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Quantum phase transitions in the spin-boson model without the counterrotating terms
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We study the spin-boson model without the counterrotating terms by a numerically exact method based on
variational matrix product states. Surprisingly, the second-order quantum phase transition (QPT) is observed for
the sub-Ohmic bath in the rotating-wave approximations. Moreover, first-order QPTs can also appear before
the critical points. With the decrease of the bath exponents, these first-order QPTs disappear successively,
while the second-order QPT remains robust. The second-order QPT is further confirmed by multi-coherent-state
variational studies, while the first-order QPT is corroborated with the exact diagonalization in the truncated
Hilbert space. Extension to the Ohmic bath is also performed, and many first-order QPTs appear successively in
a wide coupling regime, in contrast to previous findings. The previous pictures for many physical phenomena
for the spin-boson model in the rotating-wave approximation have to be modified at least at strong coupling.
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I. INTRODUCTION

The spin-boson model describes a qubit (two-level system)
coupled to a quantum environment represented by a continu-
ous bath of bosonic modes. It is a paradigmatic model in many
fields, ranging from quantum optics [1] to condensed matter
physics [2] to open quantum systems [3,4]. The Hamiltonian
is given by

HSB = �

2
σz +

∑
k

ωka†
kak +

∑
k

gk (a†
k + ak )σx, (1)

where σi (i = x, y, z) are the Pauli matrices, � is the qubit
frequency, ak (a†

k) is the bosonic annihilation (creation) oper-
ator which can annihilate (create) a boson with frequency ωk ,
and gk denotes the coupling strength between the qubit and the
bosonic bath, which is usually characterized by the power-law
spectral density J (ω):

J (ω) = π
∑

k

g2
kδ(ω − ωk ) = 2παω1−s

c ωs�(ωc − ω), (2)

where α is a dimensionless coupling constant, ωc is the cutoff
frequency, and �(ωc − ω) is the Heaviside step function.
The bath exponent s classifies the reservoir into super-Ohmic
(s > 1), Ohmic (s = 1), and sub-Ohmic (s < 1) types. In
many theoretical studies, due to the weak coupling strength
in the real quantum optical and quantum dissipative systems,
the counterrotating terms involving higher excited states,
a†

kσ+ and akσ−, can be neglected, a condition which is the
so-called rotating-wave approximation (RWA); thus the full
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Hamiltonian (1) can be reduced to the following RWA form:

HRWA
SB = �

2
σz +

∑
k

ωka†
kak +

∑
k

gk (a†
kσ− + akσ+). (3)

It is generally believed that the RWA is a reasonably good
approximation because the counterrotating terms violate en-
ergy conservation, leading to virtual processes, and thus are
suppressed.

The total excitation number of the spin-boson model
is N̂ = ∑

k a†
kak + σ+σ−, where σ± = (σx ± iσy)/2. With

(without) the RWA, the system possesses a U (1) (Z2) sym-
metry, which is characterized by the action of the operator
Re(θ ) = exp (iθ N̂ ), where the arbitrary angle θ corresponds
to U (1) symmetry and the special value of θ = π corresponds
to Z2 (parity) symmetry. The parity operator 
̂ = Re(π ) has
two eigenvalues ±1.

With the advance of modern technology, various qubit
and oscillator coupling systems can be engineered in many
solid-state devices, such as superconducting circuits [5,6],
cold atoms [7], and trapped ions [8]. Recently, the spin-
boson model has been realized by the ultrastrong coupling
of a superconducting flux qubit to an open one-dimensional
(1D) transmission line [9]. The counterrotating terms can be
strongly suppressed in some proposed schemes [10–12]. In
some systems, the anisotropy appears quite naturally, because
they are controlled by different input parameters [13]. On
the theoretical side, the anisotropic models where the rotating
and counterrotating terms are different have attracted consid-
erable attention. Rich quantum phase transitions (QPTs) in
the anisotropic Dicke models including the Tavis-Cummings
model [14] without counterrotating terms have been reported
[11] in the thermodynamic limit, i.e., infinite qubits. It was
found in [15] that the Jaynes-Cummings (JC) model [16],
the quantum Rabi model in the RWA, could also undergo
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the second-order QPT in the extreme model parameter limit,
�/ω → ∞ where � and ω are the frequencies of qubit and
cavity. It was demonstrated that the ratio of frequencies �/ω

plays the same role as the qubits number, and the second-order
QPT can be identified by finite frequency scaling analysis.

