charge in this approach, it is necessary for the
external electromagnetic field to couple to the U (1) subgroup
of the full non-Abelian gauge group, explicitly breaking the
larger gauge invariance.

Using the non-Abelian bosonization dualities, we construct
LG theories of the full bosonic RR sequence at filling fractions
ν = k/(kM + 2), k, M ∈ Z, which do not suffer from these
problems. These theories are obtained by starting with k layers
of ν = 1/2 bosonic QH states, using the dualities to obtain a
LG theory of non-Abelian composite bosons, and attaching
M fluxes to the resulting theory. For example, we obtain a
LG theory of the bosonic ν = 1 Moore-Read state consisting
of two layers of bosons φn, n = 1, 2, which we call the
“composite vortices,” each at their Wilson-Fisher fixed point
and coupled in the fundamental representation to a SU(2)
gauge field an,

L =
2∑

n=1

[
|Dan−A1/2 φn|2 − |φn|4 (1.1)

+ 1

4π
Tr

(
andan − 2i

3
a3

n

)]
− 1

4π
AdA.

where Dan−A1/2 = ∂ − i(ab
ntb − A1/2) is the covariant deriva-

tive, we use the notation AdB = εμνλAμ∂νBλ, t b = σ b/2 are
the SU(2) generators, and 1 is the 2 × 2 identity matrix. We
use the notation −|φ|4 to denote tuning to the Wilson-Fisher
fixed point. Although the gauge fields an are non-Abelian,

FIG. 1. A schematic of our construction of LG theories for the
RR states. k copies of the ν = 1

2 Laughlin state coupled to scalars
(left) are dual to k copies of SU(2)1 coupled to scalars (right). The
SU(2)k Read-Rezayi states are obtained in the dual, non-Abelian
language via pairing of the layers, represented by double-headed
arrows. In the original Abelian theory, these correspond to nonlocal,
monopole interactions.

the topological phase accessed by simply gapping out the
composite vortices will only support excitations with Abelian
statistics. For a SU(N ) gauge group, non-Abelian statistics
require the presence of a Chern-Simons term at level greater
than one. To obtain the non-Abelian FQH state, we condense
clusters of the non-Abelian composite vortices across the
layers (see Fig. 1), in this case condensing φ

†
1φ2 without

condensing φ1, φ2 individually. This Higgses the linear com-
bination a1 − a2 of the SU(2)1 gauge fields, causing the
bilayer SU(2) × SU(2) gauge group to be broken down to
its diagonal SU(2) subgroup. The Chern-Simons levels of the
resulting gapped phase add, leading to the desired SU(2)2

Chern-Simons theory at low energies (the subscript refers to
the Chern-Simons level). We will show below that the com-
posite vortices individually have the proper quantum numbers
to fill out the anyon spectrum of the theory. The clarity of
the topological content of the non-Abelian states is a general
advantage of the bosonic LG approach. However, alternative
descriptions of non-Abelian FQH states involving dual non-
Abelian composite fermions are also possible. We plan to
describe this complementary perspective in future work.

In addition to the the RR states, by considering Nf -
component generalizations of the Halperin (2,2,1) spin-singlet
states on each layer, we are able to generalize this approach
to construct bulk LG descriptions of generalized non-Abelian
SU(Nf )-singlet (NASS) states at fillings [43,55],

ν = kNf

Nf + 1 + kMNf
, k, Nf , M ∈ Z, (1.2)

which are bosonic (fermionic) for M even (odd). These states
generalize the clustering properties of the RR states to Nf -
component systems and, as their name suggests, are singlets
under SU(Nf ) rotations. Indeed, for Nf = 1, these states
reduce to the RR states while for Nf = 2, they describe the
non-Abelian spin singlet (also NASS) states of Ardonne and
Schoutens [39,56]. These generalized NASS states morally
possess SU(Nf + 1)k topological order and so support anyons
obeying the fusion rules of Gepner parafermions [57], gen-
eralizations of the Zk parafermions [58] found in the RR
states. Although the physical relevance of an Nf -component
FQH state may seem dubious for larger values of Nf , the
generalized NASS states provide candidate ground states in
systems of cold atoms [55,59] and fractional Chern insulators
[60]. In building LG theories of these states, we find a new
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duality relating (A) Nf Wilson-Fisher bosons coupled to U (1)
Chern-Simons gauge fields with Lagrangian given by the Nf -
component generalization of the Halperin (2,2,1) K-matrix
theory to (B) a SU(Nf + 1)1 Chern-Simons theory coupled
to Nf Wilson-Fisher bosons in the fundamental representa-
tion. This non-Abelian dual description makes manifest the
emergent SU(Nf ) global symmetry and reflects the fact that
the edge theory of the Nf -component (2,2,1) state supports an
SU(Nf + 1)1 Kac-Moody algebra.

The remainder of this work is organized as follows. We
begin in Sec. II by elaborating on the motivation for our
construction both from the perspective of wave functions and
that of the earlier Landau-Ginzburg approach of Ref. [38]. We
then proceed to our analysis in Sec. III of the RR states using
non-Abelian bosonization, resolving the lingering issues of
the LG construction of Ref. [38]. We then extend our con-
struction to the generalized NASS states in Sec. IV. Future
directions are discussed in Sec. V.

II. “Projecting Down” to Non-Abelian States

A. Perspective from the boundary: Wave functions
and their symmetries

If we wish to construct a LG description of non-Abelian
FQH states involving pairing between Abelian states, then
it is first necessary to identify which Abelian states to pair.
Such states can be motivated by considering “ideal” wave
functions. These can be constructed from certain correlation
functions, known as conformal blocks, of the edge CFT. In
this language, the strategy of obtaining non-Abelian states
from parent Abelian states through “projecting down” is well
established [40].

Consider, for example, the bosonic RR states at ν = k/2.
The ideal wave functions of these states are defined as the
ground states of ideal k + 1-body Hamiltonians, which can
be shown to be given by the conformal blocks of the SU(2)k

Wess-Zumino-Witten (WZW) CFT [12]. This tells us that the
RR wave functions describe FQH states with edges governed
by SU(2)k WZW theories [11], corresponding in the bulk to a
SU(2)k Chern-Simons gauge theory [61]. A natural way to
obtain the ideal wave functions for the ν = k/2 RR states
uses the state with k = 1 – the ν = 1/2 bosonic Laughlin
state, which is Abelian—as a building block [40]. This state is
described by the wave function

	1/2({zi}) =
∏
i< j

(zi − z j )
2e− 1

4

∑
i |zi|2 , (2.1)

where z j = x j + iy j denotes the complex coordinates of the
jth particle (a boson). The ν = k/2 RR wave functions may
be obtained from this one by “clustering” bosons across
k copies of this state. This corresponds to taking N = km
bosons, dividing them into k groups, writing down a ν = 1

2
Laughlin wave function for each group, multiplying them
together, and then symmetrizing over all possible assignments
of bosons to groups. The resulting wave function is repre-
sented as

	k ({zi}) = Sk

[
k−1∏
i=0

	1/2(z1+iN/k, . . . , z(i+1)N/k )

]
, (2.2)

where Sk denotes symmetrization. It can be shown that this
wave function is equivalent to that first proposed by Read and
Rezayi [12] and exhibits the correct clustering properties: The
wave function does not vanish unless the coordinates of k + 1
bosons coincide. The RR wave functions for general k and M
are obtained by multiplying Eq. (2.2) by a ν = 1

M Laughlin
factor.

