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Acoustic damping of quartz tuning forks in normal and superfluid 3He
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We investigate the damping experienced by quartz tuning fork resonators in normal and superfluid 3He as
a function of their resonance frequency from 22 to 250 kHz and contrast it with the behavior of the forks in
4He. For our set of tuning forks the low frequency damping in both fluids is well described by the existing
hydrodynamic models. We find that the acoustic emission becomes the dominating dissipation mechanism at
resonator frequencies exceeding approximately 100 kHz. Our results show that the acoustic emission model used
in 4He fluid also describes acoustic damping in superfluid 3He and normal 3He at low temperatures using the
same geometrical prefactor. The high temperature acoustic damping in normal 3He does not exceed prediction
of this model and thus the acoustic damping of moderate frequency devices measured in 4He should be similar
or smaller in 3He liquid.

DOI: 10.1103/PhysRevB.100.104526

I. INTRODUCTION

The interaction of helium fluids with small mechanical res-
onators has traditionally being studied using vibrating wires,
and has led to observations of the quantization of vortices in
superfluid 4He [1,2], nucleation of quantum turbulence [3,4],
and Landau critical velocity in superfluid 3He [5]. Develop-
ments in the manufacturing of electronic components and easy
access to nanofabrication facilities have brought a plethora
of other mechanical devices to helium research, for example
quartz tuning forks [6–23], micro and nanoelectromechan-
ical devices (MEMS and NEMS) [24–28], optomechanical
resonators [29–31], and carbon nanotubes [32]. Since the
2000s quartz tuning forks have become an established tool
to investigate quantum solids [6] and liquids [7–10], where
they have been used in studies of the viscosity [7], solubility
of 4He-3He mixtures [10], Andreev retroreflection of quasi-
particle excitations in superfluid 3He [16], and in turbulence
studies in both helium isotopes [17–21]. The main reasons
for the forks’ popularity are their high intrinsic quality factor,
commercial availability, compact size, and the ease of use.
Their working procedures are well documented [8,11,33] and
after calibration they can be used as temperature probes [8,12]
or pressure gauges [14,15].

In this paper we present the damping behavior of tuning
forks in normal and superfluid 3He. Our studies show that
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the acoustic emission of tuning forks in superfluid 3He is
virtually identical to that in 4He, where it is one of the dom-
inating dissipation mechanisms at low temperatures and high
frequencies [18,22,27]. While high frequency MEMS and
NEMS devices are becoming available for probing superfluid
4He [24–27], so far only low frequency MEMS devices have
been successfully operated in liquid 3He [28,34] due to the
challenges associated with high normal fluid viscosity and
superfluid transition temperature being three orders of magni-
tude lower, in the low milli-Kelvin regime [35,36]. The NEMS
devices are expected to open up a novel regime in studies
of superfluid 3He since their dimensions are comparable to
the pressure dependent coherence length, which has a range
from 20 to 80 nm [35,36]. Based on our results, a study of
NEMS resonators in 4He liquid should be sufficient to predict
their acoustic damping in superfluid 3He and choose the
most sensitive devices. Reducing the dimensions of the cav-
ity surrounding submerged NEMS in superfluid 3He should
suppress rising acoustic emission and result in an excellent
local detector of thermal excitations [37], which could be used
for two-dimensional visualization of topological defects [38].
The fermionic nature of superfluid 3He allows noninvasive
detection of existing topological defects via the Andreev
reflection of excitations, which sense the changes of the order
parameter in the vicinity of the defects [19,37]. Furthermore,
liquid 3He is a promising environment for cooling electrons in
nanosized structures down to a few milli-Kelvin [39]. Hence,
understanding damping of submerged NEMS devices may
help reach the mechanical ground state using “brute force”
cooling, which so far has only been accomplished using much
higher frequency systems [40].