Since both the Dicke and Rabi models in the RWA undergo
the second-order QPT, can the spin-boson model in the RWA
display the second-order QPT? Are some extreme conditions
for model parameters required to realize the second-order
QPT? As we know from literature, the spin-boson Hamilto-
nian with the RWA is usually treated in subspace with fixed
total excitations N . In this way the second-order QPT is abso-
lutely excluded. The constrained condition for the given sub-
space should be relaxed to detect more physical phenomena.

In the sub-Ohmic spin-boson model without the RWA, the
second-order QPT from the delocalized phase, where spin has
equal probability in the two states, to the localized phase, in
which spin prefers to stay in one of the two states, has been
studied extensively [17–23]. Many advanced numerical ap-
proaches in quantum many-particle physics have been applied
and extended to this model, such as the numerical renormal-
ization group [17], quantum Monte Carlo simulations [18],
sparse polynomial space approach [19], exact diagonalization
in terms of shift bosons [20], and various matrix product state
approaches [21,22]. Some analytical approaches based on the
polaronic unitary transformation, also known as the Silbey-
Harris ansatz [24], have been also developed for this model
[25–33]. The single-coherent-state ansatz [24] was improved
by simply adding other coherent states on an equal footing
[29] and by superpositions of two degenerate single coherent
states [28], which are generally termed as the multi-coherent-
state (MCS) ansatz. Actually, the MCS in the single-mode
model was proposed much earlier by Ren and Chen [34].

In this paper, we will extend the variational matrix product
state (VMPS) approach [21] to study the spin-boson model
in the RWA for all values of the bath exponents. The MCS
variational approach and exact diagonalization within trun-
cated Hilbert space are also employed to provide independent
checks in different regimes. The paper is organized as follows.
In Sec. II, we briefly introduce the generalized spin-boson
model. Some methodologies including the VMPS, the MCS
variational approaches, and exact diagonalization in truncated
Hilbert space are described. The rich phase transitions re-
vealed by the VMPS method are presented in Sec. III, where
the MCS variational approaches and the exact diagonalization
are also applied to provide further evidence. The quantum
criticality based on VMPS studies is also analyzed. Finally,
conclusions are drawn in Sec. IV.

II. GENERALIZED MODEL HAMILTONIAN AND
METHODOLOGIES

Based on Hamiltonian (1), the generalized spin-boson
Hamiltonian can be written as (h̄ = 1)

ˆHSB = �

2
σz + ε

2
σx +

∑
k

ωka†
kak + 1 + λ

2

∑
k

gk (a†
kσ−

+ akσ+) + 1 − λ

2

∑
k

gk (akσ− + a†
kσ+), (4)

where ε is the energy bias applied in a two-level system (ε = 0
except special statements) and 1+λ

2 and 1−λ
2 are the weights

of the rotating-wave and counterrotating terms, respectively.
In this sense λ is the anisotropy constant of this model. Ob-
viously, λ = 1 (λ = 0) corresponds to the spin-boson model
with (without) RWA.

For later use, Hamiltonian (4) can be rewritten as

Ĥ = �

2
σz + ε

2
σx +

∑
k

ωka†
kak + 1

2

∑
k

gk (a†
k + ak )σx

+λ

2

∑
k

gk (ak − a†
k )iσy. (5)

In the following, three methods are introduced to study this
generalized model.

A. VMPS approach

As is well known, the VMPS approach works efficiently in
one-dimensional chain models [35,36]. To apply VMPS in the
spin-boson model, we therefore transform the model into a 1D
chain model. We first perform the logarithmic discretization of
the spectral density of the continuum bath [17] with discretiza-
tion parameter  > 1; then, by using orthogonal polynomials
b†

n = ∑
k Unka†

k (bn = ∑
k Unkak) as described in Ref. [37], the

spin-boson models can be mapped into the representation of
a one-dimensional semi-infinite chain with nearest-neighbor
interaction [38]. Thus, Hamiltonian (5) can be written as

Hchain = �

2
σz + ε

2
σx + c0

2
(b0 + b†

0)σx + λ
c0

2
(b0 − b†

0)iσy

+
L−2∑
n=0

[εnb†
nbn + tn(b†

nbn+1 + b†
n+1bn)], (6)

where b†
n(bn) is the creation (annihilation) operator for a new

set of boson modes in a transformed representation with εn

describing frequency on chain site n, tn describing the nearest-
neighbor hopping parameter, and c0 describing the effective
coupling strength between the spin and the new effective bath.
All of the parameters mentioned above, such as tn, εn, and c0,
are determined by the logarithmic discretization parameter ,
the cutoff frequency ωc, and a specific form of the spectral
density, which are expressed below:

c0 =
√∫ ωc

0

J (ω)

