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Frustrated plane-polarized dipoles in one dimension
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We investigate the zero-temperature quantum phases of a quasi-one-dimensional zigzag chain of dipoles that
are polarized in a plane by an external electric field. Since the Hamiltonian contains nearest-neighbor and next-
nearest-neighbor hopping and interaction terms, this model allows frustration, which induces phases that can be
interesting and unusual. By using the density matrix renormalization group algorithm, we produce a complex
phase diagram. This is an extension of an earlier work by Wang et al. [Phys. Rev. A 96, 043615 (2017)].
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I. INTRODUCTION

Ultracold atoms in optical lattices serve as an ideal plat-
form for quantum simulation, which is known to be a dif-
ficult problem even for the most advanced supercomputers
of today, especially when the system size is large [1]. Be-
cause the geometry, dimension, and depth of an optical
lattice can be controlled to a high degree, ultracold atom-
based simulators have already been used to investigate quan-
tum many-body problems applicable to fields ranging from
condensed-matter physics to high-energy physics [1,2]. Al-
though atoms interact via short-range contact interactions in
most cold atom experiments, many-body systems with longer-
range interactions are predicted to exhibit intriguing quantum
phases [2–5].

In the presence of geometrical frustration, a situation where
not all the interactions are satisfied, the system is expected to
exhibit even more interesting features. For instance, quantum
spin liquid phases have been found in frustrated spin−1
diamond antiferromagnets [6] and in frustrated spin−1/2
Heisenberg antiferromagnet on the kagome lattice [7]. Sim-
ilarly, Haldane phases have been shown in a spin−1/2 frus-
trated ferromagnetic XXZ chain [8] and in a frustrated zigzag
optical lattice of ultracold bosons [9]. One of the questions
that therefore arises is whether frustration in a zigzag lattice
of plane-polarized dipoles leads to phases with nontrivial
correlations between lattice points.

Wang et al. [10] have shown a rich phase diagram for
this system with the chain opening angle γ � 2π/3 (see
Fig. 1), a parameter regime with nearest-neighbor (NN) and
next-nearest-neighbor (NNN) interactions, but only NN hop-
ping. We produce a phase diagram for the same system,
but setting NNN hopping to nonzero values, thus also al-
lowing for much smaller chain opening angles γ . With the
introduction of the NNN hopping, it becomes impossible
to do exact calculations for a system size large enough to
exhibit many-body effects; we therefore need a numerical
approximation method. We use the density matrix renor-
malization group (DMRG) method [11,12] because it is the
most powerful numerical method to simulate one-dimensional
systems [13–15].

II. THE MODEL

Figure 1 shows the spin−1/2 representation of the zigzag
chain of dipoles. A dipole at a site is represented by a spin up,
|1〉 ≡ |↑〉, while an empty site is represented by a spin down,
|0〉 ≡ |↓〉. With the constraint that double occupancy is not al-
lowed on any lattice sites, we map this quasi-one-dimensional
model of dipoles to a spin−1/2 chain. We treat these particles
as hardcore bosons because two parallel dipoles on the same
lattice site would experience an infinite on-site potential [10].

Over the years, there has been a lot of work to study the
phase diagram of frustrated two-leg spin ladders using various
models, for instance, Refs. [16–20]. As compared to those,
our model is simple because it is one-dimensional, has fewer
degrees of freedom, and still exhibits frustration.

The Hamiltonian of the system is written as

H = − J1

∑
j

(S+
j S−

j+1 + H.c.) − J2

∑
j

(S+
j S−

j+2 + H.c.)

+ V odd
1

∑
j=odd

Sz
jS

z
j+1 + V even

1

∑
j=even

Sz
jS

z
j+1

+ V2

∑
j

Sz
jS

z
j+2 + h

∑
j

Sz
j, (1)

where J1 > 0 and J2 > 0 are NN and NNN hopping ampli-
tudes and h is the magnetic field. The system is half filled,
therefore the field term can be neglected. The spin operator
Sz is defined such that Sz |↑〉 = |↑〉 and Sz |↓〉 = − |↓〉. V even

1
and V odd

1 are NN dipolar interactions along even and odd
legs of the chain, respectively, and V2 is the NNN dipolar
interaction. The interactions are related to the dipole coupling
strength εdd = μ2

e/(4πεo|�r1 − �r2|3), chain opening angle γ ,
and polarization angle θ as [10]
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FIG. 1. A zigzag chain of dipoles mapped to one of spin−1/2
particles. For our DMRG simulations, we have considered N = 100
sites but the figure shows only seven sites, labeled 1 through 7. The
hopping is allowed in a leg/direction (odd, even, or NNN) of the
chain only if the ends of the leg contain opposite spins. (a) Dipoles
polarized at an angle θ in the plane of the zigzag chain. (b) Spin−1/2
particles replacing the dipoles.

where εo and μe are the vacuum permittivity and electric
dipole moment, and �r1 and �r2 are the position of the two
interacting molecules.

