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Spin-orbital hallmarks of unconventional superconductors without inversion symmetry
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The spin-orbital polarization of superconducting excitations in momentum space is shown to provide distinc-
tive marks of unconventional pairing in the presence of inversion symmetry breaking. Taking the prototypical
example of an electronic system with atomic spin-orbit and orbital-Rashba couplings, we provide a general
description of the spin-orbital textures and their most striking changeover moving from the normal to the
superconducting state. We find that the variation of the spin texture is strongly imprinted by the combination
of the misalignment of spin-triplet d vector with the inversion asymmetry g-vector coupling and the occurrence
of superconducting nodal excitations. Remarkably, the multiorbital character of the superconducting state allows
us to unveil a unique type of topological transition for the spin winding around the nodal points. This finding
indicates the fundamental topological relation between chiral and spin winding in nodal superconductors. By
analogy between spin- and orbital-triplet pairing we point out how orbital polarization patterns can also be
employed to assess the character of the superconducting state.
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I. INTRODUCTION

The Rashba spin-orbit (SO) coupling [1,2] is the manifesta-
tion of a fundamental relativistic effect due to structural inver-
sion symmetry breaking (ISB) that leads to spin-momentum
locking with lifting of spin degeneracy and remarkable phe-
nomena such as nonstandard magnetic textures [3,4], spin
Hall [5] and topological spin Hall [6], Edelstein effects [7],
etc. [8].

Recently, it has been realized that spin-momentum locking
can also occur from the ISB driven orbital polarization of
electrons in solids which is, then, linked with the spin sector
by the atomic SO coupling. The role of spin and orbital
polarization in materials has built a different view of the
manifestation of ISB with respect to the conventional spin-
Rashba effect, leading to the so-called orbital-driven Rashba
coupling [9]. The orbital Rashba (OR) effect can yield chiral
orbital textures and orbital dependent spin vector via the SO
coupling [9–15]. Evidences of anomalous energy splitting
and of a key role played by the orbital degree of freedom
have been demonstrated on a large variety of surfaces, i.e.,
Au(111), Pb/Ag(111) [16], Bi/Ag(111) [17], etc. as well as in
transition metal oxides based interfaces, i.e., LaAlO3-SrTiO3

[18,19].
In superconductors without inversion symmetry [20,21] the

presence of nondegenerate spin- and orbital polarized elec-
tronic states is generally expected to lead to unconventional
pairing, with the occurrence of spin-triplet order parameters
and singlet-triplet spin mixing [22–24], nonstandard surface
states [25,26], as well as topological phases [27–35].

Experimental direct probes by using angle- and spin-orbital
resolved photoemission spectroscopy in the normal [36–39]
and superconducting (SC) phase [40] can be extremely useful
for establishing the nature of the SC state and the underly-
ing degree of spin-orbital entanglement or the occurrence of

competing orders. A successful photoemission observation of
Dirac cone with spin-helical surface states at Fermi level and
their modification below the superconducting critical temper-
ature due to the gap opening has been recently demonstrated
in the iron-based superconductor FeTe1−xSex [41]. Along this
line it would be highly desirable to have distinctive detectable
signatures associated with the spin-orbital polarizations to
single out the nature of the SC phase. Symmetry plays a
relevant role in such identification. For instance, skyrmionic
patterns in the Brillouin zone (BZ) have been suggested as
marks to make the topological order more accessible in ferro-
magnetic semiconductor/s-wave superconductor heterostruc-
ture assuming that both time-reversal (TR) and inversion
symmetry is broken [42]. On the other hand, the fundamental
interrelation between chiral spin-orbital textures in reciprocal
space and unconventional pairing solely due to ISB has not
been yet fully established.

In this paper we focus on the class of low-dimensional
superconductors with TR and broken inversion symmetry. The
aim is to assess how the spin-orbital texture of the SC excita-
tions can unveil the nature of the SC state and, eventually, its
topological character.

We show that the spin-polarization pattern is generally
imprinted by the relative alignment of spin-triplet d vector
with the inversion asymmetry g-vector coupling (Sec. II). A
fundamental issue emerges in nodal topological superconduc-
tors when considering the occurrence of spin winding around
the nodal points. To face this problem on a general ground
we employ a prototypical electronic system with atomic SO
and orbital-Rashba coupling, whose spin-orbital textures can
manifest deviations from the typical ones due to the spin-
Rashba coupling (Sec. III) and can exhibit topological SC
phases with orbital-driven pairing (Sec. IV).

Finally, we find that at the nodal points topological tran-
sitions for the spin winding can occur due to the emergence
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of vanishing spin amplitude lines connecting the nodal points
(Sec. IV). This outcome sets the fundamental interplay be-
tween chiral and spin or orbital winding in nodal supercon-
ductors with ISB.

II. TOPOLOGICAL SPIN TEXTURE: SINGLE ORBITAL
MODEL DESCRIPTION

A. Model Hamiltonian and spin texture

We start by introducing a minimal model that can describe
the spin texture of the SC state due to the interplay of
inversion asymmetric SO coupling and spin-triplet pairing.
Due to ISB the pairing has a mixture of spin-triplet and singlet
components. Since the spin-singlet pairing does not affect
the spin texture, the central focus is on the consequences of
the spin-triplet pair potential. In the superconducting state
we consider the Bogoliubov-de Gennes (BdG) Hamiltonian
including both spin-singlet and triplet pairings as follows

ĤBdG(k) =
(

−μσ̂0 + ĥ(k) �̂(k)

�̂†(k) μσ̂0 − ĥt (−k)

)
, (1)

where μ and �̂(k) = iσ̂y[|�S|ψ + |�T|σ̂ · d(k)] denote the
chemical potential, and the singlet (ψ) and triplet order pa-
rameters (d), and the corresponding gap amplitudes |�S| and
|�T|, and ĥ(k) is the normal state term

ĥ(k) = ε(k)σ̂0 + �g(k) · σ̂, (2)

g(k) = (gx(k), gy(k), gz(k)), (3)

with ε(k) and g(k) being the kinetic energy and inversion
asymmetry coupling, while � denotes the strength of the ISB
potential, and σ̂i (i = 0, x, y, z) are the Pauli matrices in spin
space. Here, the d vector has the usual matrix form in terms
of the components associated with the spin-triplet configu-
rations as �↑,↑ − �↓,↓ = −2dx(k), �↑,↑ + �↓,↓ = 2idy(k),
and �↑,↓ + �↓,↑ = 2dz(k).

We determine the spin polarization components by evaluat-
ing the expectation values of the related spin operators. In the
normal state, we assume that the g vector lies on the xy plane
and gz(k) = 0. Then, the eigenvalues and the corresponding
eigenstates of the Hamiltonian are given by

E± = ε(k) ± �

√
g2

x(k) + g2
y(k), (4)

|+〉 =
(

cos θ
2

eiφ sin θ
2

)
, |−〉 =

(−e−iφ sin θ
2

cos θ
2

)
,

with θ = π/2, cos φ = gx(k)/
√

g2
x(k) + g2

y(k), and sin φ =
gy(k)/

√
g2

x(k) + g2
y(k) . It is immediate to verify that the

expectation values of the spin operators are given by

〈±|Ŝx|±〉 = ± gx(k)√
g2

x(k) + g2
y(k)

, (5)

〈±|Ŝy|±〉 = ± gy(k)√
g2

x(k) + g2
y(k)

, (6)

〈±|Ŝz|±〉 = 0, (7)

where Ŝi=x,y,z are the spin operators expressed in terms of the
Pauli matrices. Thus, the z component of the spin operator is
zero (except that at the high symmetry points) and the in-plane
x and y components are generally nonvanishing.

The planar structure of the spin polarization is a general
consequence of the symmetry property of the model Hamil-
tonian. If the transformation Ŝz → −Ŝz is a symmetry for the
quantum system upon examination, then, due to the absence
of degeneracy at any (kx, ky) different from the time reversal
invariant momenta, the expectation value of the z component
of the spin operator is identically zero. Thus, one can focus
the analysis only on the spin orientation in the xy plane.