π
dω,

εn = ξs(An + Cn),

tn = −ξs

(
Nn+1

Nn

)
An,

where

ξs = s + 1

s + 2

1 − −(s+2)

1 − −(s+1)
ωc,

An = − j (1 − −( j+1+s) )2

(1 − −(2 j+1+s) )(1 − −(2 j+2+s) )
,

Cn = −( j+s) (1 − − j )2

(1 − −(2 j+s) )(1 − −(2 j+1+s) )
,

N2
n = −n(1+s)(−1 : −1)2

n

(−(s+1) : −1)2
n(1 − −(2n+1+s) )

,
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with

(a : q)n = (1 − a)(1 − aq) . . . (1 − aqn−1).

For details, one may refer to Ref. [37].
We now briefly introduce the VMPS approach [35,39,40].

For the transformed spin-boson model of a 1D chain with L
sites, the ground-state wave function of Hamiltonian (6) can
be depicted as

|ψ〉 =
dn∑

{Nn}=1

M[N1] . . . M[NL]|N1, . . . , NL〉, (7)

where Nn is the physical dimension of each site n with
truncation dn and Dn is the bond dimension for matrix M
with the open boundary condition, bounding the maximal
entanglement in each subspace. M on each site is optimized
through sweeping the 1D chain iteratively, where accuracy
of numerical results is determined by values of dn and Dn .
In order to deal with the spin-boson model near the quantum
critical region effectively, we apply an optimized boson basis
through an additional isometric map with dopt � dn like in
Refs. [21,38]. In this way, we can effectively reduce the local
boson basis and improve the maximum boson number in the
quantum critical region.

We have recovered all the results in Ref. [21] and con-
firmed the classical mean-field behavior for s < 1/2 of the
sub-Ohmic spin-boson model. In the present paper, we will
extend it to study the RWA spin-boson model, mainly fo-
cusing on phase transitions in the sub-Ohmic baths, namely,
λ = 1, 0 < s < 1. For the data presented below, we typi-
cally choose the model parameters as � = 0.1, ωc = 1, and
ε = 0, if there are no special statements. Some parameters
of orthogonal polynomial transformation and VMPS are the
same as those in Ref. [21], e.g., the logarithmic discretization
parameter  = 2, the length of the semi-infinite chain L =
50, and optimized truncation numbers dopt = 12. In addition,
we adjust the bond dimension to achieve better convergence
of the results. In this paper, we choose Dmax = 20 and 40
for s = 0.3 and 0.7, respectively, which is sufficient to ob-
tain the converged results, as demonstrated in Appendix in
detail.

B. Exact diagonalization in truncated Hilbert space

It is well known that the spin-boson model with the
RWA possesses U (1) symmetry, and the total excitation
number N̂ is conserved because [N̂, H] = 0. It has been
reported in Ref. [41] that the total excitation number N in
the ground state of the RWA spin-boson model jumps from
0 to 1 at a critical coupling strength. This instability can be
also called the first-order phase transition, because the first
derivative of the ground-state energy is discontinuous. Due
to the possible sequence of instabilities with the coupling
strength, we can truncate the Hilbert space up to a finite N
excitation number. To this end, we first separate the Hilbert
space into several subspaces with different excitation numbers
l = 0, 1, 2, . . . , N . The wave function in l subspace |ψl〉
can be written explicitly with l excitations. E.g., the wave
functions for l = 0, 1, 2, and 3 subspace are listed in the

following:

|ψ0〉 = |0〉|↓〉,
|ψ1〉 = c|0〉|↑〉 +

∑
k

dkak
†|0〉|↓〉,

|ψ2〉 =
∑

k

ekak
†|0〉|↑〉 +

∑
kk′

fkk′ak
†ak′ †|0〉|↓〉,

|ψ3〉 =
∑
kk′

pkk′ak
†ak′ †|0〉|↑〉

+
∑
kk′k′′

qkk′k′′ak
†ak′ †ak′′ †|0〉|↓〉.

Then the wave function in the truncated Hilbert space up to N
excitations can be expressed as

|ψ〉�N =
N∑

l=0

|ψl〉. (8)

For N = 0, |ψ〉�0 = |0〉| ↓〉, the ground-state energy is E0 =
−�

2 . However, it is very difficult to obtain the analytical solu-
tion for |ψ〉�N up to N > 0 excitations, and numerically exact
diagonalizations are then required to obtain the converged
lowest energy. This approach is called NED below.