Before running any numerical simulations, we want to get
an intuitive understanding of the model. We start with some
fundamental questions: Is there any regime where we can
predict the ground state of the system and then use numerics
to validate our prediction? Can we identify the frustrated and
nonfrustrated regimes and map them to the physical parameter
regime of γ and θ? How are the NN and NNN hopping
amplitudes related to one another and to γ and lattice depth?
How different do the ground-state phase diagrams look for
different lattice depths? As shown in Fig. 1, there are pairwise
interactions in odd, even, and NNN directions, each of which
can be attractive or repulsive. We will study the effect of
each interaction separately and put them together afterward
to analyze their collective effect on the system.

We write the Hamiltonian for any two interacting sites i
and j, where j = i + 1 or i + 2, as

HTST = β

(
−1

2
(S+

i S−
j + H.c.) + αSz

i Sz
j

)
, (5)

where β = 2J and α = V/2J , and we refer to them as
“relative” hopping and interaction strengths, respectively.
If we exactly solve this “two-site term” in the basis
{|↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉}, we will obtain the following re-
sult: Regardless of the value of β, the two sites prefer
parallel alignment, ↑↑ or ↓↓, represented by the letter F
(for ferromagnetic) if the pairwise interaction α < −1/4, and
antiparallel alignment, ↑↓ or ↓↑, represented by the letter A
(for antiferromagnetic) if α > −1/4. It is worth noting that
the critical value αc = −1/4 lies at the boundary between the
two different configurations.

We can rewrite the full Hamiltonian as

H =
∑
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jS
z
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)
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2
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)
, (6)

which is the sum of all the two-site terms in the three direc-
tions, where

β1 = 2J1, β2 = 2J2,

αo = V odd
1

2J1
, αe = V even

1

2J1
, α2 = V2

2J2
. (7)

The Hamiltonian written in this form helps us identify the
frustrated and nonfrustrated regimes and predict the ground
state of the system prior to any simulations, as we will discuss
in the next section.

The relative hopping amplitudes β1 and β2 depend on the
distance between interacting sites, chain opening angle, and
lattice depth. If d1 and d2 are the lengths of the odd (or even)
and NNN legs, respectively, then d2 = 2 d1sin(γ /2). Using
this relation and the fact that β1 and β2 decrease exponentially
with distance, we can show that

β2

β1
= exp

[
−d1

λ
(2 sin(γ /2) − 1)

]
, (8)

where λ is a function of the lattice depth and has the units
of length. Although d1 and λ can change when γ is varied,
we can always set the ratio d1/λ to a desired value by tuning
the lattice depth and thereby fixing λ independent of d1 or γ .
The larger the value of the ratio d1/λ, the deeper the lattice.
Since γ , θ , and d1/λ can be varied independently in real
experiments, our model and all the results associated with it
depend on these three parameters.

Throughout this paper, we use zero temperature, open
boundary conditions, and εdd = 1, and, unless otherwise
stated, d1/λ = 0.1. In addition, we set β1 = 1, and with this
choice of β1 we allow the interactions to be much stronger
than the hopping.

Figure 2 shows how αo, αe, and α2 depend on γ and θ while
Fig. 3 illustrates how β2 varies with γ for different lattice
depths.

Before we proceed to the next section, we want to clarify
that by setting the temperature to absolute zero we nullify
thermal fluctuations. However, the experimental realization
of this model would be a system at nanokelvin temperature
with small but negligible thermal fluctuations. An example of
such a system would be an ultracold bosonic gas of 23Na87Rb
molecules that are stable against chemical reaction in their
absolute ground state [21], have a large permanent electric
dipole moment (for instance, as large as 3.3 Debye [22]),
which can lead to strong dipolar interactions, and can be
easily polarized by a moderate electric field. For instance, a
5 kV cm−1 electric field can induce a dipole moment larger
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FIG. 2. Mapping of the relative interaction strengths αo, αe, and α2 to the physical parameter regime of the lattice, chain opening angle
γ , and polarization angle θ : Since β2 and α2 diverge as γ → 0, we take π/6 as an appropriate lower bound for γ . With π/6 � γ � π and
−π/2 � θ � π/2, we observe that both αo and αe vary between −2.00 and 1.00, while α2 varies between −13.74 and 6.87.

than 2 Debye [23]. As for the zigzag optical lattice, which
can be produced by using three laser beams as explained in
Ref. [24], it would be natural to set d1 ∼ 1 μm because the lat-
tice constant is typically of that order. With a dipole moment
of 5 Debye (since experimentally realizable systems consist of
molecules with dipole moment 1 − 5 Debye [25]), the dipolar
coupling strength εdd ≈ μ2

e/4πεod3
1 ≈ 2.5 × 10−30 Joules. A

natural energy scale for molecules in optical lattice potentials
is the molecular recoil energy Er = h̄2k2/2m, where m is
the molecular mass. Since recoil energies (divided by the
Plank constant h) are of the order of several kilohertz [26],
we estimate that Er/h ∼ 10 kilohertz for molecular dipoles,
which means Er ≈ 6.63 × 10−30 Joules. With this estimate,
we obtain εdd ≈ 2.65Er . By setting β1 = 1 and εdd = 1, we
are using εdd as our energy scale so J1 = 0.5εdd , a value
that might be too small to probe experimentally but could
be increased by using smaller lattice constant (i.e., <1 μm)
or larger dipole moment (i.e., >5 Debye). With this value of
J1, we can readily see how the interaction strength in each
of the three directions scales with the corresponding hopping
strength. For instance, when (γ , θ ) = (π/3, π/3), we obtain
|J1/V even

1 | = 0.5, |J1/V odd
1 | = 0.4 and |J2/V2| = 0.4.