The relation between the k = 1 and the k > 1 RR wave
functions suggests that it should be possible to construct such
a LG theory by considering k copies of the effective theory
of the (Abelian) k = 1 state, the first attempt at which we
describe in the next subsection. That a state with SU(2)k

topological order can be obtained from the Abelian ν = 1
2

Laughlin state is also made plausible by the fact that the latter
has an alternative description as an SU(2)1 Chern-Simons the-
ory. This is a consequence of the level-rank duality between
U (1)2 and SU(2)1, which is reflected in the above description
by the fact that the ν = 1

2 wave function can be obtained
from the SU(2)1 WZW CFT [38,43,62,63]. We review this
level-rank duality in the subsection below.

B. Perspective from the bulk: Early LG theories
from level-rank duality

To approach the problem of constructing a bulk description
of the Read-Rezayi states, the authors of Ref. [38] sought to
obtain a non-Abelian Landau-Ginzburg theory of the ν = k/2
RR states by also considering k layers of ν = 1/2 bosonic
Laughlin states or U (1)2 Chern-Simons theories and recog-
nizing that each U (1)2 theory is level-rank dual to a SU(2)1

theory. They therefore conjectured that an alternate LG de-
scription was possible, one involving scalar matter coupled to
SU(2)1 gauge fields. These scalars could then pair and lead to
the symmetry breaking pattern,

SU(2)1 × · · · × SU(2)1 → SU(2)k . (2.3)

What remained was to (1) determine how the scalars trans-
formed under SU(2) and how they coupled to the physical
background electromagnetic (EM) field and (2) determine
precisely how to pair these fields to obtain non-Abelian states.

For simplicity, we consider first the case of k = 2, a bilayer
of ν = 1/2 bosonic FQH liquids. This will constitute a parent
state for the ν = 1 bosonic Moore-Read state. To motivate the
level-rank duality to a non-Abelian representation, we again
consider the edge physics. The edge theory of the U (1)2 state
is one of a chiral boson,

Ledge = 1

4πν
∂xϕ (∂tϕ − v∂xϕ), (2.4)

where ϕ has compactification radius R = 1 and ν = 1/2. The
charge density is therefore ρ = 1

2π
∂xϕ. The local particles

(i.e., the physical bosons) of this theory are represented by
the vertex operators,

ψ1 = eiϕ/ν . (2.5)

In addition, the theory hosts anyonic quasiparticles, which are
semions of charge 1/2 and correspond to the vertex operators

ψ1/2 = eiϕ. (2.6)
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The ψ1, ψ
†
1 , and ρ operators all have the same scaling

dimension and furnish a SU(2)1 Kac-Moody algebra. This is
a manifestation of the level-rank duality at the level of the
edge CFT, and we can write the bulk theory on each layer
as a SU(2)1 gauge theory with gauge field aμ = ab

μt b, where
t b are the generators of SU(2). Importantly, the ρ operator
appears as the diagonal generator of SU(2). Therefore, the
authors guessed that in the LG theory the background EM
field couples through a BF term to the Cartan component of
the bulk SU(2) gauge field [64],

LEM[aa, A] = 1

2π
εμνλAμ∂νa3

λ. (2.7)

This explicitly breaks gauge invariance and would indicate
that the physical EM current is not conserved. We will even-
tually see in Sec. III that the new dualities will allow us to
avoid this difficulty by granting us a gauge-invariant way of
coupling to the background electromagnetic field.

From this discussion, a natural guess for the matter vari-
ables for the bulk LG theory is a SU(2) triplet on each
layer consisting of boson creation and annihilation operators
Bn, B†

n and a boson number operator B3
n which essentially

corresponds to the EM charge. Here n = 1, 2 is a layer index.
If we write Bn = B1

n + iB2
n with B1,2

n real, then the adjoint
field Ba

n transforms like a vector under SO(3). It is important
to note, however, that any non-Abelian LG theory should be
thought of as describing a ultraviolet (UV) quantum critical
point proximate to the infrared (IR) FQH state which shares
universal features with the Abelian theory we started with.
Since the level-rank duality is invoked deep in the FQH
phase, it is a guess that these variables are the proper degrees
of freedom at the UV quantum critical point (they may be
alternatively understood as bound states—we will see later
on that this interpretation is more accurate). Nevertheless,
pairing these fields will lead to both the desired symmetry
breaking pattern (2.3) as well as the existence of solitons with
non-Abelian statistics.

The LG theory for the pairing of these fields can be
explicitly constructed as follows. Each layer consists of a Ba

n
field minimally coupled to its own SU(2)1 gauge field,

L0 =
∑

n=1,2

(
|Dan Bn|2 + 1

4π
Tr

[
andan − 2i

3
a3

n

])
+ · · · ,

(2.8)
where we have suppressed Lorentz and SU(2) indices, used
the notation AdC = εμνλAμ∂νCλ, and defined the covariant
derivative Dan Bn ≡ ∂Ba

n − iεabcab
nBc

n. The ellipsis refers to
additional contact terms, Maxwell terms, and so on. These are
set up so that, taken individually, when each layer is at filling
ν = 1/2, the diagonal color flux b3

I = 〈 f 3
I,xy〉/2π , vanishes.

Although the Bn fields are bosons, we assume that they
do not condense. Rather, we consider pairing them using a
method analogous to that of Jackiw and Rossi [65], who con-
sidered pairing Dirac fermions by coupling them to a scalar
order parameter which mediates the pairing interaction. Let
us introduce a field Oab which transforms as an adjoint under
each layer’s SU(2), O �→ G−1

1 O G2, where G1, G2 ∈ SO(3).
Here we have used the fact that, as an adjoint field, O is blind
to the Z2 centers of the two SU(2) factors and so effectively
transforms under SU(2)/Z2

∼= SO(3). The field O mediates a

pairing interaction between the Ba
I fields as follows:

Lpair = λ Ba
1OabBb

2. (2.9)

We now require that O acquires a vacuum expectation value
(VEV), which breaks SU(2) × SU(2) down to its diagonal
subgroup SU(2)diag, implementing the constraint a1 = a2.
Any VEV equivalent to 〈O〉 ∝ δab is sufficient to achieve this.
Therefore, in the final IR theory, the CS terms for a1 and a2

add, yielding a SU(2)2 CS term, which describes precisely
the ν = 1 bosonic Moore-Read state. The authors of Ref. [38]
then argued that, since the order parameter is valued on
[SO(3) × SO(3)]/SO(3), that it can host nontrivial vortices
which furnish the anyon content. This is in contrast to if we
had chosen to pair fields in the fundamental representation,
for which the order parameter has no nontrivial vortices.
Finally, we note that because O is blind to the centers of
the two original SU(2) factors, the final gauge group is in
fact SU(2)diag × Z2. This means that the resulting topological
order is not quite that of the ν = 1 bosonic Moore-Read state.
We will elaborate on this point as well as the interpretation of
the vortices in Sec. III C 2.