For convenience and clarity of computation, starting from
the BdG Hamiltonian, one can introduce the electron com-
ponent of the spin polarization within the xy plane for the mth
excited state of the superconducting spectrum by means of the
following relation

θSCm
S = arg

[〈
m|S̃e
x |
m〉 + i〈
m|S̃e

y |
m〉], (8)

where |
m〉 is the mth eigenstate of the spectrum of the BdG
Hamiltonian and S̃e

i=x,y,z are the spin operators projected onto
the electron space:

S̃e
i = 1

2 [1 + τ̂3] ⊗ Ŝi, (9)

τ̂3 =
(

1 0
0 −1

)
, (10)

with the Pauli matrix τ̂3 in Nambu space.
Before considering the full diagonalization of the BdG

excited states, it is quite instructive to consider an effective
perturbation approach which allows us to extract the main
issues of the general behavior of the spin polarization of
the superconducting excited state. Hence, we consider the
BdG Hamiltonian by taking the first order perturbation in the
pairing term,

Ĥ = Ĥ0 + Ĥ ′, (11)

Ĥ|
n〉 = En|
n〉, (12)

Ĥ0

∣∣
 (0)
n

〉 = εn

∣∣
 (0)
n

〉
. (13)

Here, Ĥ, Ĥ0, and Ĥ ′ correspond to the total, the unperturbed,
and the perturbing Hamiltonian, respectively. En and |
n〉
(εn and |
 (0)

n 〉) are the eigenvalue and the corresponding
eigenstate of the total Hamiltonian Ĥ (the unperturbed Hamil-
tonian Ĥ0). Here, Fig. 1 indicates the relation between the
eigenstates |
n〉 and BdG bands. We assume for convenience
of computation that the g vector is parallel to the z axis
[g(k) = (0, 0, gz(k))] and consider only the spin-triplet pair-
ing (ψ = 0). Then, the unperturbed and perturbed terms of
the Hamiltonian at a given k are written by

Ĥ0 = −μσ̂0 ⊗ τ̂3 +
(

ĥ(k) 0

0 −ĥt (−k)

)
, (14)

ĥ(k) =
(

ε(k) + �gz(k) 0

0 ε(k) − �gz(k)

)
, (15)
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FIG. 1. Schematic illustration of the relation between the eigen-
states |
n〉 and BdG bands in the case with nodal points. Red (green)
line is the first (second) excited band and white circle is the nodal
point. The same eigenstates are also plotted in Fig. 2(b) with the
following correspondence: |ψ+〉 = |
a〉 and |ψ−〉 = |
d 〉.

Ĥ ′ =
(

0 �̂(k)

�̂†(k) 0

)
, (16)

�̂(k) =
(

�↑,↑(k) �↑,↓(k)
�↓,↑(k) �↓,↓(k)

)
. (17)

For the spin-triplet pairing the d vector can be further ex-
pressed in terms of the polar angles (θd , φd ) that identify its
direction in the spin space [see Fig. 2(a)] as

d(k) = (dx(k), dy(k), dz(k))

= n̂(k)|d(k)|
= (sin θd cos φd , sin θd sin φd , cos θd )|d(k)|. (18)

The eigenstate |
 (0)
a 〉 (|
 (0)

c 〉) corresponds to |e,↑〉 (|h,↑〉),
and |
 (0)

b 〉 (|
 (0)
d 〉) is related to |e,↓〉 (|h,↓〉) where e and h

are electron and hole, respectively. The eigenvalues and the
corresponding eigenstates of the unperturbed Hamiltonian Ĥ0

are given by

εa(k) = −εd (k) = ε(k) + �gz(k), (19)

εb(k) = −εc(k) = ε(k) − �gz(k), (20)

∣∣
 (0)
a

〉 =
(

α̂+
0̂

)
,

∣∣
 (0)
b

〉 =
(

α̂−
0̂

)
,

∣∣
 (0)
c

〉 =
(

0̂
β̂+

)
,

∣∣
 (0)
d

〉 =
(

0̂
β̂−

)
.

Here, α̂± and β̂± denote the eigenstates of ĥ(k) and −ĥt (−k),

α̂+ = β̂+ =
(

1
0

)
, α̂− = β̂− =

(
0
1

)
.

For the electronlike branch, the perturbation within the first
order is zero. It means that the spin polarization for the elec-
tronlike branch is not modified within the first order perturba-
tion in |�T|, with |�T| being the amplitude of the spin-triplet
order parameter. On the other hand, since the eigenvalues and
the corresponding eigenstates for the holelike branch change
within the first order correction, the spin orientation of the
excited state for the holelike branch acquires a nontrivial
pattern. Thus, we focus on the holelike branch of the excited
state to investigate the spin texture and we extract the electron

FIG. 2. (a) Schematic spin-space representation of the relative
orientations among the ISB g vector, the spin-triplet pairing d vector,
and the spin direction corresponding to an excited state for k < kF,
with kF being the Fermi wave vector. θd is the polar angle between
g and d vector and φd is the angle of the spin vector measured
with respect to the in-plane x direction. (b) Sketch of the energy
dispersion along a given direction and of the spin orientation for
excited states at given momentum larger (electronlike) and smaller
(holelike) than the Fermi vector in the SC state. |ψ+〉 = |
a〉 (|ψ−〉 =
|
d 〉) corresponds to the eigenstate for k � kF (k < kF). Here, S̃

e
for

k � kF is collinear to g. (c) Spin orientations of the excited states
above and below the Fermi level at θd = 0, π/4, π/2, 3π/4, and π .
(d) Orientation of the g vector and spin vector for a Rashba-type
spin-momentum coupling on the Fermi surface (black solid line).
(e)–(h) The d-vector orientation for (e) A1, (f) A2 (g) B1, and (h)
B2 representations of the C4v point group on the Fermi surface. (i)
Orientation of electron component of the spin polarization for the
first excited state of the B1 phase in the single-band model at �/t =
8.0 × 10−2, |�T|/t = 1.0 × 10−3, and μ/t = 0.25. The determina-
tion of the spin polarization is done by numerical diagonalization of
the superconducting model system with one band. Black solid line
indicates the Fermi surface in the normal state and white circle is
for the position of the nodal point. (j) Schematic illustration of the
winding spin texture of (i) around the point node with spin-winding
number WS = +1.

component of the spin polarization for the first excited state of
the spectrum.

At this stage, by the benefit of the analytical expression of
the first order eigenstates, we can calculate the spin texture
for the holelike branch away from the Fermi level, that is,
| − μ + ε(k)| 
 |�gz(k)|. From the performed analysis, we
can approximate the expectation values in Appendix 1 as

〈
c|S̃e
x |
c〉 ∼ −as cos φd sin 2θ c,

〈
c|S̃e
y |
c〉 ∼ −as sin φd sin 2θ c,

〈
c|S̃e
z |
c〉 ∼ −as cos 2θd , (21)

〈
d |S̃e
x |
d〉 ∼ as cos φd sin 2θd ,

〈
d |S̃e
y |
d〉 ∼ as sin φd sin 2θd ,

〈
d |S̃e
z |
d〉 ∼ as cos 2θd , (22)
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where as is an amplitude depending on the energy distance of
the excited state from the Fermi level and the strength of the
superconducting pairing,

as = |�T|2|d(k)|2
8[−μ + ε(k)]2

. (23)

Hence, one can evaluate the character of the spin texture from
these expectation values of the spin operators. Then, we focus
on the electron- and holelike branch for |
a〉 and |
d〉 as
shown in Fig. 1. On the basis of the above observations, if
d and g vectors are misaligned by an angle θd [Fig. 2(a)], then
the electron spin orientation corresponding to the excitations
close to the Fermi level (kF) will manifest a distinctive pattern.