FIG. 3. Plot of β2 against γ for three different values of d1/λ.
Since d1/λ = 10 corresponds to a deep lattice, β2 increases much
more exponentially with decreasing γ as compared to the other two
values of d1/λ. The inset shows a zoomed-in plot for d1/λ = 0.1,
which corresponds to a shallow lattice, and for d1/λ = 1 which
corresponds to a lattice of intermediate depth as compared to the
other two ratios.

III. FRUSTRATED AND NONFRUSTRATED REGIMES

As mentioned in the previous section, the pairwise inter-
action α in any direction is ferromagnetic (FM) or attractive
if α < −1/4, and antiferromagnetic (AFM) or repulsive if
α > −1/4. If we arrange the interactions in all the directions
based on whether they are attractive or repulsive, we find eight
different combinations/regions as shown in Fig. 4. Although
this figure corresponds to the value of d1/λ equal to 0.1, we
get qualitatively similar plots for any other value of d1/λ (see
the Appendix); this implies that the phase diagrams should
also be similar regardless of the value of d1/λ. Of the eight

FIG. 4. Mapping of the frustrated and nonfrustrated regimes to
the physical parameter regime of chain opening angle γ and polar-
ization angle θ . There are eight regions, each with a unique color
and labeled with three letters which correspond, from left to right,
to the odd, even, and NNN directions, respectively (frustrated: AAA,
AFF, FAF, and FFA; nonfrustrated: FFF, AAF, AFA, and FAA). The
black solid, blue dashed, and red solid lines represent the contours
for αo, αe, and α2, respectively, each of which is equal to −1/4.
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regions, four (AAA, AFF, FAF, and FFA) are in the frustrated
regime while the other four (FFF, AAF, AFA, and FAA) are in
the nonfrustrated regime.

We will first explain and analyze nonfrustrated regions
in the absence of hopping and then discuss the potential
scenario when the hopping is allowed. The simplest case
of a nonfrustrated regime is the region FFF where the
pairwise interactions in all the directions are FM. In the
absence of hopping, the spins would be classical and
since the system is half filled, the two equal energy states
{|. . . ↑↑↑↓↓↓ . . .〉 , |. . . ↓↓↓↑↑↑ . . .〉} would be the exact
ground states (from now on, the curly braces {} will represent
states with the same energy). Another nonfrustrated region
is AAF where the pairwise interactions in the odd and
even directions prefer AFM alignment while that in the
NNN direction prefers FM alignment. In the absence of
hopping, the two Neel states {|↑↓↑↓↑↓ . . .〉 , |↓↑↓↑↓↑ . . .〉}
are equally likely configurations to have the lowest
energy and, therefore, we expect the ground state to be
AFM. Similarly, the ground state is expected to be a
dimer of the type {|↑↑↓↓↑↑↓↓ . . .〉 , |↓↓↑↑↓↓↑↑ . . .〉}
in the nonfrustrated region FAA, and of the type
{|↑↓↓↑↑↓↓ . . .〉 , |↓↑↑↓↓↑↑ . . .〉} in the nonfrustrated
region AFA. In the presence of hopping, however, the
four nonfrustrated regions could feature phases that become
superfluid (SF) instead of solid, particularly when the hopping
dominates over the interactions.

The four regions in the frustrated regime are potentially
more interesting. The first such region is AFF, where the
pairwise interaction in the odd leg prefers AFM alignment
while those in the even and NNN legs prefer FM alignment.
It is impossible for the spins to satisfy the interactions in all
directions simultaneously, and hence the system is frustrated.
We can make similar arguments to conclude that the other
three regions FAF, FFA, and AAA are also frustrated. As we
will see later, there are regions in the frustrated regime where
the pairwise interactions in the three directions are of similar
strength and thus compete against one another. These regions
require particular attention.

