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Coexistence of giant Cooper pairs with a bosonic condensate and anomalous behavior of energy
gaps in the BCS-BEC crossover of a two-band superfluid Fermi gas
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We investigate the Bardeen-Cooper-Schrieffer–Bose-Einstein condensation crossover in a two-band superfluid
Fermi gas with an energy shift between the bands. When the intraband coupling in the cold (first) band is fixed
as weak, we find that in the case of vanishing pair-exchange interband coupling and in the strong-coupling
limit of the hot (second) band the system undergoes a transition to a single-component configuration with a
full suppression of the first energy gap and a full redistribution of particles between bands. For nonvanishing
pair-exchange interband coupling we reveal a nonmonotonic dependence of the energy gap in the first band vs
intraband coupling in the second band, with the presence of a hump. In the case of weak interband coupling, the
system shows a significant amplification of the intrapair correlation length of the condensate in the first band in
the strong-coupling regime of the second band, which clearly indicates the coexistence of giant Cooper pairs and
a bosonic condensate even for nonzero temperatures. This can lead to a nonmonotonic temperature dependence of
the second energy gap with a peak. The here predicted coexistence of giant Cooper pairs and bosonic molecules
can be verified by means of the visualization of vortex cores in two-component atomic condensates as well as in
some iron-based superconductors.
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I. INTRODUCTION

A model of two-band superfluidity has been considered for
a long time solely as the next iteration step to the Bardeen-
Cooper-Schrieffer (BCS) theory of superconducting state to
take into account the anisotropic properties of metals and
the effect of overlapping of the energy bands in the vicinity
of their Fermi surface, which leads to the appearance of
interband quantum electron transitions and, as a result, to
an additional indirect interaction between the electrons of
each band [1,2]. The explosive growth in the study of multi-
band superconductivity began from the discovery of uncon-
ventional superconductivity with a complex structure of the
superconducting order parameter (cuprates, heavy-fermion
compounds, borocarbides, fullerides, strontium ruthenate, or-
ganic superconductors, iron pnictides, and chalcogenides).
The complex structure of the order parameter gives rise to a
much richer nomenclature of topological objects and effects
in unconventional superconductors in comparison with their
conventional counterparts. These superconducting systems
can lead to the formation of a variety of quantum phenom-
ena: states that break time-reversal symmetry (BTRS), new
collective modes, phase domains, vortices with fractional flux,
fractional Josephson effect [3–6], and shape resonance in the
superconducting properties [7,8].

Another intriguing aspect is that compounds with un-
conventional superconductivity can demonstrate anomalous
normal-state properties above their critical temperature, which
are interpreted as the pseudogap state. The existence of a

pseudogap state has been first argued in the context of the
crossover from BCS superconductivity to Bose-Einstein con-
densation (BEC) in the ground state and at finite temper-
ature [9,10] for underdoped high-Tc cuprate superconduc-
tors [11–13]. In these compounds, pseudogap formation and
non-Fermi-liquid behavior are well established, and unusual
superconducting fluctuations have also been detected above
the critical temperature. However, the pseudogap state appears
at a much higher temperature than the onset temperature
of superconducting fluctuations. At this moment, it is still
a debated question whether the system is deep inside the
crossover regime and to what extent the crossover physics
can be relevant to the phase diagram of underdoped cuprate
superconductors.

A magnesium diboride superconductor [14,15] and the re-
cently discovered family of iron-based superconductors with
the multiband electron structure and multiple energy gaps
offer a new platform for the experimental observation of
the BCS-BEC crossover, providing an opportunity to study
new problems about crossover, fluctuation phenomena, and
pseudogap in multicomponent systems, which go beyond the
single-band physics [16]. For instance, BaFe2(As1−xPx)2 may
approach the BCS-BEC crossover regime near a quantum
critical point [17,18]. Another candidate is iron chalcogenide
Fe1+ySexTe1−x, in which the Fermi energy of FeSe is ex-
tremely small and can be tuned by chemically doping through
the BCS-BEC crossover [19–22]. It was found experimen-
tally that the dimensionless measure of the pairing strength,
i.e., the ratio between the energy gap and the Fermi energy
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�/EF = 0.16, 0.3, and 0.5, increases monotonically with
decreasing of the iron excess y, exhibiting a crossover from the
BCS to the BEC regime [23]. The investigation of the vortex
core by means of scanning tunneling microscopy (STM)
shows the presence of Friedel-type oscillations, confirming
the BCS-BEC crossover nature of FeSe and a peculiar missing
of the pseudogap [24].

Despite that for most of multiband superconducting sys-
tems the tuning of pair-exchange interband or intraband inter-
actions is rather challenging and their properties can not be
studied easily away from the BCS regime. Strongly interact-
ing superfluid systems can be replicated experimentally with
ultracold atomic Fermi gases in optical lattices or in single
traps confining clouds of fermionic atoms with several hyper-
fine states [25–27]. In such systems the interaction strength
is adjusted by means of Fano-Feshbach resonances which
allow the evolution of superfluidity throughout the BCS-BEC
crossover. The newly realized orbital Feshbach resonance in a
173Yb Fermi gas promises a new way for studying two-band
Fermi system with Josephson-type pair-exchange interaction
between bands, enabling the tuning of interorbital interactions
based on the Zeeman shift of different nuclear spin states of
the atoms [28–30]. The many-body Hamiltonian governing
the physical properties of alkaline-earth-metal Fermi gases
across an orbital Feshbach resonance is similar to that of two-
band s-wave superconductors, and the description of the BCS-
BEC crossover in these systems requires two components of
the order parameter, in contrast to a Fermi gas with a single
orbital near a broad magnetic Feshbach resonance. Thus,
experimental activity in this direction raises fundamentally
new problems about the BCS-BEC crossover in multiband
superfluids and calls for the theoretical predictions of possible
unusual effects [31–40]. At this moment, the evolution of
low-energy collective excitations from BCS to BEC coupling
regime in two-band s-wave superfluids coupled via an inter-
band Josephson interaction at T = 0 has been studied [31].
Later within a mean field theory generalized to the case
of two bands, the characteristics of two-band superfluidity
throughout the BCS-BEC crossover were analyzed and results
have been reported only for coincident bands [32]. Further-
more, based on the extension of the Nozières-Schmitt-Rink
approach [9] for two bands, a strong enhancement of the
critical temperature, a significant reduction of the preformed
pair region where pseudogap effects are expected, and the
entanglement of two kinds of composite bosons in the strong-
coupling BEC regime were predicted for a two-band attractive
Fermi system in the normal state with a shallow band coupled
to a weakly interacting deeper band [40].