C. MCS ansatz

We also apply the MCS ansatz [29,30,34] to the spin-
boson model in the RWA. To facilitate the variational study
and visualize the symmetry breaking explicitly, we rotate the
Hamiltonian (5) around the y axis by an angle π/2 with ε = 0,
which gives

HT = −�

2
σx +

∑
k

ωka†
kak + 1

2

∑
k

gk (a†
k + ak )σz

+ λ

2

∑
k

gk (ak − a†
k )iσy. (9)

The trial state |ψT 〉 is written in the basis of the spin-up state
|↑〉 and spin-down state |↓〉:

|ψT 〉 =
(∑Nc

n=1 An exp
[∑L

k=1 fn,k (a†
k − ak )

]|0〉∑Nc
n=1 Bn exp

[ ∑L
k=1 hn,k (a†

k − ak )
]|0〉

)
, (10)

where An (Bn) are related to the occupation probabilities of
the spin-up (spin-down) state in the nth coherent state; Nc and
L are numbers of coherent states and total bosonic modes,
respectively; and fn,k (hn,k) represents bosonic displacement
of the nth coherent state and kth bosonic mode. The sym-
metric MCS ansatz (An = Bn and fn,k = −gn,k) can only be
applied to the delocalized phase, so one can easily detect the
symmetry breaking.

The energy expectation value can be calculated as follows:

E = 〈ψT |HT |ψT 〉
〈ψT |ψT 〉 , (11)
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where

〈ψT |HT |ψT 〉 =
∑
m,n

(AmAnFm,nαm,n

+ BmBnGm,nβm,n − γmn�m,nAmBn),

〈ψT |ψT 〉 =
∑
m,n

(AmAnFm,n + BmBnGm,n),

with

Fm,n = exp

[
−1

2

∑
k

( fm,k − fn,k )2

]
,

Gm,n = exp

[
−1

2

∑
k

(hm,k − hn,k )2

]
,

�m,n = exp

[
−1

2

∑
k

( fm,k − hn,k )2

]
,

αm,n =
∑

k

[
ωk fm,k fn,k + gk

2
( fm,k + fn,k )

]
,

βm,n =
∑

k

[
ωkhm,khn,k − gk

2
(hm,k + hn,k )

]
,

γm,n =
[
� + λ

∑
k

gk
(

fm,k − hn,k
)]

.

Minimizing the energy expectation value with respect
to variational parameters gives the following self-consistent
equations:

∂E

∂An
= ∂E

∂Bn
= ∂E

∂ fi j
= ∂E

∂hi j
= 0,

which lead to∑
n

[2AnFi,n(αi,n − E ) − �i,nBnγi,n] = 0, (12)

∑
n

[2BnGi,n(βi,n − E ) − �n,iAnγn,i] = 0, (13)

∑
n

{−�i,nBn(hn, jγi,n + λg j )

+ AnFi,n[2(αi,n + ω j − E ) fn, j + g j]} = 0, (14)∑
n

{−�n,iAn( fn, jγn,i − λg j )

+ BnGi,n[2(βi,n + ω j − E )hn, j − g j]} = 0. (15)

In practice, these parameters can be obtained by solving
the coupled equations self-consistently, which in turn give the
ground-state energy and wave function. The ground state with
zero excitation |0〉|↓〉 to Hamiltonian (5) can be contained
in the MCS wave function to Hamiltonian (9) by setting the
constrained coefficients: An = Bn and fn,k = hn,k = 0 for all
n. However, the state with nonzero total excitations cannot
be included in the MCS ansatz due to the finite number
of coherent states. It has been demonstrated that this wave
function can describe the localized phase of the spin-boson
model [32]. The number of the coherent states in the practical
calculations in this paper is Nc = 6, which is sufficient to
judge the existence of the second-order QPT.

0 0.02 0.04 0.06 0.08 0.1
0

0.2

0.4

0.6

0.8

1

VMPS
3ED

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8|<
x>

|

(b): s=0.7

(a): s=0.3

FIG. 1. Magnetization |〈σx〉| as a function of α in the ground state
for (a) s = 0.3 and (b) s = 0.7. Black lines with circles denote the
VMPS results and the red dashed lines denote the N = 3ED ones.
λ = 1, � = 0.1, ωc = 1, ε = 0,  = 2, L = 50, dopt = 12, and D =
20 and 40 for s = 0.3 and 0.7, respectively.

For the three approaches described above, discretization
of the energy spectrum of the continuum bath should be
performed at the very beginning in the practical calculations.
The same logarithmic discretization is taken for different
approaches if comparison is made in the data presented below.