IV. PHASE DIAGRAM

Figure 5 shows the zero-temperature ground-state phase
diagram of the system for different values of γ and θ .
This diagram has been produced with several DMRG trials
each with a different initial state/condition, and the most
appropriate ground state (the one with the lowest energy
possible) has been considered. The different phases, the order
parameters and correlation functions used to identify them,
and the crossover between those phases will be discussed in
the subsequent paragraphs (see the Appendix for additional
correlations). We label the initial state as |init〉. We name
the initial state with spins randomly distributed in the lattice
the random initial state and label it |random〉. The letter E
with a value attached to it will represent the energy of the
ground state returned by a simulation. We will often show
ground states for two different initial states to demonstrate
how the initial conditions affect the final results obtained
from DMRG simulations. When we show the results for only
one initial state, it means that the state has led to the most

FIG. 5. Ground-state phase diagram. These results depend on
three independent parameters: chain opening angle γ , polarization
angle θ , and the ratio d1/λ, which we have set equal to 0.1. Each
color is associated with a different phase; the brighter a color, the
deeper the system in that phase. The black color corresponds to
the region where the order parameters vanish for all phases. AFM1
and AFM2 are both AFM phases labeled differently because of the
nature of the ground state returned by DMRG. The white curve
labeled αo + αe = −1/2 represents the physical parameter regime
where one of the pairwise interactions in NN directions is attractive
while the other repulsive, and they both are the same distance
away from their critical values αo,c = αe,c = −1/4. The superfluid
phase has been drawn using the values of the correlation function
for the finite system size N = 100. All the other phases and their
boundaries have been drawn using the values of order parameters for
the aforementioned system size. The white dots with very small error
bars, obtained using finite-size scaling analysis, represent the phase
boundaries in the thermodynamic limit N → ∞.

appropriate ground state. The color brightness for each phase
represents the value of its order parameter while the black
color represents the region where all the order parameters
vanish. We produce this phase diagram for the finite sys-
tem size N = 100 and we extrapolate the boundary between
phases in the thermodynamic limit N → ∞ using finite-size
scaling analysis, which we will discuss later. We find a sharp
transition between FM and AFM phases, and hence DRMG
pinpoints the boundary between these two phases, while we
find a smooth transition everywhere else, as we will discuss
later.

It should be noted that the Hamiltonian Eqs. (6) remains
unchanged under the transformation θ → −θ (where αo and
αe swap their values while α2 stays the same). This implies
that the phase diagram gives similar results in the range θ ∈
[−π/2, 0] as in the range θ ∈ [0, π/2], and, therefore, we can
restrict ourselves to the latter.

A. Dimerized phases

In the earlier section, we mentioned two distinct sets of
expected ground states: {|↑↑↓↓↑↑↓↓ ...〉 , |↓↓↑↑↓↓↑↑ ...〉}
and {|↑↓↓↑↑↓↓ ...〉 , |↓↑↑↓↓↑↑ ...〉}. We call this type of
dimer a z-dimer and although the nonfrustrated regions FAA
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FIG. 6. z-dimer phase. |init〉 = |↓↑↓↑↓↑ . . .〉. The left plot
shows a z-dimer in the non-frustrated region FAA as expected. The
right plot shows a similar phase in the frustrated region FFA, which
clearly indicates that the attractive interaction in the odd (or even)
direction and the repulsive interaction in the NNN direction dominate
over the attractive interaction in the third direction. (a) (γ , θ ) =
(π/3, π/6). Region FAA. (b) (γ , θ ) = (π/3, π/12). Region FFA.

and AFA are the natural candidates for this phase, a frustrated
region can also exhibit this type of phase as shown in Fig. 6.

Before discussing the other type of dimer that appears
in the phase diagram, let us define |+〉 ≡ (1/

√
2)(|↑↓〉 +

|↓↑〉). Then an xy-dimer is simply the triplet bound state
|+〉 ⊗ ... ⊗ |+〉 or the one with free spins at the edges (of-
ten referred to as dangling spins) {|↑〉 ⊗ |+〉 ⊗ ... ⊗ |+〉 ⊗
|↓〉 , |↓〉 ⊗ |+〉 ⊗ ... ⊗ |+〉 ⊗ |↑〉}. The xy-dimer with dan-
gling spins (or bound spins at the edges) is plausible when the
interaction in the even (or odd) direction is highly repulsive
while that in the other two directions is weak, as shown in
Fig. 7. If the hopping amplitudes were positive (i.e., J1 < 0
and J2 < 0), as is the case for fermionic statistics, the xy-
triplets would be replaced with xy-singlets [27].

Spin liquid phases, which are phases with no magnetic
long-range Neel order, are expected to be stable in systems
where quantum fluctuations can strongly suppress magnetism,
and these situations are found in low dimensions and in
frustrated systems [28]. Our model is comprised of both. In
the following paragraph, we explore the possibility of such a
phase.