In this paper, using a mean field theory for a two-band su-
perfluid with gap equations coupled to the density equation we
show that a two-band superfluid Fermi gas with energy shift
between the bands reveals unique features of the BCS-BEC
crossover, which are not realized in the single-band system.
The paper is organized as follows. In Sec. II, we present
the model and the main equations of a mean field approach
for the description of the BCS-BEC crossover in a two-band
system. In Sec. III, we provide the results of our numerical
calculations for the energy gaps, chemical potential, particle
densities, and the intrapair correlation lengths and discuss
unique features of the BCS-BEC crossover, in particular, the

FIG. 1. The band structure of the two-band superfluid Fermi
gas under consideration (kz = 0 projection). Eg is the energy shift
between the first (i = 1) and the second (i = 2) band. EFi corresponds
to the Fermi energy of i band in the absence of interactions.

coexistence of giant Cooper pairs and bosonic condensate in
the strong-coupling regime. We summarize our conclusions
in Sec. IV. Two appendices with analytical calculations and
technical details are reported at the end of the paper.

II. MODEL AND BASIC EQUATIONS

We consider a two-band system of interacting fermions in
three dimensions (3D), where the two fermionic bands have a
parabolic dispersion law

ξi(k) = |k|2
2m

− μ + εi, (1)

where k is the wave vector, m the effective mass which is
assumed equal for both bands, μ the chemical potential, and
εi the energy of the bottom of the bands. The index i = 1, 2
numerates the bands, where i = 1 denotes the lower band and
i = 2 is the upper band. We set ε1 = 0 and ε2 = Eg where the
value Eg defines the energy shift between the two bands of the
system (Fig. 1).

The effective interaction between fermions is approxi-
mated by a separable potential

Vi j (k, k′) = −Ui j�(k0 − |k|)�(k0 − |k′|), (2)

where Ui j are the strength of intraband (when i = j) and
pair-exchange interband (when i �= j) interactions, k0 is the
cutoff momentum, which is supposed to be the same for
intraband and interband terms, and �(x) is the Heaviside
function. The sign of U12 determines the symmetry of the
order parameter in the clean case. A repulsive pair-exchange
interband interaction U12 < 0 leads to a ground state with
π -phase difference between the two bands, while attractive
interband interactions U12 > 0 stabilize a ground state with a
zero-phase difference between their gap functions [41].

The ground state of the two-band system is examined
within a mean field theory. We generalize the single-band
approach to the two-band case and write the equations for the
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energy gaps

�i(k) = − 1

�

∑
j

∑
k′

Vi j (k, k′)
� j (k′) tanh Ei (k′ )

2T

2Ei(k′)
. (3)

Here, � is the volume occupied by the system under consid-
eration, Ei(k′) =

√
ξ 2

j (k′) + �2
j (k

′) are excitation branches
in the superfluid state, and the gaps have the same cutoff
generated by the separable interaction

�i(k) = �i�(k0 − |k|). (4)

The coupled equations for the energy gaps must be supple-
mented with the equation for the total particle density of the
system, as the renormalization of the chemical potential is a
key feature of the BCS-BEC crossover. We consider the total
density of particles of the two-band system in the form of an
additive contribution from each band

n = n1 + n2, (5)

where ni is the particle density in each band

ni = 2

�

∑
k

[
v2

i (k) f (−Ei(k)) + u2
i (k) f (Ei(k))

]
, (6)

where f (z) is the Fermi-Dirac distribution function and the
weights vi(k) and ui(k) are defined by

v2
i (k) = 1

2

[
1 − ξi(k)

Ei(k)

]
, (7)

u2
i (k) = 1 − v2

i (k). (8)

During the calculations, n will be taken constant

n = n0
1 + n0

2 = k3
F1

3π2 + k3
F2

3π2 = k3
Ft

3π2 , where we have defined the
particle densities n0

i in the absence of interactions and at zero
temperature, as well as the corresponding Fermi momentum
for each band kFi and total Fermi momentum kFt. According
to the model of the two-band system we also assume the
presence of an energy shift between bands Eg = ηEF2, where
EF2 = k2

F2/2m (and we assumed, as in Fig. 1, Eg < EF1, such
that the upper band is partially occupied in the noninteracting
case at zero temperature). This implies the relations between

different Fermi momenta kF1 = [1 − 1

(η+1)
3
2 +1

]
1
3 kFt and

kF2 = [ 1

(η+1)
3
2 +1

]
1
3 kFt. For regularization we use the s-wave

scattering lengths for each band aii defined by the low-energy
limit of the two-body problem in vacuum

m

4πaii
= − 1

Uii
+

k0∑
k

m

k2
, (9)

where the momentum cutoff k0 is much larger than the inverse
of the average distance between particles, namely, k0 � kFt.
We will show that in this way the selection of the momentum
cutoff will not affect the obtained results (see Appendices A
and B). For the sake of simplification we redefine constants

Ui j = Ũi j (
kFt
k0

)
2 EFt

n of the intraband (i = j) and the inter-
band (i �= j) exchange couplings, where EFt = k2

Ft/2m is the

total Fermi energy. From Eq. (9) this yields relations in the
dimensionless form between intraband coupling coefficients
and scattering lengths for each band

Ũii

(
kFt

k0

)2

= 4

3

(
k0

kFt
− π

2kFiaii

kFi

kFt

)−1

. (10)

Substituting Eq. (10) into Eq. (3) and measuring momenta in
units of kFt and energies in units of EFt in Eqs. (3) and (6), we
get the system of dimensionless equations for the energy gaps
and the particle densities that will be solved numerically (see
Appendix A).

Aside from the energy gaps �i and the particle densities
ni, another important characteristic of the pairing regimes
throughout the BCS-BEC crossover in a two-band superfluid
Fermi gas is the intrapair correlation lengths of the Cooper
pairs, which is determined by the expression

ξ 2
pair,i =

∑
k

∣∣∣∇k

(
1−2 f (Ei (k))

Ei (k)

)∣∣∣2

∑
k

(
1−2 f (Ei (k))

Ei (k)

)2 , (11)

obtained from the pair correlation function, evaluated at a
mean field level for zero and finite temperature [42].

Differently from the paper [32] where the ratio of intraband
coupling constants was fixed for the investigation of the BCS-
BEC crossover properties, we study a two-band system with
a fixed value of scattering length for the first band, which cor-
responds to the BCS regime, namely, (kF1a11)−1 = −2, and a
varying scattering length for the second band (kF2a22)−1. The
use of the scattering lengths as physical parameters, which
are kept fixed when the momentum cutoff k0 is varied, avoids
any convergence problem and the dependence of physical
quantities on the momentum cutoff k0 when k0 is sufficiently
large (see Appendix B).