III. RESULTS AND DISCUSSIONS

We first describe our main results by VMPS method to
the sub-Ohmic (0 < s < 1) spin-boson model with the RWA
described by Eq. (5) for λ = 1. We observe a second-order
QPT in the spin-boson model under RWA, which was unno-
ticed in literature to the best of our knowledge. This surpris-
ing observation is further confirmed by the MCS variational
approach. The symmetry breaking was unambiguously found
above the critical point in this wave-function based approach.
The NED results are also given, which should be exact at weak
coupling and can be regarded as a benchmark in this regime.
Besides the second-order QPT, we also find a few first-order
QPTs before the critical point of the second-order QPT for
large bath exponent s. As s decreases, the first-order QPTs
disappear successively, but the second-order phase transition
remains robust no matter how small s is. We will discuss those
phenomena based on various numerical calculations in the
following subsections.

A. Magnetization |〈σx〉|
In terms of Hamiltonian (5), magnetization |〈σx〉| can be

regarded as the order parameter in this model. In the second-
order phase transition, due to the symmetry breaking, the
order parameter changes from zero to nonzero at the critical
points. In Fig. 1 we present the VMPS results for |〈σx〉| as a
function of the coupling strength α for the spin-boson model
in the RWA (i.e., λ = 1) for two typical values of s = 0.3
and 0.7. Surprisingly, magnetization changes abruptly from
zero to nonzero for both cases. The critical points of the
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(c): s=0.3
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(b): s=0.7

(d): s=0.7

FIG. 2. Magnetization |〈σz〉| and the ground-state energy dif-
ference (lower panel) by the VMPS and N = 3ED for s = 0.3
(left panel) and 0.7 (right panel). λ = 1, � = 0.1, ωc = 1, ε = 0,
 = 2, L = 50, dopt = 12, and D = 20 and 40 for s = 0.3 and 0.7,
respectively. The inset in the right-upper panel shows the enlarged
view of the same plot where the kink is clearly visible.

second-order QPTs are αc = 0.016 and 0.685 for s =
0.3 and 0.7, respectively.

However, the NED within excitation numbers up to N
shows that the order parameter |〈σx〉| remains zero for all
coupling strengths. Note that the VMPS has provided con-
vincing results for the full spin-boson model [21]. NED
cannot yield consistent results with the VMPS ones, because
the total excitation number may not conserve with α due to
the unexpected symmetry breaking.

In the finite-size Dicke model with the RWA [42,43], the
system usually undergoes the first-order phase transition, i.e.,
sequence of instabilities, among the phases within different
conserved excitation numbers as the coupling strength in-
creases. In the limit �/ω → ∞, the second-order quantum
phase transitions have been observed in the quantum Rabi
model with the RWA [15]. It has been also reported that the
Dicke model under the RWA displays a second-order QPT in
the thermodynamic limit [11]. Contrary to the quantum Rabi
(Dicke) model in the RWA, the spin-boson model under the
RWA could undergo the second-order QPT even for a finite
value of �/ω ( one qubit).

B. Magnetization |〈σz〉| and the ground-state energy

In the original spin-boson Hamiltonian, σz describes a
tunneling two-level system [25,26]. The magnetization along
the z direction |〈σz〉|, simply the order parameter along the
z direction, is the renormalized factor of the tunneling am-
plitude �. In this subsection, we examine the magnetization
along the z direction as well as the ground-state energy by
both VMPS and 3ED, which are exhibited in Fig. 2.

Obviously, two observables begin to deviate only after
the critical point αc. Especially we find that the ground-state
energies by the VMPS become lower than those by 3ED
after the critical points, indicating again the invalidity of ED
method at strong coupling. Practically, we cannot perform
ED with a very large total excitation number due to the
huge Hilbert space. In this paper, our exact diagonalization

0 0.025 0.05 0.075 0.1
-1

0

1

<
>

VMPS
3ED

0 0.25 0.5 0.75 1
-1

0

1

<
>

0 0.025 0.05 0.075 0.1
0

1

2

3

4

<
N

>

0 0.25 0.5 0.75 1
0

1

2

3

4

<
N

>

(a): s=0.3

(d): s=0.7(c): s=0.3

(b): s=0.7

FIG. 3. Parity (upper panel) and total excitations (lower panel) in
the ground state by the three-excitation NED and the present VMPS
for s = 0.3 and 0.7. λ = 1, � = 0.1, ωc = 1, ε = 0,  = 2, L = 50,
dopt = 12, and D = 20 and 40 for s = 0.3 and 0.7, respectively.

is only performed up to N = 3. Of course, if one can really
perform true exact diagonalization without the limitation of
total excitation numbers, the true ground state could be also
correctly described in the ED method.