For a finite lattice, an xy-dimer phase with bound spins
at the edges is lower in energy than the one with dangling
spins at the edges, and the system chooses as its ground
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〈S
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FIG. 7. xy-dimer phase. (γ , θ ) = (5π/6, 0.0889π ). Region
AAA. |init〉 = |random〉. These two plots have been produced with
exactly the same initial condition. What we see is an example of an
xy-dimer with dangling spins, which means the repulsive interaction
in the odd direction has a dominating effect over that in the even and
NNN directions.

state the former or the latter depending on the values of the
pairwise interactions. In the thermodynamic limit, however,
the two phases would have the same energy. Therefore, one
would expect the frustrated region that results in the xy-dimer
phase to be an ideal candidate for a spin liquid phase when
the interactions in the odd and even directions are equally
repulsive; this would allow the ground state to be in the
superposition of the two xy-dimer phases, a state similar to
a resonating valence bond (see Ref. [29] for a nice review of
this state) but with the xy-singlets replaced with xy-triplets.
In other words, a spin liquid phase may occur if the triplet
bond connecting two adjacent sites can freely switch between
odd and even directions. The fact that the pairwise interactions
in the two NN directions are always unequal in the xy-dimer
regime of our model eliminates the possibility of a spin liquid
phase.

Similarly, because of the existence of triplet bonds, the
region in the phase diagram where an xy-dimer is observed is
the only one where there could potentially be a Haldane phase.
The existence of such a phase can be numerically investigated
using a string correlation function [30–35]. We consider the
one employed by Furukawa et al. [8]:

Oz
str(l, l + 2r) = −

〈(
Sz

l + Sz
l+1

)
exp

(
iπ

l+2r−1∑
m=l+2

Sz
m

)

× (
Sz

l+2r + Sz
l+2r+1

)〉
. (9)

To explain how this correlation function is associated with
a Haldane phase, we consider a pair of spins at adjacent sites
l + 2 j and l + 2 j + 1. If there was such a phase, the sum
of the spins Sz

l+2 j + Sz
l+2 j+1 measured along the zigzag chain

would alternate between +1 and −1 with one or more 0’s in
between, thus showing a hidden AFM order. The correlation
function Oz

str(l, l + 2r) would detect this hidden order and
take nonzero values as r becomes large. We calculate this
correlation function for all j and r but we do not see a pattern
as explained before, and therefore we claim that we do not
find a Haldane phase. And although we are unable to find one,
we note that Xu et al. [36] have shown the existence of such a
phase in an experimentally realizable spin-1 model of bosons
in a zigzag optical lattice.

B. Superfluid phase

The reason that there are only small regions of SF phase
in our phase diagram is that we choose our parameters such
that the interactions are much stronger than the hopping.
Depending on the values of β1 and β2, there can be various
regions of the SF phase. The existence of this phase is con-
firmed by the polynomially decaying long-range correlation
〈S+

1 S−
j 〉 [37,38], known as the superfluid correlation, as shown

in Fig. 8 (see the Appendix for additional correlations).
These two plots also show that the two different frus-

trated regions AAA and FFA can feature the same phase
(SF in this case). It is worthwhile to look at the values
of the pairwise interactions for the left plot: (αo, αe, α2) =
(0.250, 0.250, 0.207). While the interactions are equally
repulsive in the NN directions, the one in the NNN direction
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FIG. 8. SF phase. |init〉 = |random〉. The two plots show the
polynomially decaying superfluid correlation; the nonpolynomial
decay near the open ends of the chain is due to the edge effect.
(a)(γ , θ ) = (2π/3, 0). Region AAA. (b) (γ , θ ) = (π, 0.2333π ).
Region FFA.

is slightly less repulsive. This means the SF phase we observe
is the result of the competition between the interactions in the
three directions.

C. Ferromagnetic phase

Figure 9 shows the FM phase in this system. We show
results subject to two different initial conditions in order to
highlight the nature of the phase returned by DMRG. When
the system is in the FM regime, the FM state with a single
domain wall is the true ground state because it has the lowest
energy as compared to the states produced with any other
initial conditions.

The dashed line on the phase diagram, which is labeled
αo + αe = −1/2, represents the points where αo and αe are
equally far away from their critical values αo,c = αe,c =
−1/4, one being attractive while the other repulsive. So one
would expect a FM phase on one side of this line and an
AFM phase on the other. Our results, however, show that the
attractive interaction in the odd (or even) direction of the spin
chain dominates over the repulsive interaction in the even
(or odd) direction to a certain threshold, thus resulting in a
FM phase on both sides of this line. It should be noted that
this line disappears when γ → 0.4467π because, above this
value of γ , the system would be deep in the FM regime and,
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FIG. 9. FM phase. (γ , θ ) = (π, π/2). Region FFF. Since all the
interactions are attractive at this point, the FM phase is expected
unless the hopping dominates over the interactions. A single domain-
wall FM phase is the lowest energy state in this regime and the only
way we can obtain this phase is by choosing itself as the initial
condition. A simulation with any other initial state, although only
the one with random initial state is shown here, results in a FM phase
with several domain walls. (a) |init〉 = |random〉. E = −178.26.
(b) |init〉 = |. . . ↓↓↓↑↑↑ . . .〉. E = −217.58.
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FIG. 10. AFM1 phase. (γ , θ ) = (π, 0). Region AAA. Although
both plots show an AFM phase, the one on the right is a bet-
ter approximation to the true phase because it has a lower en-
ergy. (a) |init〉 = |random〉. E = −96.13. (b) |init〉 = |↓↑↓↑↓↑ . . .〉.
E = −98.60.

therefore, we do not obtain an AFM phase regardless of the
value of θ .