II. EXPERIMENTAL SETUP

The tuning forks used for our measurements were cus-
tom designed and manufactured on quartz wafers of various
thicknesses [41]. A wafer contains six individual fork sizes
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FIG. 1. (a) A schematic of the electronic measurement setup
incorporating a photograph of a fork array comprising five tuning
forks. (b) A picture of the quasiparticle camera with five tuning
fork arrays used in the 3He experiments. Each fork is placed in an
individual cylindrical cavity.

and nine five-fork arrays with distinct resonance frequencies.
Figure 1(a) shows an example of a tuning fork array. Since all
the tuning forks have identical prong thickness T = 90 μm
and prong separation D = 90 μm, the resonance frequency of
the forks is determined by the prong length L. The width of
the prong W has no influence on the fork frequency [33] and
is determined by the thickness of the wafer. We used two types
of forks in our studies W = 50 μm and W = 75 μm. All the
forks in an array are connected in parallel, and share drive and
signal leads, which significantly reduces the necessary wiring.
The tuning fork resonance peak signals do not overlap due to
the carefully engineered separation of resonance frequencies
and high quality factors that reach Q ≈ 105 in vacuum at
4.2 K. Due to a controlled surface finish, our tuning forks
offer high reproducibility between different forks and wafers
[20–22] compared to commercially available samples, which
often show notably different behavior despite a nominally
identical geometry.

Figure 1(a) illustrates the principal measurement scheme
that we employ to measure tuning forks. Due to the piezoelec-
tric nature of quartz, the forks are voltage driven and produce
current as a result of their motion [33]. The generator voltage
is attenuated by 80, 60, 40, or 20 dB before entering the
cryostat. The signal detected from the fork is amplified by

a custom current to voltage converter [42] (transimpedance
amplifier) with a gain of 106 V A−1 and measured by a
lock-in amplifier. For an array of forks adding a summing volt-
age amplifier, and four pairs of signal generators and lock-in
amplifiers, allows us to measure all five forks simultaneously
[37].

The 3He measurements were carried out using a nuclear
demagnetization stage mounted on an advanced dilution re-
frigerator [43] and capable of reaching temperatures down to
100 μK. In our studies we utilized 25 tuning forks, in five
arrays, that formed the pixels of a quasiparticle camera [37].
Figure 1(b) shows a photograph of the camera, which is com-
prised of a copper block of dimensions 5.7 × 5.7 × 4.0 mm
and five tuning fork arrays with each fork embedded in an
individual cylindrical cavity with a diameter of 1.0 mm. The
lengths of the forks in the arrays varied from 1875 to 1400 μm
and correspond to the frequency range from 22 to 40 kHz
for the fundamental resonances. We also utilized the first
overtone resonances for each fork, covering a range from 140
to 250 kHz [22]. The sensitivity of mechanical resonators in
the ballistic regime of superfluid 3He is inversely proportional
to the size of the oscillator, governed by thermal excitations
momentum transfer, and hence we chose the thinnest available
wafers, W = 50 μm, to build the camera. Several more tradi-
tional vibrating wire viscometers and detectors are placed in
the vicinity of the camera and are used for 3He thermometry
[44] as well as other experiments. All the resonators described
are surrounded by 80 copper sheets necessary for cooling
liquid 3He and are a part of the inner cell of a nested Lancaster
style experimental cell [45].

The 4He measurements were performed with tuning forks
made using 75 μm wafers. The low temperature (450 mK)
studies were carried out in an experimental cell mounted on
a dilution refrigerator [20]. For higher temperature studies
[22] arrays and single tuning forks were placed directly in
the main bath of a 4He immersion cryostat. The responses
of tuning forks embedded in a copper block quasiparticle
camera were also carried out in the 4He immersion cryostat.
Cooling of the cryostat was achieved by pumping on the
helium bath and the 4He temperature was inferred from the
saturated vapor pressure [46] measured by a room temperature
pressure gauge.

III. DAMPING OF QUARTZ TUNING
FORKS IN HELIUM LIQUIDS

The damping of tuning forks in helium is a function of
temperature T , resonance frequency f , velocity v, and other
factors including the detailed confinement of the forks. The
total damping (resonance width) of a mechanical resonator
� f2 in helium is comprised of the intrinsic (or vacuum)
contribution � f int

2 and the sum of all damping mechanisms
supported by the liquid:

� f2 = � f int
2 + � f2(T ) + � f2(v) + � f2( f ). (1)

The intrinsic dissipation of a tuning fork is typically negligible
in comparison to the other damping sources (� f int

2 < 1 Hz),
and may become important only in the absence of all other
damping sources. For our tuning forks submerged in helium
the temperature and frequency dependent damping are the
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largest contributors. They will be introduced first using a
framework that permits straightforward comparison with pre-
vious measurements of tuning forks in helium [8,9,22].