In spite of its successes, the LG theory described here
has several problems. As mentioned above, the BF coupling
between a3

n and the EM field A explicitly breaks the SU(2)
gauge symmetry. In addition, the theory of adjoint fields (2.8)
cannot be the same as the Abelian LG theory of the original
layers—the theories have different phase diagrams and so do
not represent the same fixed point. Moreover, the final gauge
group after pairing is not just SU(2) but includes additional
discrete gauge group factors. Finally, it is not entirely obvious
how to generalize this approach to the rest of the Read-Rezayi
states and beyond. In this work, using non-Abelian boson-
fermion dualities, we repair all of these problems.

III. LG Theories of the RR States
from Non-Abelian Bosonization

A. Setup

Our setup for obtaining LG theories of the RR states is
depicted in Fig. 1. We again consider k layers of bosonic
quantum Hall fluids at ν = 1/2. The standard LG theory [4] of
these states consists of Wilson-Fisher bosons—the Laughlin
quasiparticles—on each layer, denoted �n, with n = 1, . . . , k
being the layer index. Each of these fields is coupled to an
Abelian U (1)2 Chern-Simons gauge field an as follows (the
total gauge group is [U (1)]k),

LA =
∑

n

(
|Dan�n|2 − |�n|4 + 2

4π
andan + 1

2π
Adan

)
.

(3.1)
where again −|�|4 denotes tuning to the Wilson-Fisher fixed
point and Dan = ∂ − ian is the covariant derivative. Since
we wish to impose particle-hole symmetry on the bosons in
the FQH state, these theories are relativistic. We take the
background EM field Aμ to couple to the sum of the global
U (1) currents on each layer jtop = 1

2π

∑
n dan, although we

could have in principle coupled background fields to each
of these currents individually [66]. Notice that there is no
continuous flavor symmetry manifest in LA since each �n

couples to its own gauge field an. Being a theory of Laughlin
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quasiparticles, the Abelian quantum Hall state arises when
the � fields are gapped, or ρ� = ∑

I,n〈i(�†
n
←→
D an,t�n)〉 = 0.

We note here that throughout this paper we define the filling
fraction with a minus sign ν = −2πρe/B, where ρe is the
physical EM chage and B is the background magnetic field.

We call the Abelian theory whose Lagrangian LA is shown
in Eq. (3.1), Theory A. In order to obtain a non-Abelian
SU(2)k theory, our strategy is to invoke a non-Abelian duality
to trade LA for a theory of k bosons which are charged under
emergent non-Abelian gauge fields. Since these particles are
non-Abelian analogs of the Laughlin quasiparticles (they are
gapped in the Abelian QH state), we will refer to them as
non-Abelian composite vortices. Indeed, we will see that these
theories are the k-component generalizations of the theory of
Eq. (1.1). We call this non-Abelian Theory B. By pairing these

fields across the layers, we will obtain the final SU(2)k theory.
Thus, the non-Abelian FQH states we obtain can be inter-
preted as clustered states of the dual non-Abelian composite
vortices, in analogy to the clustering interpretation of the wave
functions. Moreover, from products of the non-Abelian vortex
fields, analogs of the adjoint Bn operators of Sec. II can be
constructed and paired, leading to a “quartetted” non-Abelian
state. We now turn to a procedure for obtaining these dualities.

B. A non-Abelian duality: U (1)2 + bosons ←→ SU(2)1 + bosons

The non-Abelian dualities presented by Aharony [19] re-
late Chern-Simons theories coupled to complex scalar fields at
their Wilson-Fisher fixed point to dual Chern-Simons theories
coupled to Dirac fermions,

Nf scalars + U (N )k,k ←→ Nf fermions + SU(k)−N+Nf /2, (3.2)

Nf scalars + SU(N )k ←→ Nf fermions + U (k)−N+Nf /2,−N+Nf /2, (3.3)

Nf scalars + U (N )k,k+N ←→ Nf fermions + U (k)−N+Nf /2,−N−k+Nf /2, (3.4)

where all matter is in the fundamental representation of the
gauge group. These take the shape of level-rank dualities, but
a crucial difference is that they relate critical theories of matter
coupled to Chern-Simons gauge fields rather than gapped
TQFTs. Across these dualities, baryons of the SU(k)−N the-
ories are mapped to monopoles of the U (N )k theories. We
list our conventions for the non-Abelian Chern-Simons gauge
fields in the Appendix.

Using these dualities as building blocks, it is possible to
obtain new dualities relating Abelian Theory A to a non-
Abelian Theory B. The dualities obtained in this section are
described in Refs. [67,68], although we show in Sec. IV that
new, more general dualities can be obtained with an analogous
strategy. To begin, let us consider the case of a single layer
k = 1 of bosons at ν = 1/2. The Landau-Ginzburg theory for
this state consists of Wilson-Fisher bosons � coupled to a
U (1)2 gauge field a,

LA = |Da�|2 − |�|4 + 2

4π
ada + 1

2π
Ada. (3.5)

We start by invoking an Abelian boson-fermion duality,
Eq. (3.3) with N = k = 1, which relates a Wilson-Fisher
boson to a Dirac fermion with a unit of flux attached [20,21],

|DA�|2 − |�|4 ↔ iψ̄ /Dbψ − 1

2

1

4π
bdb + 1

2π
bdA − 1

4π
AdA,

(3.6)
where b is a new dynamical U (1) gauge field [69]. Applying
this duality to LA by treating a as a background field, one
obtains Theory C,

LA ↔ LC = iψ̄ /Dbψ − 1

2

1

4π
bdb + 1

4π
ada + 1

2π
ad (b + A).

(3.7)
We can integrate out a without violating the Dirac
quantization condition: Its equation of motion is simply

−da = db + dA. Thus,

LA ↔ LC = iψ̄ /Dbψ − 3

2

1

4π
bdb − 1

2π
bdA − 1

4π
AdA.

(3.8)
Theory C was motivated as a description of the ν = 1/2
FQH-insulator transition in Ref. [70]. The duality (3.8) is
a special case of more general Abelian dualities described
(and derived) in Refs. [71,72]. However, of those dualities,
it is one of the unique ones for which the Chern-Simons
level is properly quantized. Notice also that this is the duality
(3.4) with Nf = N = k = 1. The reason that we took a detour
through the Abelian duality will become apparent in Sec. IV.

Applying the duality of Eq. (3.3) to Theory C, we obtain
Theory B, which consists of bosons φ coupled to a SU(2)1

gauge field u,

LA ↔ LB = |Du−A1/2φ|2 − |φ|4 + 1

4π
Tr

(
udu − 2i

3
u3

)

− 1

2

1

4π
AdA, (3.9)

where 1 denotes the 2 × 2 identity matrix. Like its Abelian
dual, Eq. (3.5), this theory describes a quantum phase tran-
sition between a ν = 1/2 bosonic Laughlin state (gapped
φ—the topological sector is decoupled) and a trivial insulator
(condensed φ). Across this duality, the monopole current
of Theory A is related to the baryon number current of
Theory B,

δLA

δA
= da

2π
↔ δLB

δA
= − i

2
φ† ←→

D u−A1/2 φ − 1

2

dA

2π
. (3.10)

Both of these currents correspond to the physical EM charge
current Je. We have suppressed Lorentz indices for clarity.