We fix the energy shift between bands Eg = 0.75EF1 =
3EF2, with corresponding relations between the Fermi mo-
menta in each band and the total Fermi momentum: kF1 =
(8/9)1/3kFt and kF2 = (1/9)1/3kFt. This choice of the energy
shift is representative of the situation of most physical in-
terest with 0 < Eg < EF1, in which both bands are partially
occupied in the absence of interactions at zero temperature.
When instead Eg > EF1, the upper band is empty and all
particles reside in the lower band in the absence of interaction.
In particular, in the large energy shift limit Eg � EF1, the
upper band matters only if the intraband interaction in the
second band is made so strong that the energy of the two-body
bound state forming in this band approaches the Fermi level
of the first band. This is actually the physical mechanism of a
Feshbach resonance, with the interband coupling controlling
the width of the resonance. In this limit, the two-band model
thus effectively reduces to the so-called two-channel model,
widely studied in the context of ultracold gases [43–45]: in
this situation the continuum of the second band becomes
irrelevant and only the bound-state (boson) forming from the
second band needs to be considered.
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FIG. 2. (a) Energy gaps �1 (solid lines), �2 (dotted lines), (b) the chemical potential μ, and (c) the chemical potential μ2 = μ − Eg in units
of EF2 at zero temperature as a function of (kF2a22)−1 for different interband couplings Ũ12 = 0 (black line), Ũ12 = 0.5 (green line), Ũ12 = 1
(brown line), Ũ12 = 1.5 (magenta line), Ũ12 = 2 (red line) with the fixed value of the scattering length in the first band (kF1a11)−1 = −2. The
presence of the hump on energy gap �1 dependencies for different interband interaction strengths is shown in the inset. Dashed black line
in (b) and (c) corresponds to the energy shift Eg between bands in units of EFt and EF2, respectively. Dotted black line in (c) is the chemical
potential of a single-band superfluid Fermi gas. Inset in (b) shows the comparison between the chemical potential (solid lines) and half of the
binding energy −Eb/2 (dotted lines) dependencies in the strong-coupling limit.

III. RESULTS AND DISCUSSION

A. Energy gaps, chemical potential, and particle densities

To provide a comprehensive description of the BCS-BEC
crossover properties in a two-band superfluid Fermi gas, first
of all we analyze the evolution of the energy gaps, the chem-
ical potential, and the particle densities at zero temperature
based on the numerical solution of Eqs. (3)–(6). It should be
noted that in principle for T = 0 the system of Eqs. (3)–(6)
can be integrated analytically and after long but straightfor-
ward calculations it is expressed via full elliptic integrals of
the first and the second kinds. These analytical calculations
show that, at least for zero temperature, within our strategy
with fixed scattering lengths there is no dependence on the
cutoff k0 for �i and μ for k0 � kFt. The same statement can
be extended analytically for the case of Tc (see Appendix A).

We found that in a system with vanishing interband inter-
action, the BCS-BEC crossover is characterized by the full
suppression of the first energy gap in the BEC limit and
the presence of a kink on the second gap dependence at
(kF2a22)−1 ≈ 2 [Fig. 2(a)]. The interband coupling smooths
out the kink of the second gap and leads to the activation of
the first gap in the BEC limit. Despite that Fig. 2(a) shows the
almost constant character of �1 dependence for the interval
(kF2a22)−1 ∈ [−3; 3], according to our numerical analysis we
observe a very slow increase of the first gap starting from the
nonzero value of �

(0)
1 ≈ 0.043 in the BCS limit and a very

slow decrease of �1(1/kF2a22) in the BEC limit. Moreover,
the behavior of �1(1/kF2a22) has always a nonmonotonic
dependence, with a very tiny hump in the BCS limit in
the case of vanishing interband interaction. With the further
increasing of the interband coupling, this hump becomes more
pronounced and is shifted to the BEC limit [see inset in
Fig. 2(a)]. Note that for weak interband coupling the energy
gap in the first band is exponentially suppressed when the cold
band is almost depleted. The overall nonmonotonic behavior
of �1 as a function of (kF2a22)−1 indicates a first regime
of weak to intermediate coupling in the hot band in which
�1 increases because of the effective attraction generated by
the interband interaction, which is able to transfer attractive

pairing from the hot to the cold band. On the other hand,
when the coupling in the hot band becomes very strong,
the depletion of the cold band starts to dominate, causing a
decrease in �1 and the presence of the hump in �1 is the result
of this interplay.

The chemical potential of a two-band superfluid Fermi gas
decreases, in turn, slower in comparison with the single-band
counterpart even in the presence of the interband interaction
[Fig. 2(b)]. It is important to note that the single-band case
differs from the two-band one for U12 = 0 because a particle
transfer between the two bands occurs due to the additive
structure of the density equation in Eq. (6).

Based on the two-body Schrödinger equation we calculate
the dependence of the two-body binding energy Eb for dif-
ferent interband couplings [inset in Fig. 2(b)]. One can see
that when U12 increases, Eb also increases, and the chemical
potential of the system tends to the BEC limit −Eb/2.

In Fig. 2(c) we report the behavior of μ2 ≡ μ − Eg nor-
malized to EF2 as a function of (kF2a22)−1 to compare with the
single-band result. For vanishing or weak interband coupling
(Ũ12 < 1), the chemical potential can be larger than for a
single-band case. This indicates Pauli-blocking effects due
to the cold states as already obtained in the vicinity of the
critical temperature by a Nozières-Schmitt-Rink approach in
Ref. [40].

For Ũ12 = Ũ21 = 0 the full suppression of �1 is connected
with the full redistribution of particles between bands (Fig. 3).
Even though the density equation (6) couples two conden-
sates, the first band remains in the BCS regime and until
unitarity the particle distribution among the two bands is not
important for the system. Increasing the interband interaction
favors an equal distribution of particles in the weak-coupling
regime and a retardation of the redistribution process between
bands in the strong-coupling limit.

Until now we have investigated the characteristics of the
BCS-BEC crossover in a two-band fermionic system with
the fixed value (kF1a11)−1 = −2 of intraband coupling in
the first band. To understand full properties of the BCS-
BEC crossover for this system at T = 0, we consider the
behavior of the energy gaps and of the particle densities by
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FIG. 3. Distribution of particle densities in each band n1/n (solid
lines) and n2/n (dotted lines) normalized to the total particle densities
as a function of (kF2a22)−1 for different interband couplings Ũ12 = 0
(black line), Ũ12 = 1 (blue line), Ũ12 = 3 (green line), and Ũ12 = 5
(red line) with (kF1a11)−1 = −2 and at T = 0.

varying (kF1a11)−1. First of all, as we can see from Figs. 4(a)
and 4(b), a weak intraband coupling in the first band and a
strong in the second one, namely, when (kF1a11)−1 < 0 and
(kF2a22)−1 > 2 together with a vanishing interband interaction
transform the two-band system into the single-band one with
the first gap fully suppressed. The single-band scenario is
realized also for (kF1a11)−1 > 0 and for the entire interval
of values (kF2a22)−1 with the full suppression of the second
gap. Increasing the interband interaction extends the region
and broadens the borders, where the two-band configuration
is preserved [Figs. 4(c) and 4(d)].