It is interesting to note from Figs. 1 and 2 that |〈σx〉|
and |〈σz〉| exhibit different behaviors with the increase of the
coupling strength. We will discuss this issue based on parity
symmetry breaking and total excitation numbers in the next
subsection.

C. Parity symmetry breaking

As stated before, the spin-boson model with (without)
the RWA possesses a U (1) (Z2) symmetry. U (1) is a higher
symmetry than Z2, so in the RWA spin-boson model the
system also has Z2 symmetry, i.e., parity symmetry, like in the
full spin-boson model. In this section, we study the behavior
of the expectation value of the parity 
̂ = exp (iπ N̂ ).

The finite order parameter above the critical points ob-
tained by VMPS in the previous subsection displays sponta-
neous symmetry breaking, while parity is generally just the
criterion to determine whether symmetry is broken. The upper
panel in Fig. 3 gives the expectation value of parity 〈
̂〉 ob-
tained by both methods for s = 0.3 and 0.7. Before the critical
points αc, both methods yield the same results for the parity. It
is interesting to find that in this regime the value of parity for
all values of s < 1 is either 1 or −1, which corresponds to even
or odd parity, respectively. It follows that the symmetry is not
broken in this regime. Nevertheless, the average parity 〈
̂〉
becomes zero due to quantum fluctuations above the critical
points. It is not the eigenstate of the parity operator, indicating
spontaneous parity symmetry breaking. Note also that the
parity jumps for a few times before the critical coupling for
s = 0.7, and remains unchanged for s = 0.3.

We also present the average value of the total excitation
number 〈N̂〉 in the ground state as a function of the coupling
strength α in the lower panel of Fig. 3. Below the critical
points, both approaches give the same 〈N̂〉, which jumps
between different plateaus with different integers, just like
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FIG. 4. (a) The order parameter |〈σx〉|. (b) The total excitation
number 〈N〉 as a function of the coupling strength within VMPS,
3ED, and MCS variational approaches. (c) The difference between
the VMPS (MCS) ground-state energy and that by 3ED. s = 0.3, λ =
1, � = 0.1, ωc = 1, ε = 0,  = 2, L = 20, dopt = 12, D = 20, Nc = 6.

in the JC model [15]. For s = 0.3, 〈N̂〉 = 0 remains until
the second-order critical point αc, while, for s = 0.7, 〈N̂〉
increases from 0 to 2 one by one before αc. It follows that
the lowest energies in different coupling regimes belong to
the energy levels in different 〈N̂〉 subspaces, leading to level
crossing at some coupling strengths. Thus the first deriva-
tive of the ground-state energy with respect to the coupling
strength must be discontinuous at these coupling strengths,
so instability of 〈N̂〉 before αc just corresponds to the first-
order phase transitions. In addition, the jump of 〈N̂〉 can also
account for the back and forth of the parity between 1 and −1.

One can also note that the total excitation number 〈N̂〉 by
VMPS increases abruptly at the critical coupling αc. The NED
approach can only describe the phase with excitation number
less than or equal to N . The total excitation number is not
limited in VMPS, so it in principle can describe all phases.
The total excitation numbers are not conserved in the ground
state above αc, because of the symmetry breaking. At the
critical points, 〈N̂〉 does not jump to a plateau with the finite
larger integer, different from the first-order phase transitions.

The instability of total excitation number 〈N̂〉 at the phase
transitions can account for the rich behavior of |〈σz〉| here.
For any value of s, in the weak-coupling regime, the corre-
sponding ground state is the spin-down state with photonic
vacuum for 〈N̂〉 = 0, i.e., | ↓〉|0〉, thus 〈σz〉 = −1, as just
demonstrated in the upper panel of Fig. 2 for s = 0.3 and 0.7.
Once 〈N̂〉 
= 0 at the first phase transition, no matter whether
it is of the first or the second order, the spin state in the ground
state consists of both spin-up and spin-down states, which
is drastically different from the spin state only including the

spin-down state at 〈N̂〉 = 0, leading to the jump of |〈σz〉| and
|〈σz〉| 
= 1, as exhibited in Fig. 2. At the later phase transitions
between two finite 〈N̂〉 
= 0, the ground states do not change
drastically because both have spin-up and spin-down states,
therefore |〈σz〉| will exhibit kinks, as shown in Fig. 2 for
s = 0.7. The drop of |〈σz〉| to zero is an artifact due to the plot
using magnetization, which is the absolute value of 〈σz〉 in our
paper. In the weak-coupling limit, 〈σz〉 is actually −1 as stated
above. In the strong-coupling limit, we always find 〈σz〉 > 0 in
the ground state, so in between 〈σz〉 must cross zero, resulting
in the drop of |〈σz〉| to zero at some coupling that is not at
any phase transition point. |〈σx〉| is the order parameter of the
second-order QPT, so it only becomes nonzero for couplings
larger than the critical one.