This result is confirmed by full numerical determination
of the BdG excited states and of the corresponding spin
polarization [Fig. 2(b)]. Indeed, one can show that for k � kF

(electronlike branch |
a〉) the spin orientation is collinear to
the g vector while it gets rotated by an angle 2θd for k < kF

(holelike branch |
d〉). Hence, a variation of the mismatch
angle between d and g vectors along the Fermi surface can
lead to a spin texture with a general trend that is marked
by an asymmetric angular dependence in the electron and
hole branch of the low energy excitation [Fig. 2(c)]. Taking
into account the configuration in Fig. 2(a), one can generally
demonstrate that the spin orientation for the excited state |ψ+〉
at k � kF is collinear to the g vector, while for |ψ−〉 at k < kF

it depends on the angles θd and φd . Indeed, if we define
ŝe
±,γ ≡ 〈ψ±|S̃e

γ |ψ±〉 with γ = x, y, z, the spin vectors for the
electronlike branch |
a〉 = |ψ+〉 (k � kF) and holelike branch
|
d〉 = |ψ−〉 (k < kF) are given by

[
ŝe
+,x, ŝe

+,y, ŝe
+,z

] ∼ [α̂†
+Ŝxα̂+, α̂

†
+Ŝyα̂+, α̂

†
+Ŝzα̂+]

= [
0, 0, 1

2

]
, (24)[

ŝe
−,x, ŝe

−,y, ŝe
−,z

]
∼ [as cos φd sin 2θd , as sin φd sin 2θd , as cos 2θd ]. (25)

It is then immediate to deduce that the spin orientation is
collinear to g with θd = 0 while for perpendicularly oriented g
and d vectors, i.e., θd = π/2, the spin polarization is antipar-
allel to g. In general, we obtain that the spin polarization lies in
the same plane of g and d and it deviates of an angle 2θd from
g. Since the d and g vectors have the same transformation
under the spin rotation, we can generalize this result for any
directions of d and g vectors. By a suitable rotation of the spin
coordinate, we can deduce the spin texture where the d vector
and g vector lie on the xy plane.

B. Spin texture at the Fermi surface

In this subsection, we present the spin texture evaluated at
the Fermi surface, where |e,↑〉 and |h,↓〉 (|e,↓〉 and |h,↑〉)
are twofold degenerate. We solve the BdG Hamiltonian at the
Fermi surface in the case of εa(kF) = εd (kF) = 0 in the basis

(|e↑〉, |e↓〉, |h↑〉, |h↓〉),

Ĥ (kF) =

⎛
⎜⎜⎜⎜⎝

0 0 �↑,↑ �↑,↓
0 εb(kF) �↓,↑ �↓,↓

�∗
↑,↑ �∗

↓,↑ −εb(kF) 0

�∗
↑,↓ �∗

↓,↓ 0 0

⎞
⎟⎟⎟⎟⎠, (26)

where kF is the Fermi wave vector. We pick up the basis
(|e↑〉, |h↓〉) in this Hamiltonian and obtain the Hamiltonian
projected onto the states (|e↑〉, |h↓〉) near the Fermi level,

H̃ (kF) =
(

0 �↑,↓
�∗

↑,↓ 0

)
, (27)

with �↑,↓ = |�T| cos θd . Then, the eigenvalues are given by

E± = ±|�T| cos θd , (28)

and one of the corresponding eigenstate in the basis
(|e↑〉, |e↓〉, |h↑〉, |h↓〉) is for instance given by

|+〉 = 1√
2

(
â+
b̂+

)
, â+ =

(
1
0

)
, b̂+ =

(
0
1

)
.

We can obtain the eigenvalues of the electron component of
the spin operator at the kF point,

〈+|S̃e
i |+〉 = 1

2 â†
+Ŝiâ+, (29)

that is,

〈+|S̃e
x |+〉 = 〈+|S̃e

y |+〉 = 0, (30)

〈+|S̃e
z |+〉 = 1

2 â†
+Ŝzâ+ = 1

4 . (31)

Thus, the spin texture on the Fermi surface has the same
direction as that in the normal state.

C. Spin winding in the single-orbital model with
Rashba-type spin-orbit coupling

In the single-orbital model with Rashba-type spin-orbit
coupling g(k) = (sin ky,− sin kx, 0) [Fig. 2(d)], the Hamilto-
nian in the normal state ĥ(k) is given by

ĥ(k) =
(

ε(k) �[sin ky + i sin kx]

�[sin ky − i sin kx] ε(k)

)
. (32)

The resulting spin polarization in the normal state rotates
along the Fermi surface in the BZ and it is basically deter-
mined by the g vector. When considering the superconducting
state, the pairing symmetry for this model is described by five
irreducible representations A1, A2, B1, B2, and E of the point
group C4v and the direction of the spin polarization for the
holelike branch depends on these irreducible representations.

For the A1 representation, the d vector is given by d(k) =
(sin ky,− sin kx, 0) [Fig. 2(e)] and there are no nodal points in
the bulk. Since the d vector is parallel to the g vector in the BZ,
that is, the relative angle between d and g vectors is θd = 0, π ,
the direction of the spin texture for the holelike branch does
not change from that in the normal state.

On the other hand, the d vector for the A2 representation
d(k) = (sin kx, sin ky, 0) [Fig. 2(f)] is perpendicular to the g
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vector and it corresponds to θd = ±π/2 in the BZ. Then the
gapless state appears and the spin texture for the holelike
branch becomes antiparallel to that in the normal state. Hence,
the spin winding does not occur if there are no nodal points
and θd does not change in the BZ.

In the case of B1 and B2 representations, nodal points
appear along the diagonal direction and, on the kx and ky axis,
respectively. The d vectors for the B1 and B2 representations
are given by the basis function in the point group C4v , d(k) =
(sin ky, sin kx, 0) [Fig. 2(g)] and d(k) = (sin kx,− sin ky, 0)
[Fig. 2(h)]. We explicitly determine the spin polarization
through full diagonalization of the model Hamiltonian at any
momentum in the BZ for the B1 representation of the C4v

point group. Then we look for the spin windings in the xy
plane. In order to obtain the spin vector in the xy plane, that
is, 〈ψ±|S̃e

z |ψ±〉 = 0, both d and g vectors are in the xy plane.
Indeed, Fig. 2(i) is the orientation of the spin polarization
in the BZ for the B1 representation at �/t = 8.0 × 10−2,
|�T|/t = 1.0 × 10−3, and μ/t = 0.25, and there is a two-
dimensional spin winding around the nodal point along the
diagonal of the BZ [Fig. 2(j)].

Here, we define the spin-winding number as

WS = 1

2π

∮
C

dθSC1
S (k), (33)

with the path of the closed loop around the nodal point C.
Due to the angular relation of d and g vectors at each k
point as shown in Fig. 2(c), the spin polarization can wind
around the nodal point with WS = +1 [Fig. 2(j)]. We note that
the spin polarization also winds around the high symmetry
points in the BZ. At this stage, it is relevant to ask whether
the spin winding always occurs around the nodal points. By
generalizing the single band model to include higher order
terms in the inversion asymmetric coupling of the type (sin k)3

or (sin k)5, we find that the spin winding is robust and it is not
affected by the modification of the g vector. Likewise, we also
obtain the spin windings for the B2 representation with nodal
points on the x and y axis. The spin winding does not always
appear even if there are point nodes in the bulk. Indeed, if the
d vector is parallel to the g vector on the Fermi surface like a
superconducting state with dx2−y2 + f -wave and dxy + p-wave
pairing symmetry, that is, θd = 0, π , then, the spin texture for
the holelike branch of the excited state has the same direction
as that in the normal state. It means that the spin texture
projected onto the electron space does not wind around the
point node and the topological spin texture does not appear
for this pairing configuration. Therefore, as a general remark,
the presence of point nodes does not guarantee the occurrence
of a spin winding that instead requires a θd amplitude that
deviates from 0 to π . Below, we show that this result obtained
for an effective single band model (Appendix 2) does not hold
when considering a more realistic multiorbital description of
the electronic structure.

Finally, for the case of the single band model we also
discuss the effects of introducing a small amplitude of the
spin-singlet pairing to study the case where spin-singlet and
spin-triplet pairing coexist (|�S| �= 0 and |�T| �= 0). One can
easily verify that the spin texture projected onto the electron

space in the superconducting state also winds around the point
node if the spin-singlet pairing exists.