It is worth noting that a similar transition from single-
condensate to two-condensate superconductivity was revealed
experimentally in the LaAlO3/SrTiO3 interface driven by
electrostatic doping [46]. It was found that in such a
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FIG. 4. Evolution of energy gaps �1 (a), (c) and �2 (b), (d) at
zero temperature vs scattering lengths for fermions in the first and
second bands for different interband couplings: Ũ12 = 0 (a), (b) and
strongly coupled bands Ũ12 = 5 (c), (d).
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FIG. 5. Normalized particle densities in the first (a), (c) and in
the second band (b), (d) as a function of (kF1a11)−1 and (kF2a22)−1

for different values of interband interaction strengths Ũ12 = 0 (a),
(b) and Ũ12 = 5 (c), (d) at T = 0.

heterostructure the superconducting gap in the first band is
suppressed while the second band is populated. Within our
approach, we speculate that these results can be interpreted
as the transition from the BEC to the BCS regime of a
two-band superfluid system close to a Lifshitz transition with
vanishing interband interaction. Even though the heterostruc-
tures LaAlO3/SrTiO3 represent the two-dimensional electron
liquid in the interface, some theoretical models argue the
importance of the three-dimensional bands for the explanation
of 2D superconductivity in these systems [47].

Our results are confirmed also by the evolution of the
particle densities, whereby, as it can be seen from Figs. 5(a)
and 5(b), there is no transfer of particles for vanishing in-
terband interaction for (kF1a11)−1 > 0 with all particles con-
centrated in the deeper band, while in the opposite case for
(kF1a11)−1 < 0 and (kF2a22)−1 > 2 the bands change places:
all particles migrate to the shallow band. Figures 5(c) and 5(d)
show that when the interband coupling increases, the popula-
tions in each band tend to equalize.

B. Intrapair correlation lengths

Another characteristic for the description of the crossover
from Cooper-pair superconductivity to Bose-Einstein conden-
sation of bound pairs of fermions is the intrapair correlation
length that is defined by Eq. (11). For a single-band sys-
tem it was shown earlier that there is a universal material-
independent criterion based on kF ξ to follow the evolution
of the BCS-BEC crossover [48]. Based on Eq. (11) and the
definition from the paper [48], we investigate the intrapair
correlation lengths for each band ξpair1 and ξpair2 as a function
of the scattering length in the second band (kF2a22)−1.

In the case of vanishing interband interaction ξpair2 has
a conventional behavior as in the single-band case, whereas
ξpair1 is almost constant until the unitarity point and under-
goes an essential discontinuity (divergence) at (kF2a22)−1 ≈ 2
[Fig. 6(a)]. The origin of this divergence can be understood
from the definition of ξpair1 after straightforward integra-
tion of Eq. (11). The obtained expression diverges when
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FIG. 6. Intrapair correlation lengths ξpair1 and ξpair2 for the first (solid lines) and the second band (dotted lines) correspondingly at zero
temperature as a function of (kF2a22)−1 for different interband couplings strengths Ũ12 = 0 (a), Ũ12 = 0.01 (b), Ũ12 = 0.1 (c), and Ũ12 = 0.5
(d) in the case (kF1a11)−1 = −2. Dashed black lines in (c) and (d) correspond to kF ξpair = 2π and delimit the BCS-BEC crossover regime [due
to large values of ξpair1 and ξpair2 in panels (a) and (b) we did not plot kF ξpair = 2π ]. Orange dashed lines define the value of the coupling
strength in the second band for which the chemical potential of the system equals to zero [see Fig. 2(b)], namely, (kF2a22)−1 ≈ 1.968 in (a) and
(b), (kF2a22)−1 ≈ 1.965 in (c), and (kF2a22)−1 ≈ 1.903.

the energy gap in the first band �1 = 0 is fully suppressed
[Fig. 2(a)].

By increasing the interband coupling, this divergence is re-
moved. For very weak interaction between bands, a sharp peak
on the dependence of ξpair1 on 1/kF2a22 is obtained [Fig. 6(b)].
Contrary to the expectation that the strong-coupling limit
will suppress gradually the intrapair correlation length in the
first band, we observe a nonmonotonic dependence and a
significant amplification of ξpair1 in the BEC regime. From
the physical point of view, such results point out the for-
mation of giant Cooper pairs in the first band with bosonic
pairs in the second band. This coexistence of BCS and BEC
condensates stems from the weak interband coupling, where
the cold band serves as an almost independent reservoir of
Cooper pairs. Thus, a two-band superfluid system is described
as the continuous transformations from two different BCS
condensates to a system where giant Cooper pairs and bosonic
condensate coexist and then finally to a mixture of two BEC
condensates [Fig. 7(a)]. The crossover in the cold band above
discussed can be also interpreted as a density-induced BCS-
BEC crossover [49], when the density n1 is tuned by the
coupling in the hot band.

For larger values of Ũ12 > 0.063 and for (kF1a11)−1 =
−2, we observe gradually a disappearance of this peak and
the transition to the conventional single-band behavior of

the intrapair correlation length for the first band [Figs. 6(c)
and 6(d)]. The behavior of ξpair2 at the qualitative level main-
tains the same dependence as for the single-band counterpart.
For very strong interband interaction, the dependencies of the
intrapair correlation lengths in each band on (kF2a22)−1 are the
same.

Increasing the intraband coupling in the first band for
a given strength of the interband interaction leads to a re-
duction of the peak. Nevertheless, for very weak interband
coupling, the effect of the amplification of the intrapair cor-
relation length can be preserved even for (kF1a11)−1 = −0.5
[Fig. 7(a)].

Using the criterion of strongly overlapping Cooper pairs
for the single-band system kF ξpair > 2π we can extract in-
teresting feature of the BCS-BEC crossover in a weakly
interacting two-band Fermi gas. In particular, when the value
of (kF1a11)−1 < 0 we have a rich picture of the BCS-BEC
crossover evolution [Fig. 7(a)]. Initially for (kF2a22)−1 	 −1
there is a mixture of two Cooper pairs condensates. Then,
with the increasing of the intraband coupling toward strong
coupling, the formation of giant Cooper pairs in the first
band occurs. Such pairs coexist with the BEC condensate
from the second band. In the extremely strong-coupling limit
(kF2a22)−1 � −1, we observe the transition from the co-
existence of giant Cooper pairs and BEC molecules to a
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FIG. 7. (a) Evolution of the intrapair correlation length in the first
band ξpair1 of a very weakly interacting superfluid two-band Fermi
gas with Ũ12 = 0.001 as a function of (kF2a22)−1 for (kF1a11)−1 = −2
(black line), (kF1a11)−1 = −1.5 (blue line), (kF1a11)−1 = −1 (green
line), and (kF1a11)−1 = −0.5 (cyan line) at T = 0. (b) Temperature
effect on the amplification of the intrapair correlation length ξpair1 for
Ũ12 = 0.001 with (kF1a11)−1 = −2. Black line is for T = 0 (the max-
imum value of the intraband length corresponds to the critical tem-
perature of the system Tc ≈ 0.67TFt and to the critical temperature of
the first band Tc1 ≈ 0.0007TFt), blue line is for T = 0.005EFt (max-
imum of ξpair1 corresponds to Tc ≈ 0.523TFt and Tc1 ≈ 0.0043TFt),
green line for T = 0.01EFt (Tc ≈ 0.41TFt and Tc1 ≈ 0.0092TFt), cyan
line for T = 0.015EFt (Tc ≈ 0.3TFt and Tc1 ≈ 0.014TFt), and red line
is for T = 0.02EFt (Tc ≈ 0.188TFt and Tc1 ≈ 0.02TFt).

two-component Bose condensate with coinciding intrapair
correlation lengths.