A. Temperature dependent damping

The viscosity of a fluid impedes the motion of a mechan-
ical oscillator, and viscous damping is typically described in
terms of the Stokes drag. The Stokes contribution in helium
superfluids is well understood via the phenomenological two-
fluid model [36] and is expected to describe experimental
observations at temperatures down to about 250 μK in 3He
[12] and 0.9 K in 4He [47]. Below these temperatures the
mean free path of thermal excitations exceeds the dimensions
of the oscillator and the hydrodynamic approach has to be
replaced with the ballistic description.

1. Hydrodynamic damping

The immersion of a vibrating object into a viscous fluid
results in larger damping, detected as an increase in the
width of the mechanical resonance and decrease of resonance
frequency [48]. Blaauwgeers et al. [8] showed that by using
the two-fluid model, the decrease of the resonance frequency
in the fluid can be interpreted as an apparent increase of the
mass of the forks’ prongs due to the fluid backflow around
the fork and extra (normal) fluid viscously clamped to the
oscillator. The fractional change of the resonance frequency
fH of an object in helium with respect to the vacuum value f0

can be expressed as

(
f0

fH

)2

= 1 + β
ρHV

me
+ B

S

me

√
ηρnf

π f0
. (2)

Here β and B are two geometry-dependent parameters of the
order of unity, me is the effective mass of a tuning fork prong,
V and S are the volume and the surface area of a prong, ρH

is the total density of helium, η is helium viscosity, and ρnf

is the density of the normal fluid component. The coefficient
β corresponds to the fluid backflow around the fork, while
B characterizes the thickness of the normal fluid component
clamped to the fork and is governed by the viscous penetration
depth

√
ηρnf/(π f0) [8].

In the limit where the viscous penetration depth is much
smaller than the characteristic size of the oscillator, the width
of resonance arising from the viscous damping experienced
by the mechanical resonator can be represented via a solution
to the Stokes theorem [12]:

� f hyd
2 = C

S

2me

√
ρnfη f0

π

(
fH

f0

)2

, (3)

where C is the geometrical factor of the order of unity. After
calibration of an oscillator at one known temperature, the co-
efficient C provides an easy way to determine the temperature
of the liquid via the measured resonance frequency and width
of the resonance [8]. At high viscosities, such as normal 3He
fluid at milli-Kelvin temperatures, a more rigorous approach
taking into account slip effects and a large penetration depth
is required [12,49,50].

2. Ballistic damping

The transition from the hydrodynamic to the ballistic
regime can be identified by the disappearance of the resonance
frequency change at low temperatures [28,51]. The ballistic
damping mechanisms in both 4He and 3He are well under-
stood [17,50] and we will only briefly outline them.

In superfluid 4He, the thermal excitations (phonons and
rotons) exchanging momentum with the resonator govern its
damping, which can be calculated using geometric arguments.
The phonon contribution to the resonance width of an oscil-
lating cylinder is given by [50]

� f ph
2 = A

k4
B

45h̄3d (ρ + ρsf )c4
T 4, (4)

where ρ is the density of the resonator material, ρsf is the
superfluid density, d is the cylinder diameter, and A is a
geometrical constant. We can use the fork prong width W as
an effective cylinder diameter. We ignore the roton damping
contribution as it is negligible compared to the phonons at
450 mK [50,52] where our ballistic 4He measurements were
conducted.

In superfluid 3He, the oscillator damping arises from its
interaction with broken Cooper pairs, the so-called quasi-
particles [35,36]. The situation is highly nontrivial due to
the presence of Andreev scattering (retroreflection) of the
quasiparticles in the superfluid velocity field surrounding a
moving object [53]. The net effect of Andreev reflection is an
enhancement of the ballistic damping by nearly three orders
of magnitude compared to a classical gas with the same
excitation density. In the low velocity limit it is possible to
approximate the damping width of a vibrating cylinder by

� f qp
2 = dγ ′

πml

p2
F

kBT
〈nvg〉, (5)

where γ ′ is a geometrical constant, ml is the mass per unit
length of the cylinder, pF is the Fermi momentum, and 〈nvg〉
is the thermal quasiparticle flux [17].