III. SPIN-ORBITAL TEXTURE IN MULTIORBITAL
ELECTRONIC SYSTEMS

A. Model Hamiltonian in the normal state and
definition of spin-orbital texture

In order to deepen the relation between spin-winding and
nodal excitations beyond the single orbital description, we
consider a multiorbital model that includes both an OR term
and the atomic SO coupling. The Hamiltonian in the basis
[(↑,↓) ⊗ (dyz, dzx, dxy)] for the normal state [43] is given by

Ĥ (k) =−μσ̂0 ⊗ L̂0 + σ̂0 ⊗ ε̂(k) + λSO

∑
i=x,y,z

σ̂i ⊗ L̂i

+ �isσ̂0 ⊗ [gx(k)L̂x + gy(k)L̂y], (34)

with gx(k) = − sin ky, and gy(k) = sin kx. Here, ε̂(k) denotes
the matrix for the kinetic energy,

ε̂(k) =
⎛
⎝εyz(k) 0 0

0 εzx(k) 0
0 0 εxy(k)

⎞
⎠, (35)

and the kinetic energy for each orbital is given by

εyz(k) = 2t1(1 − cos ky) + 2t3(1 − cos kx ), (36)

εzx(k) = 2t1(1 − cos kx ) + 2t3(1 − cos ky), (37)

εxy(k) = 4t2 − 2t2(cos kx + cos ky) + �t, (38)

where t1 = t = 0.10, t2 = t , and t3 = 0.10t are the hopping
integral with representative amplitudes, �t = −0.50t is the
crystal field potential associated with the breaking of the
cubic symmetry. λSO and �is are the spin-orbit coupling con-
stant and the inversion symmetry breaking term, respectively.
L̂i (i = x, y, z) in the basis (dyz, dzx, dxy) denotes the orbital
angular momentum operator which is a projection of the L =
2 angular momentum operator onto the t2g subspace,

L̂x =
⎛
⎝0 0 0

0 0 i
0 −i 0

⎞
⎠, L̂y =

⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠,

L̂z =
⎛
⎝ 0 i 0

−i 0 0
0 0 0

⎞
⎠,

and L̂0 is a 3 × 3 unit matrix. In this system, there are six
nondegenerate bands at λSO �= 0 and �is �= 0.

From the diagonalization of the Hamiltonian in the three-
orbital model in the normal state, we obtain the six energy
bands and the six corresponding eigenstates. Similar to the
spin texture, we define the orbital texture by the expectation
values of the angular momentum operators. Then, in order to
determine the spin-orbital polarization, we calculate the six
expectation values of the orbital angular momentum operator
L̂i and the spin operator Ŝi for the corresponding eigenstates.
The spin-orbital polarization can be expressed in a compact
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notation as

〈Â〉n,k ≡ 〈φn(k)|Â|φn(k)〉,
Â = L̂x, L̂y, L̂z, Ŝx, Ŝy, Ŝz, (39)

where |φn(k)〉 (n = 1 ∼ 6) denotes the eigenstate which cor-
responds to the nth energy band. We can define the spin-
orbital texture when λSO �= 0 and �is �= 0 because the finite
values of λSO and �is lift spin degeneracy. In addition, owing
to the crystal symmetry which is described by the C4v point
group and the TR symmetry, which is similar to the single
orbital model, 〈Ŝz〉n,k and 〈L̂z〉n,k become zero in the normal
state. Hence, we can consider the spin (orbital) texture in
the normal state through the direction of the spin (orbital)
polarization in the xy plane θS(k) (θL(k)),

θS(k) = arg[〈Ŝx〉n,k + i〈Ŝy〉n,k], (40)

θL(k) = arg[〈L̂x〉n,k + i〈L̂y〉n,k], (41)

for each energy band index n. Moreover, we define the direc-
tion of the momentum k as θk = arg[kx + iky].

B. Spin-orbital texture in the normal state

In this subsection, we show the spin-orbital texture in the
normal state. A modification of the electronic amplitudes
does not qualitatively alter our conclusions. Then, in order
to evaluate the changeover of the spin-orbital texture we fix
λSO/t = 0.10 and vary �is/t [Fig. 3(a)] so as to tune the
hierarchy of the two SO interactions. The character of the spin
and orbital polarized states within the BZ depends on which
bands are taken at the Fermi level. In Fig. 3, we summarize
the two main features of the spin-orbital textures concerning
both the interrelation between the spin and orbital orientations
and the spin or orbital momentum locking. First, due to the
symmetry of the model Hamiltonian, the ISB leads to planar
nonvanishing spin and orbital polarizations at any given k
except for the high symmetry points with a relative angle,
θL(k) − θS(k), that is about uniform (collinear spin and orbital
components) in the BZ for the lowest occupied bands (i.e., 1,
2) [Fig. 3(b)]. Here, θS(k) (θL(k)) stands for the orientation of
spin (orbital) vector. The highest energy bands (i.e., 3, 4, 5, 6),
instead, exhibit a more intricate structure. Indeed, the spin and
orbital polarizations are not anymore collinear near the high
symmetry lines [Figs. 3(d) and 3(f)]. Such behavior is also
encountered in the relative orientation of the spin polarization
with respect to the direction of the momentum k set by the
angle θk. The spin is perpendicular to the momentum (i.e.,
θS(k) − θk ∼ ±π/2) only for the lowest occupied bands (i.e.,
1,2) [Fig. 3(c)]. On the contrary, the remaining electronic
states exhibit a nonisotropic spin-momentum pattern that can
be accounted for by the presence of higher than linear order in
the direct g-vector spin-momentum coupling [Figs. 3(e) and
3(g)]. This is a general behavior which is characteristic of the
interplay between the OR and the atomic SO coupling (see
also Sec. IV E).

FIG. 3. (a) Schematic description of the spin-orbital texture for
the three-orbital model in the normal state as a function of the band
index, from lowest to the highest occupied, and in terms of the OR
(�is) and atomic spin-orbit (λSO/t = 0.10) couplings. θS(k), θL(k),
θk denote the angle of the spin, orbital vectors and momentum k
measured with respect to the x axis. (b),(d),(f) denote the relative
angle between the spin and orbital polarization for the bands 1, 3,
5. (c),(e),(g) indicate the relative angle between the spin orientation
and the momentum within the BZ. The lowest occupied bands (i.e.,
1, 2) exhibit a Rashba-type spin-momentum locking. The remaining
bands are marked by spin textures with higher than the linear order
in the effective g-vector coupling and with a mixing of collinear and
noncollinear configurations for the L and S angular momentum. We
report only the spin-orbital pattern for the bands 1, 3, 5 because the
others are linked to these by TR symmetry.

IV. TOPOLOGICAL SPIN WINDING IN NODAL
TOPOLOGICAL SUPERCONDUCTORS

A. Definition of spin-orbital texture in the superconducting state

In the superconducting state, the BdG Hamiltonian in the
three-orbital model is given by

ĤBdG =
(

Ĥ (k) �̂

�̂† −Ĥt (−k)

)
. (42)

Here, since we focus on the local s-wave pairing, the super-
conducting order parameter associated with orbitals α and β

can be classified as an isotropic (s-wave) spin-triplet/orbital-
singlet d (α,β )-vector and s-wave spin-singlet/orbital-triplet
with amplitude ψ (α,β ) or as a mixing of both configura-
tions. With these assumptions, one can generally describe
the isotropic order parameter with spin-singlet and triplet
components as

�̂α,β =
(

�̂α↑,β↑ �̂α↑,β↓
�̂α↓,β↑ �̂α↓,β↓

)
,

= iσ̂y[ψ (α,β ) + σ̂ · d (α,β )], (43)
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with α and β standing for the orbital index, and having
for each channel three possible orbital flavors. Furthermore,
owing to the selected tetragonal crystal symmetry, one can
achieve three different types of interorbital pairings. The spin-
singlet configurations are orbital triplets and can be described
by a symmetric superposition of opposite spin states in differ-
ent orbitals. On the other hand, spin-triplet components can be
expressed by means of the following d vectors:

d (xy,yz) = (
d (xy,yz)

x , d (xy,yz)
y , d (xy,yz)

z

)
, (44)

d (xy,zx) = (
d (xy,zx)

x , d (xy,zx)
y , d (xy,zx)

z

)
, (45)

d (yz,zx) = (
d (yz,zx)

x , d (yz,zx)
y , d (yz,zx)

z

)
. (46)

We focus on the spin texture projected onto the electron space
in the first excited state. We define the electron component of
the spin operator in the three-orbital model as S̃e

i=x,y,z with

S̃e
i = 1

2 [1 + τ̂3] ⊗ Ŝi ⊗ L̂0. (47)

We then introduce the angle θSC1
S (k) representing the direction

of the spin operator in the xy plane as

θSC1
S (k) = arg

[〈ψ1(k)|S̃e
x |ψ1(k)〉 + i〈ψ1(k)|S̃e

y |ψ1(k)〉],
(48)

where |ψ1(k)〉 is the eigenstate of the first excited state in the
BdG Hamiltonian.