We can check explicitly that the ν = 1/2 state has particle-
hole symmetry in the composite vortex variables of Theory
B. The physical EM charge density corresponds to the zeroth
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component of the currents (3.10),

ρe = 〈
J0

e

〉 = −1

2
ρφ − 1

2

B

2π
, (3.11)

where ρφ denotes the number density of the non-Abelian
composite vortices, so, when ρφ = 0, the filling fraction is

ν = −2π
ρe

B
= 1

2
. (3.12)

This means that the ν = 1/2 bosonic Laughlin state can be
thought of as a gapped, particle-hole symmetric phase of
non-Abelian composite vortices just as well as Abelian ones.

By copying this duality k times, we will see in the next
subsection how to obtain a non-Abelian LG theory of the RR
states.

By applying the duality of Eq. (3.2) with N = 1 and k =
2 to Theory A, it is also possible to obtain a non-Abelian
fermionic Theory D with gauge group SU(2)−1/2. However, in
this work we focus on the non-Abelian bosonic LG theories,
since in these theories the nature of the topological order and
anyon content are manifest. Understanding the emergence of
the RR states and other non-Abelian FQH states from the
perspective of these non-Abelian composite fermion theories
will be the subject of a forthcoming work. Combining all of
these dualities, we see

Theory A: a scalar + U (1)2 ←→ Theory D: a fermion + SU(2)−1/2

� (3.13)

Theory C: a fermion + U (1)−3/2 ←→ Theory B: a scalar + SU(2)1.

It is a miracle of arithmetic that, like the boson/fermion du-
alities, the boson/boson and fermion/fermion dualities above
also have the flavor of level-rank dualities. Indeed, it is easy to
show that the topological phases of these theories are all dual
to one another [67]. This can be thought of as a consequence
of the fact that we were able to integrate out the gauge field a
above without violating flux quantization. It is an interesting
question to ask whether there are more general dualities which
exhibit the same miracle. We will show that this is indeed
the case in Sec. IV. We finally note that the dualities of
Eq. (3.13) also have the feature of hosting an emergent SO(3)
global symmetry, a consequence of the fact SU(2)  USp(2)
[73,74]. This symmetry is manifest on rewriting the theory
in the USp(2) language, which involves replacing the single
complex matter field with two (pseudo)real ones [75].

C. Building non-Abelian states from clustering

Equipped with the duality (3.9), we now revisit the con-
struction of Ref. [38], which we described in Sec. II B. We
again start by considering the case where Theory A consists
of k = 2 layers of U (1)2 LG theories,

LA =
2∑

n=1

(|Dan�n|2 − |�n|4)+ 2

4π
andan+ 1

2π
Ad (a1 + a2).

(3.14)
Invoking Eq. (3.9), Theory B is two SU(2)1 theories,

LB =
∑

n

(|Dun−A1/2φn|2 − |φn|4)

+ 1

4π

∑
n

Tr

[
undun − 2i

3
u3

n

]
− 1

4π
AdA, (3.15)

The half-filling condition here is simply ν = 1. Notice that
the background gauge field A couples to the “baryon number”
current of the φ’s in a gauge-invariant way, in contrast to the
theory of Ref. [38]. This also means that the physical bosons
can be interpreted as baryons or color singlet bound states of

two φ’s. However, these are monopoles from the point of view
of Theory A.

To obtain a SU(2)2 bosonic Moore-Read state at ν = 1, we
again seek the symmetry breaking pattern

SU(2)1 × SU(2)1 → SU(2)2. (3.16)

As described in Sec. II B, the authors of Ref. [38] achieved this
via pairing of adjoint fields so that the theory would support
vortices of the order parameter with non-Abelian statistics.
Instead, we will argue that singlet pairing of our fundamental
composite vortices is sufficient to both obtain this symmetry
breaking pattern and to capture the full anyon spectrum from
the matter content. Nevertheless, it is still possible to obtain
an analog of the theory described in Sec. II B by “quartet-
ting” the composite vortices. In this case, the order param-
eter contributes nontrivial vortex excitations which possess
non-Abelian statistics. These vortices arise because the order
parameter sees SO(3) rather than SU(2) gauge fields, as in
Ref. [38], and the resulting topological order again does not
quite match that of the RR states. We provide a brief account
of the quartetted phase at the end of this section.

1. Singlet pairing

We pair the non-Abelian composite vortices by adding to
Theory B, Eq. (3.15), an interaction with an electromagneti-
cally neutral fluctuating scalar field �mn(x),

L = LB + L� + Lsinglet pair, (3.17)

L� =
∑
m,n

|∂�mn − ium�mn + i�mnun|2 − V [�], (3.18)

Lsinglet pair = −
∑
m,n

φ†
m�mnφn, (3.19)

where �mn is Hermitian in the layer indices m, n, and V [�] is
the potential for �. The off-diagonal components, �12 = �

†
21,

induce interlayer pairing, while the diagonal components, �11
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TABLE I. List of quasiparticles in the ν = 1 bosonic Moore-
Read state, their spin, θ , U (1)EM charges, Q, and the corresponding
operator in our LG theory. We label the anyons by the corresponding
operators in the edge CFT (see, e.g., Refs. [11,54]). Note that we do
not sum over the layer index n.

1 (vacuum) σeiϕ/2 (half-vortex) χ (Majorana fermion)

θ 0 3
16

1
2

Q 0 1
2 0

Field theory — φn φ†
nt aφn

and �22, induce intralayer pairing. Under a gauge transforma-
tion, �nn (no summation intended) transforms in the adjoint
representation of the SU(2) gauge group on layer n, while
�12 transforms as a bifundamental field under the bilayer
SU(2) × SU(2) gauge group,

�mn �→ Um�mnU
†
n , Um ∈ SU(2) on layer m. (3.20)

In both Eq. (3.18) and Eq. (3.20), left (right) multiplication in-
dicates contraction with �’s color indices in the fundamental
(antifundamental) representation of SU(2).

In order to achieve the symmetry breaking pattern (3.16),
we choose the potential V so that �mn condenses in such a
way that 〈φ†

1φ2〉 �= 0 while 〈φ1〉 = 〈φ2〉 = 0. Explicitly,

〈�nm〉 = Mnm1, M11, M22, det M > 0. (3.21)

The requirement M11, M22, det M > 0 guarantees that the
resulting effective potential for φ1,2 is minimized only for
〈φ1〉 = 〈φ2〉 = 0, while the off-diagonal components M12 =
M†

21 break the SU(2) × SU(2) gauge symmetry down to the
diagonal SU(2). As described in Sec. II B, in the low-energy
limit, this sets u1 = u2, and the Chern-Simons levels add to
yield the correct SU(2)2 Chern-Simons theory (the bosonic
Moore-Read state) as the low-energy TQFT.