B. Frequency dependent damping

We have already mentioned above that in the ballistic
regime the fork damping does not depend on the resonance
frequency of the oscillator. According to Eq. (3) the hydrody-
namic damping experienced by mechanical oscillators at high
temperatures shows a weak, square-root frequency depen-
dence. The square-root frequency dependence is also observed
for the nucleation of quantum turbulence in superfluid 4He,
when the motion of a mechanical oscillator exceeds a certain
critical velocity [17,54]. The frequency dependence attributed
to the emission of sound waves by a tuning fork in 3He-4He
mixtures [7,23,55] and 4He liquid [22,56,57] is nearly an
order of magnitude stronger than the square-root dependence.
For frequencies above approximately 100 kHz and low tuning
fork velocities we expect the acoustic damping to become the
main source of dissipation.

Two models for the acoustic emission of a tuning fork
have been introduced by the Prague group [18], where the
authors have considered spherical and cylindrical emission of
sound waves by the prongs of a tuning fork. The spherical
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(“3D”) model seems to describe experimental observations
more accurately [22] and predicts the acoustic contribution to
the width of the resonance to be

� f 3D
2 = C3D

ρH

c

W 2L2
e

me

f 4
H

f 2
0

�3D, (6)

�3D =
∞∑

m = 0
even

(2m + 1)

×
[

jm

(
π fH(2T + D)

c

)
− jm

(
π fHD

c

)]2

. (7)

Here jm are spherical Bessel functions, c is the first sound
velocity in the liquid, Le = 0.3915L is the effective length of
sound wave emittance in the fundamental resonance mode,
and C3D is a geometrical prefactor of order unity. In the limit
where the wavelength of emitted sound is much longer than
the relevant fork dimensions, a Taylor expansion of the Bessel
functions shows that acoustic damping varies with frequency
as f 5.5 [18,22].

C. Velocity dependent damping

The dissipationless motion of superfluids exists only below
Landau critical velocity [36], after exceeding which excita-
tions can easily be created. In 4He Landau velocity approaches
∼58 m s−1 [58] and is unattainable by a macroscopic-size
mechanical resonator, due to the creation of turbulence in a
liquid impeding the resonator’s motion. The production of
turbulence by resonators is supported in both normal and
superfluid helium and causes significant damping as they lose
energy to create vortices in the fluid [17–20]. The critical
velocity for the onset of turbulence is typically on the order
of 10 mm s−1 and is easily achievable by our resonators since
their maximum velocity is ∼2 m s−1.

In superfluid 3He exceeding Landau velocity, which has
a value of ∼27 mm s−1, breaks Cooper pairs, and produces
quasiparticle excitations [17]. Quantum turbulence also exists
in superfluid 3He and has an onset velocity of the order of
several millimeters per second. We avoid turbulence and pair
breaking by using velocities far below Landau velocity in 3He.
All our measurements, in 4He and 3He, are carried out at
tuning fork velocities below 1 mm s−1, which is significantly
lower than the expected critical velocities.

IV. RESULTS

To determine the damping experienced by a tuning fork we
sweep the excitation frequency in the vicinity of its resonance
and measure the fork’s response. We fit the obtained reso-
nance curve with a Lorentzian function to find the resonance
frequency fH and damping width � f2 of the fork [22]. First,
we will contrast our bulk low temperature measurements in
4He with the results of previous measurements [22] and then
introduce measurements carried out in 3He.