B. Spin winding for the interorbital B1 representation
in the three-orbital model

The starting point is to evaluate how the spin texture
changes in the SC state by focusing on the occurrence and
evolution of spin-winding numbers WS around the nodal
points. Such a feature sets the most striking changeover from
the normal to the superconducting phase because the normal
state does not exhibit local spin winding close to the point
nodes position. To do that we consider an interorbital spin-
triplet/orbital-singlet/s-wave SC state belonging to the B1

representation of the C4v point group [44] which is described
by

ψ (xy,yz) = ψ (xy,zx) = ψ (yz,zx) = 0,

d (yz,zx) = 0,
(49)

d (xy,yz)
z = d (xy,zx)

z = d (xy,zx)
y = d (xy,yz)

x = 0,

d (xy,zx)
x = d (xy,yz)

y = |�T|.
and we set the gap amplitude for this B1 representation as
|�T|/t = 1.0 × 10−3 and the chemical potential as μ/t =
0.35 in Fig. 4. The spin winding can be defined because the
z component of the spin texture is zero for this B1 represen-
tation. Such a configuration is well suited for our purposes
because it is known [44] to be energetically favorable in a
wide range of parameters and for this symmetry channel, the
superconductor is topologically nontrivial because it exhibits
nodal points along the diagonal of the BZ [Fig. 4(a)]. Then,
to single out the changeover of the SC spin texture from that
in the normal state we determine both patterns as reported in
Fig. 4(b). Remarkably, its investigation for the multiorbital
topological superconductor reveals that the spin winding is

FIG. 4. Spin texture of the lowest excited states corresponding
to the interorbital B1 superconducting phase (a) and corresponding
spin pattern in the normal state including the hole branch (b) at
λSO/t = 0.10, �is/t = 0.20, |�T|/t = 1.0 × 10−3, and μ/t = 0.35.
White circle indicates the nodal points. From (c) to (h) we zoom on
the spin texture of the superconducting excitations around the nodal
points for the corresponding bands at the Fermi level from the lowest
to the highest energy. The bands 1, 2, and 5 exhibit spin-winding
numbers around the nodal points (WS = ±1) while the excitations
associated with the bands 3 and 4 have uniform spin orientation
(WS = 0), and, finally, the band 6 has an incomplete winding around
the point node thus WS = 0.

not tied to the nodal point. Indeed, for a representative set of
parameters, we demonstrate that not all the excitations around
the nodal position manifest a spin winding.

The lowest occupied bands which are well described by
an effective single band model with Rashba-type SO coupling
have the same spin-winding numbers as those in the single
orbital model [Figs. 4(c) and 4(d)]. On the other hand, the
highest occupied bands which mainly arise from the (dyz, dzx )
orbitals and more significantly deviate from a Rashba-type
spin-momentum locking can be employed to prove the com-
plex topological structure of the spin winding in the BZ
[Figs. 4(e)–4(h)]. The obtained results clarify a fundamental
question on the way the spin winding around the nodal points
can vary undergoing a topological transition and, in turn,
affects the overall spin pattern of the excitations. We point out
that, if the superconductor manifests a Lifshitz-type electronic
transition by merging the nodal points having opposite chiral
winding numbers due to the chiral symmetry owed by the
SC Hamiltonian [32–34,44], then these two nodal points have
opposite spin-winding numbers and the spin winding is also
expected to disappear due to nodes annihilation and gap
formation in the spectrum. On the other hand, it is less obvious
to obtain a change of the spin-winding number without any
topological modification of the nodal electronic spectrum.
Hence, the investigated multiorbital superconductor allowed
us to uncover a novel path for topological transitions of the
spin winding. For the band 6 corresponding to the highest
occupied one, as we demonstrate in Fig. 5, the spin-winding
numbers for a given branch of the excitation spectra can be
removed by tuning the chemical potential [see Figs. 5(a) and
5(b)] and the transition occurs when a configuration with
zero spin amplitude can be obtained in the excitation states
[Figs. 5(d) and 5(f)]. Then we set the chemical potential as
μ/t = 0.35 in Fig. 5(a) and μ/t = 0.80 in Fig. 5(b). This
type of local topological transition is basically accompanied
by a global change of the topological spin-winding numbers
as sketched in Figs. 5(d) and 5(f). The presence of multiorbital
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FIG. 5. (a),(b) Demonstration of topological transition of spin-winding numbers for the band 6 as a function of the chemical potential
for a representative excitation branch around the nodal point at λSO/t = 0.10, �is/t = 0.20, and |�T|/t = 1.0 × 10−3. We set the chemical
potential as (a) μ/t = 0.35 and (b) μ/t = 0.80. Small circle denotes the nodal point. (c)–(e) schematically indicate the global rearrangement of
the spin-winding numbers WS with the occurrence at the critical amplitude of the chemical potential (μc) of lines of zero spin amplitude (green
dotted line) connecting the TR corresponding nodal points. The sum of the spin-winding numbers around the nodal points and the center of the
BZ is conserved from (c) to (e). (f) Schematic image of the change of the spin-winding number without the deformation of superconducting
gap structure. Spin-winding numbers can move the line between two nodal points where the amplitude of spin polarization is zero.

components in the superconductor is a fundamental requisite
to achieve a quenching of the spin-momentum amplitude due
to contributions of inequivalent orbital states.

C. Gap amplitude dependence and comparison with
the interorbital A1 representation

Based on the results of the previous subsection, we also
consider the spin texture as a function of the gap amplitude
|�T| and for the interorbital A1 representation. In Figs. 6(a),
6(b) and 6(c), we show how the electron component of the
spin polarization pattern evolves by tuning the number of

FIG. 6. The direction of the electron component of the spin
polarization in the superconducting state for (a)–(c) B1 and (e) A1

pairing symmetry representations in the three-orbital model at the
chemical potential μ/t = 0.35. The z component of expectation
value of spin in the three-orbital model for the A1 representation
is reported in (d). We set the gap amplitude |�T|/t = 1.0 × 10−3

for (a) and (e), |�T|/t = 4.0 × 10−2 for (b), and |�T|/t = 0.10 for
(c). (f) The direction of the spin texture corresponding to the first
excited state in the normal state with λSO/t = 0.10, �is/t = 0.20,
and μ/t = 0.35.

point nodes through a variation of the chemical potential for
the superconducting configuration belonging to the B1 repre-
sentation at μ/t = 0.35. We can compare these spin textures
with those of the normal state in Fig. 6(f). With the increase
of the gap amplitude |�T|, the two nodal points with opposite
spin-winding number annihilate by the Lifshitz transition as
we pointed out in the previous subsection. Figure 6(d) is the
z component of expectation value of spin operator at μ/t =
0.35 in the three-orbital model for the A1 representation where
the interorbital pairing is described by

ψ (xy,yz) = ψ (xy,zx) = ψ (yz,zx) = 0,

d (yz,zx)
x = d (yz,zx)

y = 0,

d (xy,yz)
z = d (xy,zx)

z = d (xy,zx)
y = d (xy,yz)

x = 0, (50)

d (yz,zx)
z = −d (zx,yz)

z = |�T|,
d (xy,zx)

x = −d (xy,yz)
y = |�T|.