We move now to discuss the effects of temperature on
the phenomenon of giant Cooper-pair formation. A slight
increase of the temperature decreases the magnitude of the
giant Cooper-pair effect dramatically, and shifts slightly the
position of the peak to smaller values of (kF2a22)−1 [Fig. 7(b)].
The explanation of such a behavior will be provided
below.

Investigation of the temperature dependencies of the en-
ergy gaps show an anomalous behavior of �2 in the case
of weak interband coupling (Fig. 8). The occurrence of the
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FIG. 8. Temperature dependence of the energy gaps �1 (solid
line) and �2 (dotted line) of a two-band superfluid Fermi gas with
Ũ12 = 0.001 (black line), Ũ12 = 0.01 (blue line), and Ũ12 = 0.1 (red
line) for (kF1a11)−1 = −0.25, (kF2a22)−1 = 1 (a) and (kF1a11)−1 = 0,
(kF2a22)−1 = 1.5 (b).

kink is directly connected with the increasing of the intrapair
correlation length in the first band. Moreover, the temperature
dependencies of the chemical potential (not shown) also have
a kink for the same values of T . Numerical analysis shows
that the effect is more pronounced when the values of energy
gaps become comparable. At the same time, we recall that the
strong enhancement of ξpair1 is realized in the BEC limit of
the second band at T = 0 and for vanishing U12 [Fig. 7(a)].
The increasing of the temperature, of the strong interband in-
teraction, or a strong intraband coupling in the first band lead
to the suppression of the intrapair correlation length [Figs. 6
and 7(b)]. Thus, in order to have simultaneously comparable
energy gaps in the two bands and the intrapair correlation
length amplification effect, the second band should be in
the strong-coupling regime [for values of (kF2a22)−1, where
we have the strong enhancement of ξpair1] and the first band
near the unitarity point (kF1a11)−1 ≈ 0 (this yields �1

∼= �2).
Other conditions eliminate the nonmonotonic dependence of
�2(T ), leading to the conventional BCS-type behavior of
the energy gap in the second band, or decrease too much
the magnitude of the peak. In turn, with the increase of the
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temperature, the suppression of the peak in ξpair1 becomes
important when the temperature is in the vicinity of the critical
temperature of the first cold band Tc1, which is very small
for the parameters here considered [see the legend in the
Fig. 7(b)].

Based on this, we can claim that the decreasing rate of the
intrapair correlation length in the first band with temperature
is determined by the width of the temperature interval, where
the non-BCS behavior of the second gap is realized (or, equiv-
alently, where the first energy gap is not strongly suppressed).
Since Fig. 7(b) corresponds to the system with (kF1a11)−1 =
−2, i.e., the BCS regime for the first band, we have the
small temperature interval of non-BCS dependence of �2

and, as a consequence, the rapid temperature suppression
of ξpair1.

It is important to note that a similar behavior of the
intrapair correlation lengths as a function of temperature
was revealed in a two-band superconductor with very weak
interband interaction [50–53]. In the absence of coupling
between two superconducting condensates below the critical
temperature, a hidden critical point appears at the critical
temperature of the weaker band that corresponds to the diver-
gence of the intrapair correlation length. In the case of weak
interband interaction, the intrapair correlation length of the
weaker band exhibits a deviation from the conventional mono-
tonic increase with temperature, and leads to a pronounced
peak close to the hidden critical point. In our calculations,
the interband coupling also governs the effect but, as oppo-
site to a two-band superconductor, a strong enhancement of
the intrapair correlation length in one of the bands occurs
in the strong-coupling limit, where the formation of giant
Cooper pairs is not expected. Moreover, as it was shown
above, this phenomenon for very weak interband interaction
can be observed even at finite temperatures. We emphasize
that the hidden critical-like behavior is observed in our case
for strong intraband interactions, whereas in Refs. [50–53] it
was reported in the weak-coupling limit.

We suggest that the experimental detection of giant Cooper
pairs in the strong-coupling regime and the verification
of our prediction can be done through direct imaging of
vortex cores in two-component fermionic condensates or
in iron-based superconductors with electroniclike concen-
tric Fermi surfaces. Another possibility to verify our pre-
dictions would be a precise measurement of the tempera-
ture dependence of the energy gaps in two-band superfluid
systems.

IV. CONCLUSIONS

We have investigated the characteristics and have found
unique properties of the BCS-BEC crossover in a two-band
superfluid Fermi system in the presence of an energy shift
between the bands, for different pairing strengths in the two
bands. We have demonstrated the richness of the BCS-BEC
crossover in such a two-band system as compared with its
single-band counterpart. We have found that for vanishing
interband interaction at low temperatures and in the strong-
coupling regime of the second band, a two-band superfluid
Fermi gas evolves to a single-band system with the full
suppression of the energy gap in the first band, together

with the full redistribution of particles. As a result, a giant
enhancement of the intrapair correlation length of Cooper
pairs in the first band occurs. In the case of finite coupling
between the two condensates of the two bands, we have
shown a nonmonotonic behavior of the first energy gap with
a hump, the position of which is determined by the strength
of the interband interaction in the second band. For weak
interband coupling we have found a significant amplification
of the intrapair correlation length of the first band in the BEC
regime for the second band at zero and finite temperatures,
which indicates the coexistence of giant Cooper pairs and
bosonic condensate in a two-band superfluid system. We have
revealed that such an effect can produce an unusual non-
monotonic temperature dependence of the second energy gap
with the presence of a maximum for nonzero temperatures.
Our predictions can be verified in two-component atomic
condensates and in some iron-based superconductors having
electronlike or holelike concentric bands with low filling and
weak interband interaction, via STM investigations of vortex
cores or by studying the temperature behavior of the energy
gaps.
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APPENDIX A: EQUATIONS FOR THE CRITICAL
TEMPERATURE, CHEMICAL POTENTIAL, AND