A. Helium-4 results

Figure 2 presents the dependence of tuning fork damping
as a function of the resonance frequency measured in bulk
4He. Below approximately 100 kHz the damping experienced
by the forks in helium only weakly changes with their op-

FIG. 2. Log-log plot of frequency dependence of the tuning fork
damping in 4He liquid for the fundamental (open symbols) and
overtone (filled symbols) modes of the forks. The 4.2 and 1.5 K
data [22] was taken at saturated vapor pressure, while the 450 mK
measurements were carried out at a pressure of 22 bars. The dashed
line corresponds to the hydrodynamic contribution described by
Eq. (3). The dotted lines correspond to the 3D model of acoustic
damping with ballistic or hydrodynamic contributions.

erating frequency, but exhibits a significant dependence at
higher frequencies. Open and filled symbols correspond to
the fundamental mode and the first harmonic of the tuning
fork, respectively, and indicate that the frequency dependence
observed is not sensitive to the operating mode of the tuning
fork. Measurements at temperatures of 4.2 and 1.5 K at
the saturated vapor pressure have been previously reported
[22] and show a similar tendency to the low temperature
data measured with a different set of tuning forks. The low
temperature data was measured at a temperature of 450 mK
and a pressure of 22 bars in another experimental cell [20].

The high temperature data at low frequencies is well de-
scribed within the hydrodynamic framework introduced via
Eqs. (2) and (3). The dashed line in Fig. 2 corresponds to
fitting parameters β = 0.26, B = 0.28, C = 0.54 [22]. The
dotted line is a combination of the hydrodynamic damping at
low frequencies in Eq. (3) and acoustic dominated damping
in Eq. (6) at high frequencies with the acoustic emission
coefficient C3D = 2.17 [22]. We have used the values of the
speed of sound at saturated vapor pressure equal to 190 and
235 m s−1 at 4.2 and 1.5 K, respectively [46].

At 450 mK the normal fluid component density of 4He-
II is negligible and we expect the data measured at these
temperatures to be consistent with the ballistic framework.
Hence the low frequency damping should be described by
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phonon interaction and was compared with the predictions
of Eq. (4). We obtain a phonon damping constant A = 18
that significantly exceeds the values reported for vibrating
wires [50,52]. The difference could be attributed to the vastly
different geometry of the forks compared to vibrating wires
and perhaps the nonzero pressure in the experimental cell.

The green dotted line going through the low temperature
data in Fig. 2 is a sum of the frequency independent phonon
contribution and acoustic damping with coefficient C3D =
2.17 used to fit the high temperature data at saturated vapor
pressure [22]. We estimated the sound velocity in 4He at
22 bars pressure and 450 mK to be 355 m s−1 [59]. It is
remarkable that all the acoustic data are described by a single
coefficient, despite the data being measured by different forks
over a large range of temperatures and pressures. This shows
that our custom designed forks manufactured on different
wafers are highly reproducible. Turbulent drag measurements
carried out in two different laboratories Lancaster and Prague
using a set of such forks were also practically identical [21].

B. Helium-3 results

Prior to introducing 3He into the cell we characterized the
intrinsic damping of the tuning forks for the fundamental and
first harmonic mode resonances in vacuum at a temperature of
4.2 K. After condensing 3He into the cell, we took measure-
ments during the cryostat cooldown at temperatures of 1.5 K,
115 mK, and 10 mK. Due to the fermionic nature of 3He, its
viscosity increases quadratically with decreasing temperature
[12,60] and below 10 mK the viscosity of normal 3He be-
comes comparable to that of olive oil. For our set of tuning
forks, which are optimized for superfluid 3He-B studies, this
high viscous damping makes the measurements below 10 mK
virtually impossible until the ballistic regime in the superfluid
phase is reached. To reach the ballistic regime in superfluid
3He we have precooled the cell in a magnetic field of 6.3 T
to 5 mK using the dilution refrigerator and demagnetized the
cell to 50 mT, reaching the final temperature of 150 μK.

The top panel of Fig. 3 shows the dependence of tun-
ing fork damping as a function of the resonance frequency
measured in vacuum and in superfluid 3He-B at 4.2 K and
150 μK, respectively. We present both sets of data together
since their damping at low frequencies, below 40 kHz, is com-
parable. The tuning fork damping measured in the superfluid
contains the intrinsic damping of the fork and hence the liquid
contribution is almost identical to the one in vacuum. The
vacuum data measured for the first overtone mode lying at
frequencies above 100 kHz shows a large degree of scatter
(difference in the damping of individual forks). We note that
the uncertainty of each data point is negligible, as resonance
measured for each fork are stable and reproducible, with
the smallest Q factor is of the order of 104. We attribute
increased damping at certain frequencies to flexing of the base
of the tuning fork array and believe that clamping the array
base should improve the Q factor further. At moderate fre-
quencies the difference in the damping of individual forks
remains large even in the superfluid phase. In some cases
the superfluid damping of the forks was smaller than that
measured in vacuum, which indicates that the origin of the
scatter is likely to be mechanical. The top panel of Fig. 3