It becomes nonzero in the BZ owing to the spin-triplet/orbital-
singlet (dyz↑, dzx↓) s-wave pairing. In Fig. 6(e), we show the
orientation of spin texture in the component of the xy plane
for the interorbital A1 representation at μ/t = 0.35. Then the
spin texture does not exhibit a topological structure. Hence,
one can define the topological spin-winding texture for the
A1 representation only by specifying the axis with respect to
which the spin winds. On the other hand, we can uniquely
define the in-plane spin winding in the effective single orbital
model because both d vector and g vector lie on the xy plane
as shown in Appendix 2.

D. Orbital texture for the interorbital B1 representation

After having investigated the pattern of the spin polariza-
tion, we focus on the orbital texture for the configuration
of interorbital pairing with B1 symmetry. Due to the orbital
singlet nature of the superconducting state, the orbital texture
does not exhibit any orbital winding around the nodal points
as shown in Fig. 7. Although the analysis is focused on the
role of spin-triplet pairing, by analogy one would get similar
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FIG. 7. Orbital texture of the lowest excited states corresponding
to the interorbital B1 superconducting phase (a) and corresponding
spin pattern in the normal state including the hole branch (b) at
λSO/t = 0.10, �is/t = 0.20, |�T|/t = 1.0 × 10−3, and μ/t = 0.35.
White circle indicates the nodal points. From (c) to (h) we zoom in on
the spin texture of the superconducting excitations around the nodal
points for the corresponding bands at the Fermi level from the lowest
to the highest energy. There are no orbital windings for all of the
bands.

signatures when considering orbital-triplet with spin-singlet
configurations.

E. Single orbital model with higher order g vector
and d vector with B1 symmetry

Finally, we demonstrate the consequences of higher order
g and d vectors in the single orbital model and compare the
obtained spin polarization pattern with the spin texture arising
in the three-orbital model. We adopt the third and fifth order
g vectors g3 and g5, and the third order d vector for the B1

representation d3B1 . Then the BdG Hamiltonian in the single
orbital model is given by

ĤBdG(k) =
(

ĥ(k) �̂(k)
�̂†(k) −ĥ∗(−k)

)
,

ĥ(k) = ε(k)σ̂0

+ [�Rg(k) + �3Rg3(k) + �5Rg5(k)] · σ̂
�̂(k) = iσ̂yσ̂ · [(1 − f )dB1 (k) + f d3B1 (k)], (51)

and g vectors and d vectors are defined as

g(k) = (sin ky,− sin kx, 0), (52)

g3(k) = g(1)
3 (k) + g(2)

3 (k), (53)

g(1)
3 (k) = a1((1 − cos kx ) sin ky,−(1 − cos ky) sin kx, 0),

(54)

g(2)
3 (k) = a2((1 − cos ky) sin ky,−(1 − cos kx ) sin kx, 0),

(55)

g5(k) = (cos kx − cos ky)

× ((cos kx − 1) sin ky, (cos ky − 1) sin kx, 0), (56)

dB1 (k) = |�T|(sin ky, sin kx, 0), (57)

d3B1 (k) = |�T|(cos kx − cos ky)g. (58)

Here, we neglect z components of d vector and g vector since
we are considering the C4v point group.

FIG. 8. The direction of the spin-texture projected onto the elec-
tron space in the superconducting state in the single band model
(a) with g and d3B1 vectors and (b),(c) with g, g3, g5, d1B1 , and d3B1

vectors at �R = 8.0 × 10−2, and |�T|/t = 1.0 × 10−3. Black solid
line is the Fermi surface at (a) μ/t = 0.25 and (b),(c) μ/t = 0.85.
(b)[(c)] is a magnified view around the point node on the outer
(inner) Fermi surface. We set the parameters at �3R = �5R = 0.0,
rs = 0.0, and f = 1.0 for (a) and �3R = 0.70, a1 = 1.0, a2 = −1.0,
�5R = 1.0, and f = 0.99 for (b) and (c).

Figure 8(a) reports the angular dependence of the electron
component of the spin polarization for the first excited state
of the superconducting spectrum in the single band model as-
suming g and d3B1 vectors at μ/t = 0.25. Here, we cannot de-
fine the spin polarization for the holelike branch of the excited
state due to d3B1 = (0, 0, 0) in the diagonal direction. In ad-
dition, the spin orientation for the holelike band has the same
direction as that for the electronlike band because d3B1 vector
is parallel to g vector in the BZ. In Figs. 8(b) and 8(c), we
show explicitly the resulting spin-texture pattern in the super-
conducting state with g, g3, g5, d1B1 , and d3B1 vectors at μ/t =
0.85. In these figures, we set the ratio of dB1 and d3B1 vector as
f = 0.99. The result indicates that the spin polarization winds
around the point nodes only when f is not equal to 1.

V. CONCLUSIONS

We demonstrated that the spin-orbital texture of noncen-
trosymmetric superconductors with TR symmetry can unveil
fundamental aspects of the pairing state. A mismatch of the
spin (orbital) polarizations from the normal to the supercon-
ducting state can set the hallmarks of the presence of non-
trivial spin- (orbital) triplet vectors. We clarified that the spin
winding around the nodal state can appear for the B1 and B2
pairings in the C4v point group because of differences of the
windings of d and g vectors. We note that this kind of pairing
can be realized energetically when the interorbital interactions
are dominant in the attractive interactions [44]. Furthermore,
these phases can also include spin-singlet pairings (dx2−y2 and
dxy wave) owing to the ISB.

Remarkably, for pairing configurations having nodal exci-
tations we expect to observe a local spin (or orbital) winding
which can undergo topological transitions without any change
in the electronic spectrum. Such behavior is fundamentally
tied to the degree of spin-orbital entanglement of the SC state
and to a spin-momentum coupling which deviates from the
Rashba type, thus one may expect to encounter it in realistic
electronic systems with ISB. Our findings can have various
experimentally accessible consequences. First, due to the
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recent advancements of the application of circularly-polarized
spin- and angle-resolved photoemission spectroscopy, one
can employ a combination of orbital selectivity of circularly
polarized light with spin detection to directly and indepen-
dently access the spin and orbital vectors throughout the BZ.
This experimental technique is challenging and in continuous
development especially when dealing with the spin detection
of states with mixed orbital symmetry [45] or with coherent
spin phenomena in photoexcited states [46].

Apart from ARPES, a weak perturbation due to an external
magnetic field can lead to unconventional magnetic response
with anomalous spin and orbital susceptibility. Indeed, in
nodal semimetals a changeover from large diamagnetic to
paramagnetic susceptibility can be achieved when the Fermi
energy moves from above to below the band crossing point.
This has been theoretically demonstrated [47] and experimen-
tally observed [48] in materials with large Rashba SO cou-
pling. In analogy, similar effects can be also expected for the
achieved nodal superconductors with the spin- and orbital tex-
tures that contribute to yield an anomalous magnetic response.