PARTICLE DENSITIES

1. Equations in dimensionless form

For the numerical solutions of Eqs. (3)–(6) of the main
text, it is convenient to measure momenta and energies in units
of the the total Fermi momentum kFt and total Fermi energy
EFt, respectively. In this way, the matrix gap equation (3) in
dimensionless form reads as

�̃1

∫ k0/kFt

0
x2 tanh

√
(x2−μ̃)2+�̃2

1
2t√

(x2 − μ̃)2 + �̃2
1

dx

= A22

W
�̃1 − 3

4

Ũ12

W

(
kFt

k0

)2

�̃2, (A1)

�̃2

∫ k0/kFt

0
x2 tanh

√(
x2−μ̃+ Eg

EFt

)2
+�̃2

2

2t√(
x2 − μ̃ + Eg

EFt

)2 + �̃2
2

dx

= A11

W
�̃2 − 3

4

Ũ21

W

(
kFt

k0

)2

�̃1, (A2)

where x = k/kFt, �̃i = �i/EFt, μ̃ = μ/EFt, t = T/EFt, and

we have introduced the notations Aii = ( k0
kFt

− π
2kFiaii

kFi
kFt

)
−1

and

W = A11A22 − 9
16Ũ12Ũ21( kFt

k0
)
4
.
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Note that in Eqs. (A1) and (A2) we have used Eq. (9) to express Uii in terms of the scattering length aii. Similarly, the
particle-number equation (5) with ni given by Eq. (6) can be cast in the dimensionless form

2

3
=

∫ k0/kFt

0
x2

⎛
⎝1 − x2 − μ̃√

(x2 − μ̃)2 + �̃2
1

tanh

√
(x2 − μ̃)2 + �̃2

1

2t

⎞
⎠dx

+
∫ k0/kFt

0
x2

⎛
⎝1 − x2 − μ̃ + Eg

EFt√(
x2 − μ̃ + Eg

EFt

)2 + �̃2
2

tanh

√(
x2 − μ̃ + Eg

EFt

)2 + �̃2
2

2t

⎞
⎠dx, (A3)

where we have neglected the free-particle contribution for k > k0 since it is exponentially small in the limit k0
kFt

� 1 of relevance
to our work.

2. Mean field critical temperature and chemical potential at Tc

In the vicinity of the critical temperature we can linearize the system of Eqs. (A1)–(A3) and from the condition of solvability
we obtain the equation for the critical temperature and the particle densities (from now on, we will omit the tilde symbol for the
dimensionless energy gaps and chemical potential)(∫ k0/kFt

0

x2 tanh x2−μ

2t

x2 − μ
dx − A22

W

)⎛
⎝∫ k0/kFt

0

x2 tanh
x2−μ+ Eg

EFt
2t

x2 − μ + Eg

EFt

dx − A11

W

⎞
⎠ − 9

16

Ũ12Ũ21

W 2

(
kFt

k0

)4

= 0, (A4)

2

3
=

∫ k0/kFt

0
x2

(
1 − tanh

x2 − μ

2t

)
dx +

∫ k0/kFt

0
x2

(
1 − tanh

x2 − μ + Eg

EFt

2t

)
dx. (A5)

Based on asymptotic expansions for k0
kFt

� 1,

k0

kFt
− A11

W
≈ π

2kF1a11

kF1

kFt
(A6)

and
k0

kFt
− A22

W
≈ π

2kF2a22

kF2

kFt
, (A7)

we rewrite Eqs. (A4) and (A5) extending the limit of the integration up to infinity and thereby eliminating the cutoff momentum
dependence for the determination of the critical temperature[∫ +∞

0

(
1 − x2 tanh x2−μ

2t

x2 − μ

)
dx − π

2kF1a11

kF1

kFt

]⎡
⎣∫ +∞

0

⎛
⎝1 − x2 tanh

x2−μ+ Eg
EFt

2t

x2 − μ + Eg

EFt

⎞
⎠dx − π

2kF2a22

kF2

kFt

⎤
⎦ − 9

16
Ũ12Ũ21 = 0, (A8)

−t
3
2 	

(
3

2

)
Li 3

2
(−e

μ

t ) − t
3
2 	

(
3

2

)
Li 3

2

(−e
μ− Eg

EFt
t

) = 2

3
, (A9)

where the integration of Eq. (A5) was performed in terms
of the polylogarithm function Lis(z) and the gamma function
	(z). Equation (A9) can be simplified in the BCS limit, for
which t 	 1, by using

lim
t→0

[−t
3
2 Li 3

2
(−e

μ

t )
] = 4

3
√

π
μ

3
2 , (A10)

so that Eq. (A9) simplifies to

μ
3
2 +

(
μ − Eg

EFt

) 3
2

= 1, (A11)

which has the approximated solution

μ ≈ 1

3

3
√

1 − Eg

EFt
− 2

(
1 − Eg

EFt

) 3
2 + 3

1 +
√

1 − Eg

EFt

, (A12)

which, as expected, just coincides with EF1. For a zero-energy
shift Eg = 0 and in the weak-coupling limit, Eq. (A8) reduces
to(

ln
2

2
3 πe2t

8eγ
− π

2kF1a11

kF1

kFt

)(
ln

2
2
3 πe2t

8eγ
− π

2kF2a22

kF2

kFt

)

− 9

16
Ũ12Ũ21 = 0, (A13)
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FIG. 9. (a) The critical temperature Tc and (b) the chemical potential μ (at T = Tc) vs (kF2a22)−1 for different interband couplings Ũ12 = 0
(black line), Ũ12 = 1 (blue line), Ũ12 = 2 (green line), Ũ12 = 3 (yellow line), Ũ12 = 4 (magenta line), Ũ12 = 5 (red line) with fixed value of the
scattering length in the first band (kF1a11)−1 = −2. The dotted black line is the energy shift Eg between bands in units of EFt.

where γ = 0.577 . . . is the Euler-Mascheroni constant
and where the simplified equation for the weak-coupling
limit (A11) gives the exact value of the chemical potential
μ = 2− 2

3 . Formally, Eq. (A13) has the same form as the
equation for the determination of the critical temperature of a
clean two-band superconductor [1,2,54] with the correspond-
ing solution

Tc

EFt
= 8eγ

2
2
3 πe2

exp

[
1

4

(
π

kF1a11

kF1

kFt
+ π

kF2a22

kF2

kFt

+
√(

π

kF1a11

kF1

kFt
− π

kF2a22

kF2

kFt

)2

+ 9Ũ12Ũ21

⎞
⎠

⎤
⎦.