Having obtained the SU(2)2 RR state, we now show that
its anyon spectrum is furnished by the non-Abelian composite
vortices φ1,2. Both φ1 and φ2 carry electric charge Q = 1

2 and
transform in the spin- 1

2 representation of the SU(2)2 gauge
group, endowing them with non-Abelian braiding statistics.
These are precisely the properties of the minimal charge
anyon in the ν = 1 bosonic Moore-Read state, the half-vortex.
Even though there are two bosonic fields φ1,2, these do not
represent distinct anyons: φ1 and φ2 can be freely transformed
into one another via the bilinear condensate 〈φ†

1φ2〉. In other
words, their currents are no longer individually conserved,
and the layer index is no longer a good quantum number. The
remainder of the anyon spectrum is obtained by constructing
composite operators of the φ fields or, equivalently, by fusing
multiple minimal charge anyons. In the present case, the only
remaining anyon is the Majorana fermion, which transforms
in the spin-1 representation of SU(2) and so is represented
by the local bilinear χa

n = φ†
ntaφn (see Table I). We note

that, unlike in Ref. [38], there are no nontrivial vortices in
this approach, since an order parameter valued on [SU(2) ×
SU(2)]/SU(2) cannot host nontrivial vortices.

The reader might object to our identification of the indi-
vidual particles making up the pairs with the fundamental
anyons, since the energy cost to break up a pair will be on

the order of the UV cutoff. However, this is not a significant
shortcoming of our construction, since anyons are only well
defined on projecting into the (topologically ordered) ground
state. They should therefore always be viewed as infinite
energy excitations represented as Wilson lines.

2. Quartetting and vortices

Although singlet pairing is sufficient to obtain the RR
states, it is interesting to consider an alternative mechanism
for obtaining non-Abelian states that more closely resembles
the construction of Ref. [38] that was discussed in Sec. II B.
In this scenario, rather than pairing the non-Abelian bosons of
Theory B (3.15), we imagine quartetting them. To do this, we
define the adjoint operators,

Ba
n = φ†

ntaφn, (3.22)

where the repeated n index on the right-hand side is not
summed over. These operators are neutral under U (1)EM, and
they will serve the same purpose for us here as the Ba

n fields
disucussed in Sec. II and Ref. [38]. We thus consider a pairing
interaction of the Ba

n’s, or a quartetting interaction of the
φ’s, by introducing a scalar field O to mediate the pairing
interaction,

Lquartet = λ Ba
1 Oab Bb

2

= λ (φ†
1t aφ1)Oab (φ†

2t bφ2). (3.23)

The quartetted phase, where 〈Oab〉 = vδab and 〈φ1〉 = 〈φ2〉 =
0, is accessed by adding a suitable potential V [O] and en-
suring that φ1,2 are gapped via a mass term −m2 ∑

n |φn|2.
Because O radiatively acquires a kinetic term of the form of
a gauged nonlinear σ model (NLSM), the resulting effective
theory in the quartetted phase is

Leff = LB + Lquartet − m2
∑

n

|φn|2 − V [O]

+ κ Tr[O−1Du1−u2OO−1Du1−u2O ], (3.24)

where κ is a coupling constant defined so that O is properly
normalized.

Since O transforms in the adjoint representation of the
SU(2) of each layer, it is blind to their Z2 centers. This
means that the quartetted phase hosts not only the non-Abelian
SU(2)2 topological order (since u1 − u2 is again Higgsed)
but also an additional Abelian Z2 sector. Explicitly, as noted
in Sec. II B, the condensation of O yields the symmetry
breaking pattern SU(2) × SU(2) → SU(2)diag × Z2, where
the residual Z2 can be chosen to act on either φ1 or φ2

(amounting to a choice of basis). Hence, the full topological
order of the ground state is SU(2)2 × Z2. This is also true of
the original construction of Ref. [38], meaning that the singlet
pairing mechanism discussed above carries the significant
advantage that it yields the ν = 1 Moore-Read state alone,
with no additional Abelian sector. We therefore focus on
singlet pairing for the remainder of this work.

How do we account for the new Abelian anyon content?
As discussed in Sec. II B, because of the order parameter’s
blindness to the Z2 centers, the NLSM above admits vortex
solutions. These vortices can carry fluxes of both of the
residual Z2 and SU(2) gauge groups, and so they possess
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nontrivial braiding statistics with respect to each other and the
scalar fields. However, since the Ba

n fields here are electrically
neutral, the vortices of the order parameter should not carry
any electric charge either. These vortices should therefore
correspond to anyon excitations which are distinct from those
that can be obtained from the φ1,2 fields alone, as these fields
carry electric charge. We leave a detailed understanding of this
Abelian sector to future work.

As in the singlet pairing case, this quartetting procedure
can be generalized to the case of k layers, or ν = k/2, which
can be easily shown to have SU(2)k × Zk−1

2 topological order
[each factor of Z2 corresponds to the unbroken center of
a broken SU(2)]. In the next subsection, we describe how
both the singlet pairing and quartetting constructions can
be generalized to the remaining RR fillings through a flux
attachment transformation.

D. Generating the full Read-Rezayi sequence
through flux attachment

By attaching M fluxes to the k-layer generalization of
Theory A (3.14) and performing the same transformation on
Theory B (3.15), it is possible to obtain LG theories of the
remaining RR states at filling fractions

ν = k

Mk + 2
. (3.25)

Flux attachment can be performed on Theory A as a modular
transformation ST MS [76,77], where

S : L[A] �→ L[b] + 1

2π
Adb, (3.26)

T : L[A] �→ L[A] + 1

4π
AdA, (3.27)

where again A is the background EM field and b is a new
dynamical U (1) gauge field. Thus, attaching M fluxes to
Theory A amounts to

ST MS : LA[A] �→ LA[b] + 1

2π
cd (b + A) + M

4π
cdc,

(3.28)
where c is a new dynamical U (1) gauge field. It is straightfor-
ward to see that this transformation is equivalent to the usual
attachment of M fluxes to the composite bosons (related to the
composite vortex variables—or Laughlin quasiparticles—of
Theory A by boson-vortex duality [78,79]). One of the in-
sights of Refs. [20,21] was that the modular group PSL (2,Z)
generated by S and T can generate new dualities from old
ones. Restricting for the moment to k = 2 layers, the trans-
formed Theory A is dual to

L̃B =
∑

n

(|Dun−b1/2φn|2 − |φn|4)

+ 1

4π

∑
n

Tr

[
undun − 2i

3
u3

n

]

− 1

4π
bdb + 1

2π
cd (b + A) + M

4π
cdc. (3.29)

We can repackage the SU(2) gauge fields un as new U (2)
gauge fields u′

n with trace Tr[u′
1] = Tr[u′

2] = b. This gluing

of the traces together can be implemented by introducing a
new auxiliary gauge field α,

L̃B =
∑

n

(|Du′
n
φn|2 − |φn|4) + 1

4π

∑
n

Tr

[
u′

ndu′
n − 2i

3
u′3

n

]

− 2

4π
Tr[u′

1]d Tr[u′
1] + 1

2π
cd (Tr[u′

1] + A) + M

4π
cdc

+ 1

2π
αd (Tr[u′

1] − Tr[u′
2]). (3.30)

This transformation does not impact the singlet pairing nor the
quartetting procedure discussed in the previous subsection,
and it readily generalizes to k layers (more constraints need
to be introduced in that case to glue the Abelian gauge fields
together). We therefore obtain the SU(2)2 Chern-Simons
theory at low energies, albeit with the additional Abelian
sector introduced above. For the general case of k layers,
the u′

n’s on each layer are set equal to one another, and the
low-energy TQFT is a U (2)k,−2k × U (1)M Chern-Simons-BF
theory given by

L = k

4π
Tr

[
u′du′ − 2i

3
u′3

]
− k

4π
Tr[u′]d Tr[u′]

+ 1

2π
cd (Tr[u′] + A) + M

4π
cdc. (3.31)

This is indeed the proper bulk TQFT describing the RR states
at filling (3.25), first described in Ref. [80]. As in the case
of the ν = 1 bosonic Moore-Read state discussed above, the
fundamental scalars (i.e., the composite vortices) comprise the
minimal charge anyons, here possessing electric charge Q =
1/(Mk + 2). This is the expected result for the minimal charge
anyon in the general RR states.