Alternatively, one can also expect a variation of supercon-
ducting pairing symmetry due to weak external mechanical
deformations [49,50]. Other experimental probes might in-
volve the measurement of the angular dependent specific heat
[51,52] or thermal conductivity [53]. Apart from detecting the
position of the nodal points under a magnetic field rotated
with respect to the crystal axes, the spin-orbital structure of
the nodal points can manifest into nonstandard features in the

specific heat or thermal conductivity behavior, e.g., existence
of inequivalent gaps in the spin, orbital, and charge excita-
tions, spin-orbital dependent Andreev bound states within the
vortex core, etc.
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APPENDIX

1. Perturbation theory in the superconducting state
in the single orbital model

In this Appendix, we show the spin texture for the holelike
branch in the equations (21) and (22) analytically by the per-
turbation theory. The eigenstates within the first order pertur-
bation |
 (1)

n=c,d〉(|
n〉 = |
 (0)
n 〉 + |
 (1)

n 〉 + · · · ) are given by

∣∣
 (1)
c

〉 = − α̂
†
+�̂β̂+

2[−μ + ε(k)]

(
α̂+
0

)
− α̂

†
−�̂β̂+

2[−μ + ε(k) − �gz(k)]

(
α̂−
0

)

= − �↑,↑
2[−μ + ε(k)]

(
α̂+
0

)
− �↓,↑

2[−μ + ε(k) − �gz(k)]

(
α̂−
0

)
, (A1)

∣∣
 (1)
d

〉 = − α̂
†
+�̂β̂−

2[−μ + ε(k) + �gz(k)]

(
α̂+
0

)
− α̂

†
−�̂β̂−

2[−μ + ε(k)]

(
α̂−
0

)

= − �↑,↓
2[−μ + ε(k) + �gz(k)]

(
α̂+
0

)
− �↓,↓

2[−μ + ε(k)]

(
α̂−
0

)
. (A2)

Then, we can calculate the expectation values of the spin operators for the hole branch of the first excited state of the BdG
spectrum within the first order perturbation. For |
3〉 and |
4〉 we have

〈
c|S̃e
i |
c〉 = |�↑,↑|2

4[−μ + ε(k)]2
α̂

†
+Ŝiα̂+ + |�↓,↑|2

4[−μ + ε(k) − �gz(k)]2
α̂

†
−Ŝiα̂−

+ �∗
↑,↑�↓,↑

4[−μ + ε(k)][−μ + ε(k) − �gz(k)]
α̂

†
+Ŝiα̂− + �↑,↑�∗

↓,↑
4[−μ + ε(k)][−μ + ε(k) − �gz(k)]

α̂
†
−Ŝiα̂+, (A3)

〈
d |S̃e
i |
d〉 = |�↑,↓|2

4[−μ + ε(k) + �gz(k)]2
α̂

†
+Ŝiα̂+ + |�↓,↓|2

4[−μ + ε(k)]2
α̂

†
−Ŝiα̂−

+ �↓,↓�∗
↑,↓

4[−μ + ε(k)][−μ + ε(k) + �gz(k)]
α̂

†
+Ŝiα̂− + �∗

↓,↓�↑,↓
4[−μ + ε(k)][−μ + ε(k) + �gz(k)]

α̂
†
−Ŝiα̂+. (A4)

Here, α̂
†
+Ŝiα̂+ and related terms denote the expectation values of the spin operators in the normal state,

α̂
†
+Ŝxα̂+ = 0, α̂

†
+Ŝyα̂+ = 0,

α̂
†
+Ŝzα̂+ = 1

2 ,

α̂
†
−Ŝxα̂− = 0, α̂

†
−Ŝyα̂− = 0,

α̂
†
−Ŝzα̂− = − 1

2 ,

104524-10
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and for the terms of the type α̂
†
+Ŝiα̂− we have

α̂
†
+Ŝxα̂− = 1

2
, α̂

†
+Ŝyα̂− = − i

2
,

α̂
†
+Ŝzα̂− = 0, α̂

†
−Ŝxα̂+ = 1

2
,

α̂
†
−Ŝyα̂+ = i

2
, α̂

†
−Ŝzα̂+ = 0 .

Moreover, the d vector given in Eq. (18) can be expressed
in terms of the relative angle with respect to the g vector

providing the following quantities,

|�↑,↑|2 = |�↓,↓|2 = |�T|2|d(k)|2 sin2 θd ,

|�↑,↓|2 = |�↓,↑|2 = |�T|2|d(k)|2 cos2 θd ,

�∗
↑,↑�↓,↑ = −|�T|2|d(k)|2eiφd sin θd cos θd ,

�∗
↓,↓�↑,↓ = |�T|2|d(k)|2e−iφd sin θd cos θd .

Hence, the expectation values of the spin operators projected
onto the electron space for the holelike branch of the first
excited state are given by

〈
c|S̃e
x |
c〉 = −|�T|2|d(k)|2

2

cos φd sin θd cos θd

2[−μ + ε(k)][−μ + ε(k) − �gz(k)]
, (A5)

〈
c|S̃e
y |
c〉 = −|�T|2|d(k)|2

2

sin φd sin θd cos θd

2[−μ + ε(k)][−μ + ε(k) − �gz(k)]
, (A6)

〈
c|S̃e
z |
c〉 = |�T|2|d(k)|2

2

[
sin2 θd

4[−μ + ε(k)]2
− cos2 θd

4[−μ + ε(k) − �gz(k)]2

]
, (A7)

〈
d |S̃e
x |
d〉 = |�T|2|d(k)|2

2

cos φd sin θd cos θd

2[−μ + ε(k)][−μ + ε(k) + �gz(k)]
, (A8)

〈
d |S̃e
y |
d〉 = |�T|2|d(k)|2

2

sin φd sin θd cos θd

2[−μ + ε(k)][−μ + ε(k) + �gz(k)]
, (A9)

〈
d |S̃e
z |
d〉 = −|�T|2|d(k)|2

2

[
sin2 θd

4[−μ + ε(k)]2
− cos2 θd

4[−μ + ε(k) + �gz(k)]2

]
. (A10)

If | − μ + ε(k)| 
 |�gz(k)|, we obtain the equations (21) and
(22).

2. Derivation of single orbital effective description
from the three-orbital model with atomic spin-orbit

and orbital Rashba couplings

Next, we construct the effective single orbital low-energy
description near the � point starting from the three-orbital
model which describes a two-dimensional noncentrosymmet-
ric electronic system with tetragonal symmetry including the
atomic spin-orbit and the orbital Rashba coupling. The aim is
to compare the spin polarization obtained in the single orbital
model with that of the full multiorbital model.

To obtain the effective single orbital model for the normal
state electronic structure near the � point from the three-
orbital model we employ the following perturbation scheme
separating the Hamiltonian in two parts,

Ĥ = Ĥ0 + Ĥ ′, (A11)

Ĥ0 = ε̂(k), (A12)

Ĥ ′ = λSO

∑
i=x,y,z

σ̂i ⊗ L̂i

+�isσ̂0 ⊗ [sin kxL̂y − sin kyL̂x]. (A13)

Importantly, due to the two-dimensional confinement, the dxy

orbital is generally well separated from the (dzx, dyz ) orbitals
by the crystal field potential �t . In the normal state of Ĥ0,
the dxy orbital has the lowest energy among the three orbitals
and the energy of the dxy orbital is −�t lower than dyz and

dzx orbitals. We can consider the following process |xy,↑〉 →
|xy,↓〉 within the second order perturbation,

−〈xy,↓|Ĥ ′|yz,↑〉〈yz,↑|Ĥ ′|xy,↑〉
Eyz − Exy

= iλSO�is sin kx

�t
,

(A14)

−〈xy,↓|Ĥ ′|yz,↓〉〈yz,↓|Ĥ ′|xy,↑〉
Eyz − Exy

= iλSO�is sin kx

�t
,

(A15)

−〈xy,↓|Ĥ ′|zx,↑〉〈zx,↑|Ĥ ′|xy,↑〉
Ezx − Exy

= −λSO�is sin ky

�t
,

(A16)

−〈xy,↓|Ĥ ′|zx,↓〉〈zx,↓|Ĥ ′|xy,↑〉
Ezx − Exy

= −λSO�is sin ky

�t
,

(A17)

with Eyz = −�t and Eyz = 0. Likewise, we can consider the
following process |xy,↓〉 → |xy,↑〉 within the second order
perturbation,

−〈xy,↑|Ĥ ′|yz,↓〉〈yz,↓|Ĥ ′|xy,↓〉
Eyz − Exy

= − iλSO�is sin kx

�t
,

(A18)

−〈xy,↑|Ĥ ′|yz,↑〉〈yz,↑|Ĥ ′|xy,↓〉
Eyz − Exy

= − iλSO�is sin kx

�t
,

(A19)
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−〈xy,↑|Ĥ ′|zx,↓〉〈zx,↓|Ĥ ′|xy,↓〉
Ezx − Exy

= −λSO�is sin ky

�t
,

(A20)