(A14)

Still in the BCS limit, but considering now the limit where Eg

approaches EF1 from below, the hyperbolic tangent function in
the second brackets of Eq. (A8) can be set to one. This yields
the equation

(
ln

πe2t

8μseγ
− π

2kF1a11

kF1

kFt

)(
π

2

√
Eg

EFt
− 1 − π

2kF2a22

kF2

kFt

)

− 9

16
Ũ12Ũ21 = 0, (A15)

with solution

Tc

EFt
= 8μeγ

πe2
exp

⎛
⎝ π

2kF1a11

kF1

kFt
+ 9

16

Ũ12Ũ21

π
2

√
Eg

EFt
− 1− π

2kF2a22

kF2
kFt

⎞
⎠.

(A16)

We can see that in this case, and for vanishing interaction
between bands, the critical temperature of the system does not
depend on (kF2a22)−1, and in the BCS regime is determined by
the first band only.

Now, we analyze numerically the general behavior of the
critical temperature and of the corresponding value of the

chemical potential for a two-band superfluid Fermi gas. As we
can see with the increasing of the interband coupling strength,
we observe an increase of the critical temperature with a
corresponding decrease of the chemical potential (Fig. 9).
Figure 10 shows the distribution of particle densities between
bands with the increasing of the interband coupling strength
near the critical temperature. For strong interband interaction,
n1 and n2 exhibit a tendency to equalize the particle densities
in each band toward the BEC limit of the second band.
Comparing with Fig. 5 in Ref. [40] one can see that pairing
fluctuations associated with both interband and intraband
couplings reduced significantly the effects of the particle
interband distribution in the vicinity of Tc.

Also, it should be noted that the effect of the interband
interaction is the most distinct for low temperatures, where
even small changes of U12 give rise to a perceptible effect
for the energy gaps and the chemical potential (see Fig. 2 in
Sec. III.).
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FIG. 10. Particle densities in the first (solid lines) and in the
second (dashed lines) bands for different interband couplings Ũ12 =
0 (black line), Ũ12 = 1 (blue line), Ũ12 = 2 (green line), Ũ12 =
3 (yellow line), Ũ12 = 4 (magenta line), Ũ12 = 5 (red line) with
(kF1a11)−1 = −2.
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APPENDIX B: COMPARISON OF APPROACHES: FIXED INTRABAND COUPLINGS RATIO
VS FIXED INTRABAND COUPLING IN ONE OF THE BANDS

In this Appendix we compare two different approaches for the description of the BCS-BEC crossover characteristics based
on a mean field theory and their effect on the results. We start from the simple case: two-band superfluid Fermi gas with
vanishing interaction between bands at zero temperature. At the beginning we consider the approach with a fixed ratio of
intraband couplings ρ = Ũ22/Ũ11. This definition gives the relation between scattering lengths in each band

π

2kF1a11

kF1

kFt
= − k0

kFt
(ρ − 1) + π

2kF2a22

kF2

kFt
ρ. (B1)

Substituting Eq. (B1) into Eqs. (3)–(5) for the energy gaps and the particle densities and taking into account dimensionless
notations we have again

�1

∫ k0/kFt

0

x2√
(x2 − μ)2 + �2

1

dx =
1

k0
kFt

− π
2kF2a22

kF2
kFt

�1 − 3
4Ũ12

( kFt
k0

)2
�2

1
k0
kFt

+ k0
kFt

(ρ−1)− π
2kF2a22

kF2
kFt

ρ

1
k0
kFt

− π
2kF2a22

kF2
kFt

− Ũ12Ũ21
( kFt

k0

)4 , (B2)

�2

∫ k0/kFt

0

x2√(
x2 − μ + Eg

EFt

)2 + �2
2

dx =
1

k0
kFt

+ k0
kFt

(ρ−1)− π
2kF2a22

kF2
kFt

ρ
�2 − 3

4Ũ21
( kFt

k0

)2
�1

1
k0
kFt

+ k0
kFt

(ρ−1)− π
2kF2a22

kF2
kFt

ρ

1
k0
kFt

− π
2kF2a22

kF2
kFt

− 9
16Ũ12Ũ21

( kFt
k0

)4 , (B3)

2

3
=

∫ k0/kFt

0
x2

(
1 − tanh

x2 − μ

2t

)
dx +

∫ k0/kFt

0
x2

(
1 − tanh

x2 − μ + Eg

EFt

2t

)
dx. (B4)

The first two equations of the above system can be integrated analytically and after a long but straightforward calculation they
can be expressed via elliptic integrals

∫ k0/kFt

0

x2√
(x2 − μ)2 + �2

1

dx =
√

i�1 + μ

[
F

(
k0
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i�1 + μ

�2
1 + μ2

,

√
iμ + �1

iμ − �1

)
− E

(
k0

kFt

√
i�1 + μ

�2
1 + μ2

,

√
iμ + �1

iμ − �1

)]
, (B5)

∫ k0/kFt

0

x2√
(x2 − μ + Eg)2 + �2

2

dx = √
i �2 + μ − Eg

[
F

(
k0

kFt

√
i�2 + μ − Eg

�2
2 + (

μ − Eg
)2 ,

√
i(μ − Eg) + �2

i(μ − Eg) − �2

)

−E

(
k0

kFt

√
i�2 + μ − Eg

�2
2 + (μ − Eg)2 ,

√
i(μ − Eg) + �2

i(μ − Eg) − �2

)]
, (B6)

where F (z, ν) and E (z, ν) are incomplete elliptic integrals of the first and the second kind and i is the imaginary unit. This yields
the system of equations for the energy gaps

�1

√
i�1 + μ

⎡
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⎞
⎠

⎤
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2kF2a22

kF2
kFt

�1 − 3
4Ũ12
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)2
�2

1
k0
kFt

+ k0
kFt
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2kF2a22

kF2
kFt

ρ

1
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kFt

− π
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kF2
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− 9
16Ũ12Ũ21

( kFt
k0

)4 , (B7)
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(
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�̃2
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kF2
kFt

ρ
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)4 . (B8)
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For large values of k0
kFt

� 1, we power expand the incomplete elliptic integrals of the first and the second kind via full elliptic
integrals of the first and second kinds F (ν) and E (ν):

F

(
k0

kFt
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i�1 + μ

�̃2
1 + μ2

,

√
iμ + �1

iμ − �1

)
− E

(
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�2
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iμ + �1

iμ − �1
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≈ 1√
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iμ − �1

)
− 2�1
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K

(√
iμ − �1

iμ + �1

)]
. (B9)

The same asymptotic expansion can be performed for the left part of Eq. (B8). For the right-hand side of Eqs. (B7) and (B8),
expansions give

1
k0
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− π
2kF2a22
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4
ρŨ12�2, (B10)
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After substitutions we finally obtain
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i�2K
(

i
√

2�2
i(μ−Eg )−�2

)
√

i�1 + μ − Eg
− �2

√
i�2 + μ − Eg

√
i(μ − Eg) − �2

i(μ − Eg) + �2

[
i(μ − Eg) + �2

i(μ − Eg) − �2
E

(√
i(μ − Eg) − �2

i(μ − Eg) + �2

)

−
√

i(μ − Eg) + �2

i(μ − Eg) − �2
E

(√
i(μ − Eg) + �2

i(μ − Eg) − �2

)
− 2�2

i(μ − Eg) − �2
K

(√
i(μ − Eg) − �2

i(μ − Eg) + �2

)]

= − π

2kF2a22

kF2

kFt
�2 − 3

4
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One can see that for Eq. (B13) of the system there is no dependence on the momentum cutoff k0, while for Eq. (B12) this
dependence is present, except for the specific case of coinciding intraband coupling strengths when ρ = 1.