In short, we find rich phase transitions in the sub-Ohmic
spin-boson model with the RWA. First, the second-order QPT
occurs for any finite model parameters, similar to its counter-
part without the RWA. In both the Rabi model and the Dicke
model with the RWA, the second-order QPTs cannot occur
for finite ratio �/ω or finite qubit number. Second, for larger
bath exponents, e.g., s = 0.7, both the first- and second-order
QPTs occur subsequently with the coupling strength. Several
first-order phase transitions before the critical points indicate
a sequence of instabilities. The first-order phase transition is
absent for small bath exponent s, such as for s = 0.3.

D. Evidence for the second-order QPT
by MCS variational studies

Since this model at s = 0.3 exhibits only one second-
order QPT from the zero excitation ground state, we can
employ the MCS variational approach to provide additional
evidence, because the zero excitation can be realized and the
localized phase can be also described in the trial wave function
(10). In Fig. 4, we list results by MCS, VMPS, and N =
3ED approaches for s = 0.3. The logarithmic discretization
parameter  = 2 and L = 20 bosonic modes are taken for
all three approaches here. Note that the number of bosonic
modes here is smaller than those in other figures due to the
computational difficulties in the MCS approach, but it does
not influence the essential results at all. The MCS approach
is used here to account for the existence of the second-order
QPT qualitatively, not for the precise location of the critical
points.

Before the critical points, the results by all three meth-
ods are the same. Nonzero order parameter |〈σx〉| by MCS
approach appears above the critical points, providing further
convincing evidence of the spontaneous symmetry breaking.
The MCS ground-state energies are lower than those by NED
method after the critical point, indicating that the state with
broken symmetry is more stable. The total excitation number
by MCS method increases suddenly above the critical point,
because of no limitation of total excitation number in the
coherent state. All these findings in the MCS variational study
provide strong evidence of the second-order QPT in the spin-
boson model with RWA. As found recently by Blunden-Codd
et al. [32] that a very accurate wave function can be only
obtained by at least 100 coherent states, by Nc = 6 coherent
states the MCS results for the order parameter and energy still
slightly deviate from those by VMPS above the critical points.
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FIG. 5. The log-log plot of the magnetization |〈σx〉| as a function
of bias ε of the spin-boson model with (right) and without (left)
the RWA for s = 0.3 (upper panel) and s = 0.7 (lower panel).
The numerical results by VMPS are denoted by black circles, and
the power-law fitting curves are denoted by the red dashed lines.
All insets show the corresponding linear plots. � = 0.1, ωc = 1,
 = 2, L = 50, dopt = 12, and D = 20 and 40 for s = 0.3 and 0.7,
respectively.

E. The critical exponent for magnetization

Now we will study the nature of the second-order QPT
in the sub-Ohmic spin-boson model under RWA. The most
important question is whether the RWA changes the uni-
versality of the second-order QPT. The field relevant order-
parameter critical exponent δ can be determined through the
displayed power-law behavior 〈σx〉 ∝ ε1/δ at the critical cou-
pling strength α = αc. Previously, various critical exponents
in the full spin-boson model have been calculated with differ-
ent numerical approaches [18–21,26]. It is generally accepted
that the exponent δ takes the mean-field value 1/δ = 1/3 for
s < 1/2, and the nonclassical one 1/δ = (1 − s)/(1 + s) by
the exact hyperscaling for s > 1/2.

We present the magnetization by the VMPS method as a
function of bias ε in a log-log plot for both λ = 1 (RWA) and
λ = 0 (non-RWA) in Fig. 5. A very nice power-law behavior
over three decades is demonstrated in all cases. The results for
the full model are nearly the same as those in Ref. [21]. It is
interesting to find that 1/δ is around 1/3 for s < 1/2 for both
RWA and non-RWA cases. Very surprisingly, even for s = 0.7
in the RWA model, 1/δ is still close to that in the full model
within the statistical errors, also indicating hyperscaling. Our
results suggest that counterrotating terms would have no effect
on critical exponent δ in the spin-boson model.