IV. Generalization to Non-Abelian SU(Nf )-Singlet States

Having derived a LG theory for the RR states, we will now
demonstrate how our construction can be naturally extended
to the generalized non-Abelian SU(Nf )-singlet states occur-
ing at fillings

ν = kNf

Nf + 1 + kMNf
, k, Nf , M ∈ Z. (4.1)

These are clustered states in which k represents the number
of local particles (fermions or bosons for odd and even M,
respectively) in a cluster, M the number of attached Abelian
fluxes, and Nf the number of internal degrees of freedom. Like
the RR states, which correspond to Nf = 1, we will show that
these states can also be obtained by pairing starting from a
parent multilayer Abelian LG theory. The particular Abelian
states we will target are the Nf -component generalizations of
the Halperin (2,2,1) states.

In parallel to Sec. III, we will show that the LG theories of
these Abelian states satisfy a new non-Abelian bosonization
duality. This duality relates the Abelian LG theory of the
generalized Halperin states to an SU(Nf + 1)1 Chern-Simons-
matter theory. That this is possible is perhaps not surpris-
ing given that the Nf -component (2,2,1) state is known to
have an edge theory which furnishes a representation of the
SU(Nf + 1)1 Kac-Moody algebra, as we shall review below
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[39,43,62,63]. The generalized NASS states are then obtained
by singlet pairing of the dual non-Abelian bosons.

A. Motivation: “Projecting down” to
the generalized NASS states

Just as the RR states are naturally understood starting with
the ν = 1/2 Laughlin state by way of “projecting down,” the
generalized NASS states can be built up from Nf -component
generalizations of the Halperin (2,2,1) spin-singlet state [81].
These (bosonic) states are Abelian and correspond to M =
0, k = 1. These states are described by the wave functions

	
(221)
Nf

=
Nf∏

σ=1

∏
i< j

(
zσ

i − zσ
j

)2
Nf∏

σ<σ ′

∏
i, j

(
zσ

i − zσ ′
j

)1
e− 1

4

∑
σ,i |zσ

i |2 ,

(4.2)

where zσ
i = xσ

i + iyσ
i denotes the complex coordinates of the

ith boson with component index σ . In direct analogy with the
ν = k/2 RR states, the generalized NASS wave functions for
general k (but still M = 0) may be obtained by symmetrizing
over a product of k copies of the Nf -component (2,2,1) wave
function [60],

	k,Nf = Sk

[
k−1∏
i=0

	
(221)
Nf

(z1+iN/k, . . . , z(i+1)N/k )

]
, (4.3)

where the symmetrization operation Sk is morally the same
as the one defined in Sec. II A. Again, the form of the
wave function makes explicit the clustering of the bosons
characteristic of non-Abelian states. The wave functions for
general M are obtained by multiplying 	k,Nf by a ν = 1

M
Laughlin factor. Note that setting Nf = 1 recovers the RR
wave functions (2.2).

The generalized NASS wave functions (4.3) should also
be expresssible as correlators of the SU(Nf + 1)k WZW CFT
for M = 0 and of the [U (1)]Nf × SU(Nf + 1)/[U (1)]Nf coset
CFT for M > 0. Although this appears to have only been
discussed explicitly for Nf = 1, 2, 3 [40,55,82], we will as-
sume that this holds true for general Nf . We thus expect the
corresponding bulk theories for the generalized NASS states
to be SU(Nf + 1)k Chern-Simons theories.

For the Nf -component Halperin states (k = 1), the pres-
ence of this “hidden” SU(Nf + 1) representation can be mo-
tivated as follows. These states are described by a Nf × Nf

K-matrix and Nf -component charge vector q,

K =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 1 1 . . . 1 1
1 2 1 . . . 1 1
1 1 2 1
...

...
. . .

...
1 1 2 1
1 1 1 . . . 1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

, q =

⎛
⎜⎝

1
...
1

⎞
⎟⎠. (4.4)

The form of the charge vector reflects the fact that the physical
bosonic excitations of each species each carry the same EM
charge, and it can read off that the Hall conductivity is σxy =
qT K−1q e2

h = Nf

Nf +1
e2

h . Under a particular change of basis

K̃ = GT KG and q̃ = Gq, G ∈ SL(Nf ,Z) is

G =

⎛
⎜⎜⎜⎜⎝

1 −1
1 −1

. . .
. . .
1 −1

1

⎞
⎟⎟⎟⎟⎠, (4.5)

K can be shown to be related to the Cartan matrix of SU(Nf +
1) [43,63],

K̃ =

⎛
⎜⎜⎜⎜⎜⎜⎝

2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 0
...

...
. . .

...
0 0 2 −1
0 0 0 . . . −1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

, q̃ =

⎛
⎜⎜⎝

0
0
...
1

⎞
⎟⎟⎠.

(4.6)

Using this fact, one can show that the edge theory defined
by K̃ supports a SU(Nf + 1)1 Kac-Moody algebra (see, e.g.,
Refs. [43,83] for a derivation) and hence is equivalent to
the SU(Nf + 1) WZW CFT. Consequently, the corresponding
bulk theory of the Nf -component (2,2,1) Halperin state is a
SU(Nf + 1)1 Chern-Simons theory. This is the Nf -component
generalization of the level-rank duality U (1)2 ↔ SU(2)1 de-
scribed in Sec. II.

This discussion indicates that we should expect the LG
theories of the generalized NASS states can be obtained from
pairing k copies of the Nf -component (2,2,1) Halperin state.
Because this state is level-rank dual to a SU(Nf + 1)1 theory,
we might expect that there is a non-Abelian Chern-Simons-
matter theory duality also taking this shape, from which we
can build a LG theory of the non-Abelian states. We now show
that this is indeed the case.

B. Non-Abelian duals of Nf -component Halperin (2,2,1) states

The necessary non-Abelian duality can be constructed by
starting with the Abelian LG theory for the Nf -component
Halperin state, which we again call Theory A. This theory
consists of Nf species of Wilson-Fisher bosons �I , I =
1, . . . , Nf , each coupled to a U (1) Chern-Simons gauge fields
aI ,

LA =
Nf∑

I=1

(|DaI �I |2 − |�I |4)

+ 1

4π

Nf∑
I,J=1

KIJaI daJ + 1

2π

Nf∑
I=1

qI AdaI , (4.7)

where K and q are given in Eq. (4.4). The Nf -component
Halperin state corresponds to the phase in which all of the
�I fields—the Laughlin quasiparticles—are gapped. We em-
phasize that there is no continuous SU(Nf ) global symmetry
rotating the �I fields manifest in Theory A. Instead, there is
only a discrete exchange symmetry of the �I fields.