D. Antiferromagnetic phase

In Figs. 10 and 11, it can be seen that the accuracy of
DMRG depends on the choice of initial state. There are
obviously two different AFM regimes. We label the phase
AFM1 when the NN correlations 〈Sz

jS
z
j+1〉 are negative but

greater than −1 for each site index j as shown in Fig. 10. A
look at the values of the long-range correlation 〈Sz

1Sz
j〉 (see the

Appendix) confirms that this is an AFM phase. Similarly, we
label the phase AFM2 when the system is deep in the AFM
regime so 〈Sz

jS
z
j+1〉 ≈ −1. It is worth noting that, although a

pure AFM phase is expected in the nonfrustrated region AAF,
a simulation with a random initial state results in a phase that
has mostly AFM correlations but with one or more clusters of
identical spins, which we call trapped regions. It is clearly not
a true phase but still makes sense from an experimental point
of view, which we will explain later.

E. Phase transitions and DMRG

Figure 12 shows how initial states affect the ground-state
energy in DMRG simulations and why it is important to
perform multiple trials with various initial conditions. If we
look at these results with reference to the phase diagram
(Fig. 5), we can see that in the regime where the ground
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FIG. 11. AFM2 phase. (γ , θ ) = (π/6, π/2). Region AAF. The
left plot shows a phase with mostly AFM correlations except for a
couple of trapped regions while the right plot shows a pure AFM
phase, which is the true phase because it has a much lower energy.
(a) |init〉 = |random〉. E = −1357.91. (b) |init〉 = |↓↑↓↑↓↑ . . .〉.
E = −1492.43.
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FIG. 12. Ground-state energy of the system, E , plotted as a
function of polarization angle, θ , for γ = π/3. The state |init〉
has been used to denote the initial state for a DMRG simulation,
|random〉 denotes the random initial state and |xydimer〉 denotes the
triplet bound state |+〉 ⊗ . . . ⊗ |+〉. This figure clearly shows that
in a regime where a FM phase is expected, only a simulation with
a FM initial state results in a true ground state. It also shows that
several curves meet at two points: θ = 0.2424π , which belongs to a
smooth crossover between z-dimer and FM phases (see Fig. 13), and
θ = 0.3598π , which lies at a sharp crossover between FM and AFM
phases (see Fig. 14).

state is expected to be dimerized or AFM, the best choice
for the initial state would be a z-dimer, a Neel state, or an
xy-dimer because these three states result in exactly the same
ground state. Similarly, in the regime where the ground state
is expected to be FM, a simulation must start with a single
domain-wall FM state.

Simulations with various initial conditions clearly show
that there is a sharp transition between FM and AFM phases,
and a smooth transition between z-dimer and FM phases
and between SF and other phases (see the Appendix for a
detailed explanation of the transition between SF and AFM
phases). Experiments, however, can be expected to confirm
the unclear DMRG results in the following way: Suppose we
build a system from a sample of randomly distributed spins
and slowly cool it down so the spins redistribute in the lattice
to minimize their energy. If the sample consists of one or
more trapped regions, the system must overcome an enormous
energy hurdle to flip the spins in these regions, therefore the
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FIG. 13. Ground states and their energies subject to two initial
conditions. (γ , θ ) = (π/3, 0.3598π ). Region FAF. (a) |init〉 =
|. . . ↓↓↓↑↑↑ . . .〉. E = −142.14. (b) |init〉 = |↓↑↓↑↓↑ . . .〉.
E = −142.13.
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FIG. 14. Ground states and their energies subject to two initial
conditions. (γ , θ ) = (π/3, 0.2424π ). Region FAF. (a) |init〉 =
|. . . ↓↓↓↑↑↑ . . .〉. E = −96.31. (b) |init〉 = |↑↑↓↓↑↑↓↓ . . .〉.
E = −96.30.

spin configuration would be expected to show signatures of
these trapped regions (as we saw earlier in Fig. 11) although
it is not the lowest energy configuration.

F. Order parameters

We define the order parameters for FM, AFM, z-dimer, and
xy-dimer phases as follows:

Oferro = 4

N

N
2∑

i= N
4 +1

∣∣∣∣∣∣
3N
4 +3∑

j= 3N
4

〈
Sz

i Sz
j

〉∣∣∣∣∣∣, (10)

Oneel = 4

N

N
2∑

i= N
4 +1

∣∣∣∣∣∣
3N
4 +3∑

j= 3N
4

(−1) j
〈
Sz

i Sz
j

〉∣∣∣∣∣∣, (11)

Ozdimer = 2

N

3N
4∑

i= N
4 +1

∣∣〈Sz
i Sz

i+1 − Sz
i+1Sz

i+2

〉∣∣, (12)