FIG. 3. Log-log plot of the measured damping versus resonance
frequency of the forks at the fundamental (open symbols) and
overtone modes (filled symbols) in superfluid 3He-B and vacuum
(top); and normal fluid 3He (bottom). The dashed line corresponds
to the hydrodynamic damping experienced by the forks. The dotted
line shows the acoustic damping model described by Eq. (6) with
hydrodynamic or ballistic contributions.

also demonstrates that at the highest operating frequencies
the tuning fork damping in the superfluid 3He significantly
exceeds the values obtained in vacuum measurements. This
indicates the presence of a different damping mechanism
compared to the low frequencies.

The measurements taken in normal 3He are presented in
the bottom panel of Fig. 3. The fork damping at low fre-
quencies significantly exceeds the intrinsic and the superfluid
values. The data show that the damping is larger at the
lowest temperatures as expected for a viscous Fermi fluid. The
dashed lines in Fig. 3, corresponding to the hydrodynamic
damping model, describe the low frequency data well. Due
to the high viscosity of 3He, instead of the simple framework

104526-5



A. M. GUÉNAULT et al. PHYSICAL REVIEW B 100, 104526 (2019)

described by Eq. (3) [8] we used a more rigorous calculation
in the hydrodynamic regime to account for the large viscous
penetration depth. A comparison of the measurements and
the hydrodynamic model clearly shows that in the normal
fluid the tuning fork resonance widths start to increase above
100 kHz and therefore requires acoustic damping to be taken
into account.

The dotted lines in Fig. 3 combine the acoustic contri-
bution described by Eq. (6) with the ballistic damping in
the superfluid phase (γ ′ = 1.6 to 1.8) and the hydrodynamic
damping in the normal fluid (Stokes parameter equal to 1.5),
respectively. The combined model seems to reasonably follow
the data points in both the superfluid and the normal phases.
We chose a value of the acoustic coefficient C3D = 2.17
identical to that in 4He since the forks used differ only in
the wafer thickness and C3D was constant in the 4He mea-
surements, independent of temperature and pressure changes.
The sound velocity in normal 3He liquid at 1.5 K is 169 m s−1

and 184 m s−1 at 115 and 10 mK, respectively [61]. In the
superfluid phase, at our range of temperatures and frequencies
zero sound should be emitted instead of first sound [35,36].
Zero sound corresponds to oscillations in the Fermi sphere or
the quasiparticle density and has the sound velocity here equal
to 190 m s−1 [36]. We expect the change from first to zero
sound to have little effect on the fork damping as the value of
sound velocity hardly changes and the dispersion relations in
both modes are identical [36].

The normal 1.5 K data and the superfluid data plotted in
Fig. 3 show that the experimental points seem to deviate
significantly from the combined model, and give the impres-
sion that the onset of damping happens at high frequencies
and exhibits a steep power-law dependence. The observed
discrepancy can be explained by considering the shape and
the size of the cylindrical cavities surrounding the tuning
forks.

V. DISCUSSION AND CONCLUSIONS

It is known that cavities suppress acoustic emission [18,56]
and while the camera has an open cylinder geometry its
effect on the fork’s acoustic emission is determined by their
relative positions and orientation. To investigate the effect of
the cylindrical cavity on emission we placed a fork array in the
replica of the camera and measured the damping dependence
of the array in a 4He immersion fridge. For the comparison of
the data measured at different temperatures in both 4He and
3He it is appropriate to work with the wavelengths of emitted
sound rather than the resonance frequencies since the sound
velocity varies considerably.