If one follows instead the strategy for the description of BCS-BEC properties with fixed scattering lengths in the two bands,
then after similar analytical calculations, the equations for the energy gaps at zero temperature transform to
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where there is no cutoff momentum dependence in the limit k0 � kFt, contrary to what it happens with Eqs. (B12) and (B13).
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Milošević, and F. M. Peeters, Two-Band Superconductors: Hid-
den Criticality Deep in the Superconducting State, Phys. Rev.
Lett. 108, 207002 (2012).

[51] M. Silaev and E. Babaev, Microscopic theory of type-1.5 su-
perconductivity in multiband systems, Phys. Rev. B 84, 094515
(2011).

[52] M. Silaev and E. Babaev, Microscopic derivation of two-
component Ginzburg-Landau model and conditions of its appli-
cability in two-band systems, Phys. Rev. B 85, 134514 (2012).

[53] S. N. Klimin, J. Tempere, G. Lombardi, and J. T. Devreese,
Finite temperature effective field theory and two-band super-
fluidity in Fermi gases, Eur. Phys. J. B 88, 122 (2015).

[54] A. Gurevich, Enhancement of the upper critical field by non-
magnetic impurities in dirty two-gap superconductors, Phys.
Rev. B 67, 184515 (2003).

104528-14

https://doi.org/10.1103/PhysRevA.94.011604
https://doi.org/10.1103/PhysRevA.94.011604
https://doi.org/10.1103/PhysRevA.94.011604
https://doi.org/10.1103/PhysRevA.94.011604
https://doi.org/10.1088/1361-648X/aab648
https://doi.org/10.1088/1361-648X/aab648
https://doi.org/10.1088/1361-648X/aab648
https://doi.org/10.1088/1361-648X/aab648
https://doi.org/10.7566/JPSJ.87.084302
https://doi.org/10.7566/JPSJ.87.084302
https://doi.org/10.7566/JPSJ.87.084302
https://doi.org/10.7566/JPSJ.87.084302
https://doi.org/10.1103/PhysRevB.93.174516
https://doi.org/10.1103/PhysRevB.93.174516
https://doi.org/10.1103/PhysRevB.93.174516
https://doi.org/10.1103/PhysRevB.93.174516
https://doi.org/10.1103/PhysRevB.95.094521
https://doi.org/10.1103/PhysRevB.95.094521
https://doi.org/10.1103/PhysRevB.95.094521
https://doi.org/10.1103/PhysRevB.95.094521
https://doi.org/10.1103/PhysRevB.100.064510
https://doi.org/10.1103/PhysRevB.100.064510
https://doi.org/10.1103/PhysRevB.100.064510
https://doi.org/10.1103/PhysRevB.100.064510
https://doi.org/10.1103/PhysRevB.99.180503
https://doi.org/10.1103/PhysRevB.99.180503
https://doi.org/10.1103/PhysRevB.99.180503
https://doi.org/10.1103/PhysRevB.99.180503
https://doi.org/10.1063/1.2737547
https://doi.org/10.1063/1.2737547
https://doi.org/10.1063/1.2737547
https://doi.org/10.1063/1.2737547
https://doi.org/10.1103/PhysRevB.89.224508
https://doi.org/10.1103/PhysRevB.89.224508
https://doi.org/10.1103/PhysRevB.89.224508
https://doi.org/10.1103/PhysRevB.89.224508
https://doi.org/10.1103/PhysRevLett.87.120406
https://doi.org/10.1103/PhysRevLett.87.120406
https://doi.org/10.1103/PhysRevLett.87.120406
https://doi.org/10.1103/PhysRevLett.87.120406
https://doi.org/10.1103/PhysRevLett.89.130402
https://doi.org/10.1103/PhysRevLett.89.130402
https://doi.org/10.1103/PhysRevLett.89.130402
https://doi.org/10.1103/PhysRevLett.89.130402
https://doi.org/10.1103/PhysRevLett.92.130401
https://doi.org/10.1103/PhysRevLett.92.130401
https://doi.org/10.1103/PhysRevLett.92.130401
https://doi.org/10.1103/PhysRevLett.92.130401
https://doi.org/10.1038/s41563-019-0354-z
https://doi.org/10.1038/s41563-019-0354-z
https://doi.org/10.1038/s41563-019-0354-z
https://doi.org/10.1038/s41563-019-0354-z
https://doi.org/10.1103/PhysRevB.87.014510
https://doi.org/10.1103/PhysRevB.87.014510
https://doi.org/10.1103/PhysRevB.87.014510
https://doi.org/10.1103/PhysRevB.87.014510
https://doi.org/10.1103/PhysRevB.49.6356
https://doi.org/10.1103/PhysRevB.49.6356
https://doi.org/10.1103/PhysRevB.49.6356
https://doi.org/10.1103/PhysRevB.49.6356
https://doi.org/10.1103/PhysRevB.60.12410
https://doi.org/10.1103/PhysRevB.60.12410
https://doi.org/10.1103/PhysRevB.60.12410
https://doi.org/10.1103/PhysRevB.60.12410
https://doi.org/10.1103/PhysRevLett.108.207002
https://doi.org/10.1103/PhysRevLett.108.207002
https://doi.org/10.1103/PhysRevLett.108.207002
https://doi.org/10.1103/PhysRevLett.108.207002
https://doi.org/10.1103/PhysRevB.84.094515
https://doi.org/10.1103/PhysRevB.84.094515
https://doi.org/10.1103/PhysRevB.84.094515
https://doi.org/10.1103/PhysRevB.84.094515
https://doi.org/10.1103/PhysRevB.85.134514
https://doi.org/10.1103/PhysRevB.85.134514
https://doi.org/10.1103/PhysRevB.85.134514
https://doi.org/10.1103/PhysRevB.85.134514
https://doi.org/10.1140/epjb/e2015-60213-4
https://doi.org/10.1140/epjb/e2015-60213-4
https://doi.org/10.1140/epjb/e2015-60213-4
https://doi.org/10.1140/epjb/e2015-60213-4
https://doi.org/10.1103/PhysRevB.67.184515
https://doi.org/10.1103/PhysRevB.67.184515
https://doi.org/10.1103/PhysRevB.67.184515
https://doi.org/10.1103/PhysRevB.67.184515