Oxydimer =
∣∣∣∣∣∣

N
4 +4∑

i= N
4 +1

(−1)i
∣∣〈Sz

i Sz
i+1

〉∣∣
∣∣∣∣∣∣. (13)

Although we use correlation functions to explain how we
identify each phase, we use order parameters to find how
deep the system is in a given phase and also to find the
crossover between the phases. For the dimerized phases, we
use the definitions given by Furukawa et al. [8]. To minimize
the edge effects due to open boundaries, we use the method
employed by Rossini and Fazio [37]—we define the order
parameters for FM, AFM, and z-dimer phases as average
expectation values of the correlators between spins in the
middle part of the chain. For the xy-dimer phase, however,
we only consider the the correlations N/4 sites away from
the left end of the chain but not their average expectation
values. For the SF phase, we use the values of the superfluid
correlation function 〈S+

1 S−
j 〉 which, as mentioned earlier, de-

cays polynomially in this phase. It should be noted that we
have defined the order parameters such that they are always
non-negative.

Figure 15 shows how the order parameters for different
phases vary with polarization angle θ for a given value
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FIG. 15. Order parameter for various phases as a function of
polarization angle θ (a) γ = π/6 (b) γ = 7π/9.

of γ . By definition, the order parameter for a given phase
should vanish in all other phases and our results for FM
and AFM phases are consistent with this. However, the
dimerized phases consist of two flavors, xy and z, which
pair neighboring spins in different directions. Therefore, their
order parameters overlap. The finite size scaling, which we
will discuss later, along with the values of correlation func-
tions, allows us to find the boundary between these two
phases.

G. Finite-size scaling and extrapolation

As mentioned earlier, the phase diagram (Fig. 5) has been
drawn using the values of order parameters and correlation
functions for the finite system size N = 100. We extrapolate
the phase boundaries in the thermodynamic limit N → ∞
using the finite-size scaling method explored by Rossini and
Fozio [37]. We calculate the energy gap for different system
sizes N and find the value of θ for which the gap is minimum
for each N , as shown in Fig. 16(a). We call this value θmin. We
then plot these θmin against 1/N and extrapolate the value of
θmin when 1/N → 0, as shown in Fig. 16(c). Although difficult
to see, the boundaries denoted by white dots in the phase
diagram have small error bars that are due to uncertainty in
the fitting of the curves for different values of N . Our analysis
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FIG. 16. Finite-size scaling of the energy gap: γ = π/6. (a) The
energy gap 	 is plotted as a function of the polarization angle θ

and different system sizes N . The gap is minimum at the phase
transition point, we denote the corresponding value of θ by θmin.
(b) The energy gap is plotted as a function of the system size at
θ = 0.3167π which is near the phase transition point. The line of
best fit is 	 = 32.4072N−1.00003, which implies that the energy gap
scales polynomially with the system size. (c) By plotting θmin against
1/N , we extrapolate the phase transition point in the thermodynamic
limit N → ∞ as θ = (0.3119 ± 1.2155 × 10−4)π .

shows that the energy gap scales polynomially with the system
size near the boundary between z-dimer and FM phases as
shown in Fig. 16(b). We are unable to find the boundary
between xy-dimer and SF phases.

115110-8



FRUSTRATED PLANE-POLARIZED DIPOLES IN ONE … PHYSICAL REVIEW B 100, 115110 (2019)

V. CONCLUSION

In conclusion, we have numerically studied the ground-
state properties of a quasi-one-dimensional model that con-
tains hopping and interactions up to second neighbors. Even
though this is a rather simple model, it comprises frustrated
regimes that lead to a rich phase diagram. We have used
an approach to write the Hamiltonian that gives an intuitive
understanding of the model, makes it convenient to identify
frustrated and nonfrustrated regimes, and helps predict the
ground states beforehand so that the results obtained from
numerical simulations can be verified. We have observed all
the phases that Wang et al. [10] investigated. Nevertheless, in
contrast to what was shown in their phase diagrams, we have
observed a sharp transition between FM and AFM phases.
We are, however, unable to find any spin liquid, Haldane, or
topological phases in this system.
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APPENDIX

A. Frustrated and nonfrustrated regimes

In Fig. 4, we saw how the eight regions—four frustrated
(AFF, FAF, FFA, and AAA) and four nonfrustrated (FFF,
AAF, AFA, and FAA)—were related to the chain opening
angle γ and polarization angle θ given the ratio d1/λ =
0.1. Figure 17 illustrates how these regions depend on the
angles γ and θ for other lattice depths. We find that all eight
regions exist in our system, although their shape and size vary,
regardless of the value of d1/λ.

B. Correlation functions for various phases

In the body of this paper, we have shown the values of only
one or two correlation functions to confirm a given phase.
In this section, we will show additional plots to support our
claim. We will also include the values of the interactions to
show which frustrated/nonfrustrated region the example point
under consideration belongs to.