Figure 4 displays the dependence of the tuning fork me-
chanical resonance width as a function of the sound wave-
length for 4He and 3He measurements. The 4He data in the top
panel contrasts the bulk measurements [22] shown in Fig. 2
using faded colors against the measurements in the cylindrical
cavity for superfluid and normal 4He in bold colors. The
dotted curves, corresponding to the combined hydrodynamic
and acoustic model, agree well with the bulk data, but fail to
describe the cavity data with wavelengths in the range from
1 to 2 mm. These data points are almost entirely described
by the hydrodynamic model alone, but still exhibit some

FIG. 4. Log-log plot of the fork damping in 4He (top), normal
3He (center), and superfluid 3He (bottom) versus the sound wave-
length corresponding to the fork’s fundamental resonance (open
symbols) and overtone resonance (filled symbols). The top panel
shows bulk measurements in 4He using faded colors along with
the measurements performed in a cylindrical cavity in bold col-
ors. The shaded area to the left highlights the wavelengths corre-
sponding to unsuppressed sound emission. The dotted and dashed
lines correspond to the total and hydrodynamic damping models,
respectively.

degree of the acoustic emission. This suggests that sound
emission for wavelengths above about 1 mm is significantly
suppressed, while wavelengths below this threshold show
the damping almost in line with what is expected from the
bulk 4He measurements. The threshold wavelength of 1 mm
agrees well with the cavity diameter of the camera and the
directionality of sound emitted by a tuning fork in the cavity.

The 3He data for normal and superfluid phases shown on
the center and bottom panels of Fig. 4 display a trend similar
to the 4He measurements. The data points in superfluid 3He
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corresponding to wavelengths in the range from 1 to 2 mm
are neither fully described by the acoustic model nor by the
ballistic damping supporting the idea of suppression of sound
emission in the surrounding cavity. While the normal 3He
results measured at 10 and 115 mK are also consistent with
the proposed scenario, the 3He data taken at 1.5 K show
reduced acoustic emission for wavelengths shorter than 1 mm,
where sound is expected to be freely emitted. It is not clear
what causes this behavior, but it is possible that a combination
of imperfect alignment of the arrays in the camera and lower
attenuation of the first sound at high temperature [36] affects
the acoustic emission of the forks [18,56] and is responsible
for the observed differences between the high and low tem-
perature data in 3He. High temperature data in normal 3He
suggest that the observed acoustic damping does not exceed
what is expected from the acoustic emission model. The
dilution refrigerator has a poor degree of temperature control
in this temperature region and systematic measurements are
impractical.

Due to the more complex nature of the fermionic liquid,
3He supports excitations that have no analog in 4He. An ex-
ample of unique 3He excitations are spin waves for which we
would expect to have a strong magnetic field dependence [35].
Our measurements in superfluid 3He show that the tuning fork
damping is not affected by changing the magnetic field by a
factor of 2. It has recently been found that the magnetization
of the solid layer of 3He atoms can exert a force on a tuning
fork if that fork moves the magnetization vector with respect
to the external field in 3He-B [62]. In our geometry we would
expect no force from this effect since the magnetic field and
the fork motion are orthogonal to each other. We have also
found no sizable changes in normal 3He when magnetic field
was changed in the range from 0.1 to 6.3 T.

We conclude that, at low oscillating velocities, the damping
experienced by tuning forks in 4He and superfluid 3He liquids
can be described by combining the acoustic emission model
with the hydrodynamic or ballistic frameworks. The acoustic
damping dominates the behavior of tuning forks with reso-
nance frequencies above approximately 100 kHz. It is remark-
able that sound emission in both isotopes can be described by
an acoustic model with a single geometrical coefficient in the
normal and superfluid phases for the majority of our tuning
forks despite the change of emitted sound mode in 3He. Due to
the scatter of our high temperature data in normal 3He we can
only state that the observed acoustic damping does not exceed
what is expected from the acoustic emission model. The latter
is useful for predicting properties and behavior of oscillators
in superfluid 3He, after tests in the much more accessible 4He
have been carried out. Our measurements also show that the
sound emission can be suppressed by selecting the appropriate
cavity size. This should be taken into account for designing
experimental apparatus for studies of the onset of quantum
turbulence or probing helium excitations using high frequency
MEMS and NEMS.

All data used in this paper are available in Ref. [63],
including descriptions of the data sets.
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