Following the reasoning laid out in Sec. III B, we now show
that this theory is dual to one of Nf Wilson-Fisher bosons
coupled to a single SU(Nf + 1) gauge field. Similar dualities
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have also been described in Ref. [84]. We start by applying
the Abelian boson-fermion duality of Eq. (3.6) to each scalar
�I , treating the aI ’s as background fields, to obtain the Dirac
fermion Theory C,

LA ↔ LC =
Nf∑

I=1

iψ̄I /DbI ψI +
Nf∑

I=1

1

4π
aI daI

+
Nf∑

I=1

Nf∑
J=I+1

1

2π
aI daJ +

Nf∑
I=1

1

2π
AdaI

+
Nf∑

I=1

[
−1

2

1

4π
bI dbI + 1

2π
bI daI

]
. (4.8)

As in the example discussed in Sec. III B, the aI fields can
be safely integrated out while respecting the Dirac flux quan-
tization condition. This is because all of the Chern-Simons
terms have coefficient equal to unity. On integrating out one of
the aI fields, the remaining ones become Lagrange multipliers
enforcing the constraints bI = b1 ≡ b. Integrating out the
remaining aI ’s, we find that Theory C can be rewritten as one
of fermions coupled to a single dynamical gauge field,

LC =
Nf∑

I=1

iψ̄I /DbψI − Nf + 2

2

1

4π
bdb − 1

2π
bdA − 1

4π
AdA.

(4.9)

In contrast to Theory A, Theory C has a manifest SU(Nf )
global flavor symmetry since the fermions all couple in the
same way to the gauge field b. This symmetry is thus an
emergent symmetry from the point of view of Theory A (see
Ref. [73] for a more detailed discussion of global symmetries
in non-Abelian dualities).

We may now apply the non-Abelian duality (3.3) to Theory
C, leading to a non-Abelian bosonic Theory B,

LB =
Nf∑

I=1

∣∣Du− 1
N f +1 A1φI

∣∣2 − |φ|4

+ 1

4π
Tr

[
udu − 2i

3
u3

]
− 1

4π

Nf

Nf + 1
AdA. (4.10)

where −|φ|4 denotes tuning to the Wilson-Fisher fixed point
consistent with a global SU(Nf ) symmetry. We will again
refer to the φI fields as the non-Abelian composite vortices. It
will be convenient in the subsection below to re-express this
theory as a U (Nf + 1) gauge theory with a constraint,

LB =
Nf∑

I=1

|DuφI |2 − |φ|4 + 1

4π
Tr

[
udu − 2i

3
u3

]

+ 1

2π
αd (Tr[u] − A) − 1

4π
AdA, (4.11)

where we have introduced a U (1) gauge field α. We have thus
obtained a new triality,

Theory A: Nf scalars + U (1) K-matrix theory of Eq. (4.4)

� (4.12)

Theory C: Nf fermions + U (1)− N f +2

2

←→ Theory B: Nf scalars + SU(Nf + 1)1.

This is the main result of this subsection. It is interesting
that, for our particular choice of K-matrix in Theory A, we
have obtained a non-Abelian dual theory in which the rank
of the gauge group depends on the number of matter species
and in which an emergent SU(Nf ) symmetry appears. Such
trialities can be extended by applying the modular transfor-
mation ST P−1S (flux attachment) to each side, transforming
the K matrix of Theory A to that of the Nf -component (P +
1, P + 1, P) Halperin states. The family of Abelian composite
fermion theories obtained by this transformation has been
conjectured to describe plateau transitions in fractional Chern
insulators [85].

Notice that Eq. (4.12) does not contain a non-Abelian
fermionic theory analogous to Theory D in Eq. (3.13). That
is not to say such a theory does not exist. As with the RR
states, we leave to future work a full inquiry into how the
NASS states, to be discussed in the next section, may arise
in a fermionic picture.

C. Generating the non-Abelian SU(Nf )-singlet
sequence from clustering

With the non-Abelian composite vortex description of
the Nf -component (2,2,1) states in hand, we can follow the

pairing procedure of Sec. III C to generate the generalized
NASS sequence. Unlike in Sec. III, in this section we will
consider LG theories for general k, M, and Nf from the
outset. Our Theory A will thus consist of k layers of LG
theories of the Nf -flavor Halperin (2,2,1) states,

LA =
∑
I,n

(|DaI,n�I,n|2 − |�I,n|4)

+ 1

4π

∑
I,J,n

KIJaI,ndaJ,n + 1

2π

∑
I,n

qI AdaI,n, (4.13)

where again the K matrix and charge vector are given by
Eq. (4.4) and n = 1, . . . , k denotes the layer index. Applying
the duality (4.11) to each layer, this theory is dual to the
non-Abelian Theory B,

LB =
∑
I,n

|DunφI,n|2 −
∑

n

|φn|4 +
∑
I,n

LU (Nf +1)[un]

+ 1

2π

∑
I,n

αnd (Tr[un] − A) − k

4π
AdA. (4.14)

Here lowercase Latin letters denote a layer index and upper-
case Latin letters a flavor index. We have also defined, for
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compactness,

LU (N )[u] = 1

4π
Tr

[
udu − 2i

3
u3

]
. (4.15)

We introduce M via flux attachment, or application of the
modular transformation ST MS , as in Sec. III D. This yields
a sequence of descendant theories labeled by k, M, and Nf ,

L̃B =
∑
I,n

|DunφI,n|2 −
∑

n

|φn|4

+
∑

n

LU (Nf +1)[un] + 1

2π

∑
n

αnd (Tr[un] − a)

− k

4π
ada + 1

2π
adb + M

4π
bdb + 1

2π
bdA. (4.16)

We are now in a position to consider singlet pairing between
the different layers. One can also consider quartetting the
composite vortices, but this only leads to additional Abelian
sectors, as in the RR case.

Singlet pairing between the fundamental scalars is again
mediated via a dynamical scalar field, �m,n(x) = �†

n,m(x),
transforming in the bifundamental representation of the
SU(Nf + 1) factor on layer m and on layer n, i.e., �m,n �→
Um�m,nU †

n , where Un,Um ∈ SU(Nf + 1). Note that the U (1)
gauge transformations cancel out, as the αn fields force all
the U (1) gauge fields Tr[un] to be equal. If we require that
�m,n be a flavor singlet, then its coupling to the non-Abelian
composite vortices is therefore

Lsinglet pair = −
∑
m,n,I

φ
†
I,m �m,n φI,n. (4.17)

As before, the off-diagonal terms induce interlayer pairing,
while the diagonal terms can be used to ensure that 〈φI,n〉 = 0.
Thus, we obtain a non-Abelian state when �m,n condenses in
such a way that it enforces the constraint un ≡ u′ for all n.
Putting these pieces together, we find that the paired phase is
governed by the TQFT,

Leff = k LU (Nf +1)[u
′] − k

4π
Tr[u′]dTr[u′]

+ 1

2π
Tr[u′]db + M

4π
bdb + 1

2π
bdA. (4.18)

Integrating out the fluctuating gauge fields indeed yields the
correct Hall response,

σxy = kNf

Nf + 1 + kMNf

e2

h
, (4.19)

which is the expected result for the generalized NASS states.
As in our LG theories of the RR states, the fundamental

scalars φI,n correspond to the minimal charge anyons. Indeed,
one can check from the equations of motion that the funda-
mental scalar fields each carry charge Q = 1

N+Mk(Nf +1) , which
reduces to the expected result for the minimal charge anyons
of the RR and non-Abelian spin singlet states for Nf = 1
and Nf = 2, respectively. Additionally, in the paired phase,
the condensation of the bilinears φ

†
I,mφI,n + H.c. (no sum on

I) ensures that all the φI,n, for fixed I , are indistinguishable,
removing the redundancy of the layer degree of freedom.