1. z-dimer phase

Figure 18 shows additional plots for the z-dimer phase
shown in Fig. 6(a), which belongs to the nonfrustrated region
FAA. In principle, one should obtain 〈Sz

j〉 = 0 for each site
index j because the ground state is expected to be a superposi-
tion of the two states {|↓↓↑↑↓↓↑↑ . . .〉 , |↑↑↓↓↑↑↓↓ . . .〉}.
However, DMRG returns one of these two states rather than
a superposition. A similar argument is valid for all other
phases.

The other three plots are straightforward. We would expect
the same results regardless of whether the ground state is

FIG. 17. Frustrated and nonfrustrated regions for other lattice
depths.(a) d1/λ = 1 (b) d1/λ = 10

a single z-dimer state, as is the result from DMRG, or a
superposition of two degenerate z-dimer states, as is the result
from ab intio calculations. A similar argument is valid for all
other phases.

2. xy-dimer phase

Figure 19 shows additional plots for the xy-dimer phase
shown in Fig. 7, which belongs to the frustrated region AAA.
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FIG. 18. Additional correlations for the z-dimer phase. (γ , θ ) =
(π/3, π/6). (αo, αe, α2) = (−2.000, 0.250, 0.250). Region FAA.
|init〉 = |↓↑↓↑↓↑ . . .〉.

3. Superfluid phase

Figure 20 shows additional plots for the SF phase shown in
Fig. 8(b), which belongs to the frustrated region FFA.

4. Ferromagnetic phase

Figure 21 shows additional plots for the ferromagnetic
phase shown in Fig. 9, which belongs to the nonfrustrated
region FFF.

5. Antiferromagnetic phase: AFM1

Figure 22 shows additional plots for the AFM1 phase
shown in Fig. 10, which belongs to the frustrated region AAA.
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FIG. 19. Additional correlations for the xy-dimer phase.
(γ , θ ) = (5π/6, 0.0889π ). (αo, αe, α2) = (0.204, 0.999, 0.117).
Region AAA. |init〉 = |random〉.
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FIG. 20. Additional correlations for the SF phase. (γ , θ ) =
(π, 0.2333π ). (αo, αe, α2) = (−0.343, −0.343, −0.047). Region
FFA. |init〉 = |random〉.

6. Antiferromagnetic phase: AFM2

Figure 23 shows additional plots for the AFM2 phase
shown in Fig. 11, which belongs to the nonfrustrated region
AAF.

C. Transition between antiferromagnetic and superfluid phases

In the phase diagram, it is hard to locate the exact
boundary between AFM and SF phases for the finite system
size N = 100. To understand the transition between these
two phases, we neglect the hopping and interaction in the
NNN direction (i.e., we set β2 = 0 and α2 = 0). We are
interested in the situation where αo,e > −1/4, which means
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FIG. 21. Additional correlations for the FM phase. (γ , θ ) =
(π, π/2). (αo, αe, α2) = (−2.000, −2.000, −0.276). Region FFF.
|init〉 = |. . . ↓↓↓↑↑↑ . . .〉.
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FIG. 22. Additional correlations for the AFM1 phase. (γ , θ ) =
(π, 0). (αo, αe, α2) = (1.000, 1.000, 0.138). Region AAA. |init〉 =
|↓↑↓↑↓↑ . . .〉.

the pairwise interactions prefer antiparallel alignment of
spins. As before, we set β1 = 1 and for convenience, we
consider αo = αe.

Figures 24 and 25 show the various correlations for the
cases αo,e = 0.3 and αo,e = 0.4. It is interesting to note that
the nature of the correlations 〈Sz

jS
z
j+1〉 and 〈Sz

1Sz
j〉 is not

very different for the two cases; in fact, these correlations
suggest the likelihood of an AFM phase. However, a SF
phase in the former case is confirmed by the polynomial
decay of the correlation 〈S+

1 S−
j 〉 while an AFM phase in the

latter is confirmed by the tendency of the spins to localize
in lattice sites as indicated by the alternating sign for the
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FIG. 23. Additional correlations for the AFM2 phase. (γ , θ ) =
(π/6, π/2). (αo, αe, α2) = (0.799, 0.799, −13.740). Region AAF.
|init〉 = |↓↑↓↑↓↑ . . .〉.
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FIG. 24. Correlations for the SF phase with β1 = 1, αo = αe =
0.3. |init〉 = |random〉.

values of the correlation 〈Sz
j〉 and the exponential decay of

the correlation 〈S+
1 S−

j 〉, which clearly indicates an insulating
phase.

Therefore, depending on the strength of β1 (with hopping
and interaction between NNs only), the system can be in a
SF or AFM phase when the pairwise interactions in the odd
and even directions prefer antiparallel alignment. We also
notice that there is a smooth crossover somewhere between
αo,e = 0.3 and αo,e = 0.4. Based on these results, it is safe
to conclude that the nature of the transition between SF and
AFM phases in the phase diagram (Fig. 5) is qualitatively the
same.
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FIG. 25. Correlations for the AFM phase with β1 = 1, αo =
αe = 0.4. |init〉 = |random〉.
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