F. Extensions to the Ohmic bath

Now we turn to the Ohmic spin-boson model under the
RWA. By both VMPS and 3ED methods, the above observ-
ables are also calculated. In Fig. 6, we collect magnetization
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FIG. 6. (a) The magnetization |〈σz〉|, (b) parity 〈
̂〉, and (c) total
excitation number 〈N〉 as a function of the coupling strength within
VMPS and 3ED approaches for the Ohmic bath. s = 1, λ = 1, � =
0.1, ωc = 1, ε = 0,  = 2, L = 50, dopt = 12, and D = 20.

〈σz〉, parity 〈
̂〉, and total excitations 〈N〉 as a function of
the coupling strength α in the range (0,2). During this wide
regime, one can find that the model undergoes a few first-order
QPTs with the increment 1 of the total excitation number.
The two approaches almost give the same results. It follows
that in the Ohmic bath the 3ED approach is suited to the
wide coupling regime where no second-order QPT occurs.
This result is obviously different from that in Ref. [41], where
only N = 1, i.e., single excitation, is considered. We have also
studied the super-Ohmic bath s = 3/2 and find that there is
only one first-order QPT in the regime α = [0, 2] (not shown
here).

IV. CONCLUSION

In this paper, we study the spin-boson model in the RWA
by the VMPS method, the MCS variational ansatz, and exact
diagonalizations within the truncated Hilbert space. Surpris-
ingly, we find the second-order QPT in the RWA model for
any bath exponent s < 1. A rich picture for the quantum phase
transitions is observed. Besides the second-order phase tran-
sition, the first-order phase transition also appears in the same
model, which could only vanish for small bath exponents.
The coexistence of both first- and second-order QPTs in the
same model has never been observed in other spin-boson-like
models, such as the quantum Rabi and Dicke models in the
RWA.

Within the statistical error, for all values of the bath ex-
ponents s < 1, the critical exponent δ is found to be nearly
the same as those in the full model. It is then suggested
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FIG. 7. The plot of the magnetization |〈σx〉| as a function of
coupling strength α with bond dimension (a) D = 12, 20, 30 for
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that the counterrotating terms would have almost no effect
on critical exponent δ in the critical regime. The analytical
argument about the quantum-to-classical mapping [44–46] in
the spin-boson model in the RWA would be helpful to account
for this robust nature uniquely from the rotating-wave terms.
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APPENDIX: CONVERGENCE OF RESULTS BY THE
VARIATIONAL MATRIX PRODUCT STATE APPROACH

We provide evidence for the full convergence of our VMPS
results here.

The most important point of our paper is whether the
second-order QPT occurs in the spin-boson model in the
RWA. To demonstrate this point convincingly, we have
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checked the magnetization as a function of the coupling
strength with increasing bond dimension (D). The results
are shown in Fig. 7. One can see that the magnetization is
converged even for the smallest one, D = 12, indicating that
the second-order QPT in our model is reliable.

The field relevant order-parameter critical exponent δ

should be determined precisely to study the universality class
of the second-order QPT in this model. In doing so, we should
check its convergence for the VMPS parameters carefully.
Figures 8 and 9 exhibit nice power-law curves with the
same fitting exponent for the selected bond dimension (D),
optimized physical dimension (d), and discrete logarithm ()
for the same values of the bath exponent s. It is clearly
demonstrated that we have obtained a convincing critical
exponent of the second-order QPT in this paper.

Finally we turn to the convergence of the entanglement as
a function of the inverse of the bond dimension 1/D. In the
spin-boson model, the entanglement entropy can be rewritten
as [26]

E = −P+ log2 P+ − P− log2 P− (A1)
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FIG. 10. The plot of the entanglement entropy as a function of
1/D (D is bond dimension) with the fixed coupling strength α =
0.1 and 1 for s = 0.3 and 0.7, respectively. Other parameters: λ = 1,
� = 0.1, ωc = 1, ε = 0,  = 2, L = 50, dopt = 12.
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where P± = (1 ±
√

〈σx〉2 + 〈σy〉2 + 〈σz〉2 )/2, which
describes the correlation between the spin and the bosonic
bath.

In Fig. 10, we plot the entanglement entropy as a function
of 1/D for s = 0.3 (upper) and s = 0.7 (lower) at fixed
coupling strength. It is clearly shown that the entropy saturates

even before D = 20 for both cases, providing further strong
evidence for the convergence of our results for D � 20, i.e.,
the value selected in our calculation. Thus, we believe that our
algorithm has converged to the global minimum, the ground
state is the correct one, and the results given here should be
reliable.
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