In particular, because we took the pairing interaction to be
diagonal in the flavor indices, there is no mixing between
flavors on different layers. Hence the fundamental scalar
excitations should still transform into each other under the
diagonal SU(Nf ) subgroup of the original SU(Nf ) × · · · ×
SU(Nf ) global symmetry. Consequently, our theory repro-
duces the desired anyon spectrum, and we conclude that we
have obtained a LG theory for the generalized NASS states.

V. Discussion

Using non-Abelian boson-fermion dualities, we have
presented a physical pairing mechanism by which the
non-Abelian Read-Rezayi states and their generalizations,
the non-Abelian SU(Nf )-singlet states, may be obtained by
“projecting down” from parent Abelian states. These du-
alities relate the usual Abelian LG theories of the parent
state to theories of non-Abelian “composite vortices,” which
pair to form the non-Abelian FQH state. While this pairing
amounts to condensing local operators in the non-Abelian
theory, this is not the case in the original Abelian LG theory
of Laughlin quasiparticles, in which the composite vortices
are monopoles. In the process of developing these theories,
we have described a new triality (4.12) which parallels a
level-rank duality apparent from CFT/ideal wave function
considerations and which has the interesting property that it
involves a non-Abelian gauge theory with rank depending
on the number of matter species. We believe that this ap-
proach for obtaining physically motivated bulk descriptions
of nontrivial gapped phases represents a promising direction
for future applications of duality to condensed matter physics
which has thus far been underexplored.

Our construction contrasts with earlier bulk descriptions of
non-Abelian FQH states in important ways. The use of non-
Abelian boson-fermion dualities, which relate parent quantum
critical points, or Landau-Ginzburg effective field theories,
provides a clear mapping to theories of non-Abelian “compos-
ite vortex” variables which are manifestly gauge invariant, un-
like in earlier approaches that invoked level-rank duality deep
in the topological phase [38,39]. Additionally, we showed
that these earlier approaches in fact lead to a superfluous
Abelian sector on top of the desired non-Abelian topological
order. The use of non-Abelian dualities also avoids the issues
inherent to parton constructions [14–16], which provide a per-
haps larger class of fractionalized descriptions but rely on the
assumption that the fractionalized particles are not confined.
This is in spite of the fact that they are generally charged
under non-Abelian gauge fields without Chern-Simons terms
and, as such, are known to be confining in 2 + 1 dimensions.
Consequently, it is likely that many partonic descriptions are
on unstable dynamical footing.

We anticipate that many more exotic FQH and otherwise
topologically ordered states can be targeted with our ap-
proach. Again, we can draw inspiration from edge CFT and
ideal wave function approaches. For instance, the spin-charge
separated spin-singlet states of Ref. [86] can both be related to
a parent bilayer Abelian state and be obtained from conformal
blocks of an SO(5) WZW theory. There exist, in fact, Chern-
Simons-matter dualities involving precisely SO(N ) (and many
other) gauge groups [68,87], which suggests that it may be
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possible to formulate non-Abelian Landau-Ginzburg theories
of these states. It is perhaps also possible to apply our ap-
proach to generating bulk parent descriptions of the orbifold
FQH states [36], which can involve an interesting interplay of
usual gauge symmetries with gauged higher-form symmetries
[88,89].

In this work, we have focused on understanding non-
Abelian states via pairing of non-Abelian bosonic matter.
However, as described in Sec. III, a non-Abelian composite
fermion description is available for the ν = 1

2 Laughlin states.
In the parent Abelian phase, these fermions feel a magnetic
field and fill an integer number of Landau levels. Pairing
across layers of these integer quantum Hall states appears to
lead in fact to SU(2)−k theories, which may be connected to
the particle-hole conjugates of the RR states (note the sign of
k). One may also consider starting not from multiple layers
of FQH phases but instead of the (fermionic) compressible
states at filling ν = 1/2n, for which Dirac fermion theories
have been proposed [22,30]. It is possible that applying non-
Abelian dualities to these theories may provide an avenue for
developing exotic non-Abelian excitonic phases. We plan to
provide a general discussion of composite fermion approaches
to generating non-Abelian states in future work.

We last comment on the possible connection of the theories
presented here to numerical studies of transitions between
Abelian and non-Abelian states in bilayers [44–47,49,50].
To the extent that these transitions are continuous, it is an
exciting possibility that they are in the universality class of
the quantum critical theories presented here. However, since
these theories are very strongly coupled, the only analytic
techniques against which this can be checked are large-N
approaches, which may describe a wholly different fixed
point. Perhaps eventually the conformal bootstrap will be able
to shed light on this issue.
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APPENDIX: CHERN-SIMONS CONVENTIONS

In this Appendix, we lay out our conventions for non-
Abelian Chern-Simons gauge theories. We define U (N ) gauge
fields aμ = ab

μt b, where t b are the (Hermitian) generators
of the Lie algebra of U (N ), which satisfy [t a, t b] = i f abct c,
where f abc are the structure constants of U (N ). The generators
are normalized so that Tr[t bt c] = 1

2δbc. The trace of a is a U (1)
gauge field, which we require to satisfy the Dirac quantization
condition, ∫

S2

d Tr[a]

2π
∈ Z. (A1)

In general, the Chern-Simons levels for the SU(N ) and U (1)
components of a can be different. We therefore adopt the
standard notation [19],

U (N )k,k′ = SU(N )k × U (1)Nk′

ZN
. (A2)

By taking the quotient with ZN , we are restricting the differ-
ence of the SU(N ) and U (1) levels to be an integer multiple
of N ,

k′ = k + nN, n ∈ Z. (A3)

This enables us to glue the U (1) and SU(N ) gauge fields
together to form a gauge-invariant theory of a single U (N )
gauge field a = aSU(N ) + ã 1, with Tr[a] = Nã having quan-
tized fluxes as in Eq. (A1). The Lagrangian for the U (N )k,k′

theory can be written as

LU (N )k,k′ = k

4π
Tr

[
aSU(N )daSU(N ) − 2i

3
a3

SU(N )

]

+ Nk′

4π
ãdã. (A4)

For the case k = k′, we simply refer to the theory as U (N )k .
Throughout this paper, we implicitly regulate non-Abelian

(Abelian) gauge theories using Yang-Mills (Maxwell) terms,
as opposed to dimensional regularization [61,90]. In Yang-
Mills regularization, there is a one-loop exact shift of the
SU(N ) level, k → k + sgn(k)N , that does not appear in di-
mensional regularization. Consequently, to describe the same
theory in dimensional regularization, one must start with
a SU(N ) level kDR = k + sgn(k)N . The dualities discussed
in this paper, e.g., Eqs. (3.2)–(3.4), therefore would take a
somewhat different form in dimensional regularization.
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