−〈xy,↑|Ĥ ′|zx,↑〉〈zx,↑|Ĥ ′|xy,↓〉
Ezx − Exy

= −λSO�is sin ky

�t
,

(A21)

then, in the subspace spanned by the states |xy,↓〉, |xy,↑〉 we
obtain the effective low energy Hamiltonian in the normal
state,

h̃(k) =
(

ε↑,↑(k) ε↑,↓(k)
ε↓,↑(k) ε↓,↓(k)

)
, (A22)

= εxy(k)σ̂0 + �R[gx(k)σ̂x + gy(k)σ̂y], (A23)

g(k) = (sin ky,− sin kx, 0), (A24)

with �R = −2λSO�is/�t . Then, the elements of the Hamil-
tonian in the effective model ε↓,↑(k) and ε↑,↓(k) are derived
as

ε↓,↑(k) = −
∑

l �=xy,σ

〈xy,↓|Ĥ ′|l, σ 〉〈l, σ |Ĥ ′|xy,↑〉
El − Exy

= �R[sin ky − i sin kx], (A25)

ε↑,↓(k) = −
∑

l �=xy,σ

〈xy,↑|Ĥ ′|l, σ 〉〈l, σ |Ĥ ′|xy,↓〉
El − Exy

= �R[sin ky + i sin kx], (A26)

where l = yz, zx, xy are the indices of the d orbitals and σ =
↑,↓ indicate the spin polarizations. On the other hand, be-
cause there are no processes |xy,↑〉 → |xy,↑〉 and |xy,↓〉 →
|xy,↓〉 within the second order perturbation, we obtain

ε↑,↑(k) = ε↓,↓(k) = εxy(k). (A27)

The effective low energy description is then expressed as a
single-orbital model with a Rashba-type spin-orbit coupling.

In a similar fashion, for the superconducting state one
considers the following perturbation scheme,

ĤBdG = Ĥ0
BdG + Ĥ ′

BdG, (A28)

Ĥ0
BdG =

(
ε̂(k) 0

0 −ε̂(−k)

)
, (A29)

Ĥ ′
BdG =

(
ĤSO 0

0 −Ĥt
SO

)
+

(
Ĥis(k) 0

0 −Ĥt
is(−k)

)

+
(

0 �̂

�̂† 0

)
, (A30)

ĤSO = λSO

∑
i=x,y,z

σ̂i ⊗ L̂i, (A31)

Ĥis(k) = �isσ̂0 ⊗ [sin kxL̂y − sin kyL̂x]. (A32)

The energy of |yz, σ, h〉 and |zx, σ, h〉 states is −�t lower than
that of |xy, σ, h〉 state. Here σ = ↑,↓ denotes the spin of the

electron and hole. The effective BdG Hamiltonian from the
three-orbital model is given by

H̃BdG =
(

h̃(k) �̃

�̃† −h̃t (−k)

)
, (A33)

�̃(k) =
(

�↑,↑ �↑,↓
�↓,↑ �↓,↓

)
,

=
(

�↑,↑ �S
↑,↓ + �T

↑,↓
�S

↓,↑ + �T
↓,↑ �↓,↓

)
. (A34)

This effective Hamiltonian can be obtained by the following
processes within the second order perturbation,

− 〈xy,↑, e|Ĥ ′
BdG|yz,↑, h〉〈yz,↑, h|Ĥ ′

BdG|xy,↑, h〉
Eyz,h − Exy

= i�is�xy↑,yz↑ sin kx

�t
, (A35)

− 〈xy,↑, e|Ĥ ′
BdG|yz,↑, e〉〈yz,↑, e|Ĥ ′

BdG|xy,↑, h〉
Eyz,e − Exy

= i�is�xy↑,yz↑ sin kx

�t
, (A36)

− 〈xy,↑, e|Ĥ ′
BdG|zx,↑, h〉〈zx,↑, h|Ĥ ′

BdG|xy,↑, h〉
Eyz,h − Exy

= i�is�xy↑,zx↑ sin ky

�t
, (A37)

− 〈xy,↑, e|Ĥ ′
BdG|zx,↑, e〉〈zx,↑, e|Ĥ ′

BdG|xy,↑, h〉
Eyz,e − Exy

= i�is�xy↑,zx↑ sin ky

�t
, (A38)

− 〈xy,↓, e|Ĥ ′
BdG|yz,↓, h〉〈yz,↓, h|Ĥ ′

BdG|xy,↑, h〉
Eyz,h − Exy

= −λSO�xy↓,yz↓
�t

, (A39)

− 〈xy,↓, e|Ĥ ′
BdG|yz,↓, e〉〈yz,↓, e|Ĥ ′

BdG|xy,↑, h〉
Eyz,e − Exy

= λSO�xy↑,yz↑
−�t

, (A40)

− 〈xy,↓, e|Ĥ ′
BdG|zx,↓, h〉〈zx,↓, h|Ĥ ′

BdG|xy,↑, h〉
Ezx,h − Exy

= iλSO�xy↓,zx↓
�t

, (A41)

− 〈xy,↓, e|Ĥ ′
BdG|zx,↓, e〉〈zx,↓, e|Ĥ ′

BdG|xy,↑, h〉
Ezx,e − Exy

= − iλSO�xy↑,zx↑
�t

, (A42)

− 〈xy,↓, e|Ĥ ′
BdG|yz,↓, e〉〈yz,↓, e|Ĥ ′

BdG|xy,↑, h〉
Eyz,e − Exy

= −i�is�xy↑,yz↓ sin kx

�t
, (A43)
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− 〈xy,↓, e|Ĥ ′
BdG|yz,↑, h〉〈yz,↑, h|Ĥ ′

BdG|xy,↑, h〉
Eyz,h − Exy

= i�is�xy↑,yz↓ sin kx

−�t
, (A44)

− 〈xy,↓, e|Ĥ ′
BdG|zx,↓, e〉〈zx,↓, e|Ĥ ′

BdG|xy,↑, h〉
Ezx,e − Exy

= −i�is�xy↑,zx↓ sin ky

�t
, (A45)

− 〈xy,↓, e|Ĥ ′
BdG|zx,↑, h〉〈zx,↑, h|Ĥ ′

BdG|xy,↑, h〉
Ezx,h − Exy

= − i�is�xy↑,zx↓ sin ky

�t
, (A46)

− 〈xy,↑, e|Ĥ ′
BdG|yz,↑, h〉〈yz,↑, h|Ĥ ′

BdG|xy,↓, h〉
Eyz,h − Exy

= λSO�xy↑,yz↑
�t

, (A47)

− 〈xy,↑, e|Ĥ ′
BdG|yz,↓, e〉〈yz,↓, e|Ĥ ′

BdG|xy,↓, h〉
Eyz,e − Exy

= −λSO�xy↓,yz↓
−�t

, (A48)

− 〈xy,↑, e|Ĥ ′
BdG|zx,↑, h〉〈zx,↑, h|Ĥ ′

BdG|xy,↓, h〉
Ezx,h − Exy

= iλSO�xy↑,zx↑
�t

, (A49)

− 〈xy,↑, e|Ĥ ′
BdG|zx,↓, e〉〈zx,↓, e|Ĥ ′

BdG|xy,↓, h〉
Ezx,e − Exy

= iλSO�xy↓,yz↓
−�t

, (A50)

− 〈xy,↑, e|Ĥ ′
BdG|yz,↑, e〉〈yz,↑, e|Ĥ ′

BdG|xy,↓, h〉
Eyz,e − Exy

= − i�is�xy↓,yz↑ sin kx

�t
, (A51)

− 〈xy,↑, e|Ĥ ′
BdG|yz,↓, h〉〈yz,↓, h|Ĥ ′

BdG|xy,↓, h〉
Eyz,h − Exy

= − i�is�xy↓,yz↑ sin kx

�t
, (A52)

− 〈xy,↑, e|Ĥ ′
BdG|zx,↑, e〉〈zx,↑, e|Ĥ ′

BdG|xy,↓, h〉
Ezx,e − Exy

= − i�is�xy↓,zx↑ sin kx

�t
, (A53)

− 〈xy,↑, e|Ĥ ′
BdG|zx,↓, h〉〈zx,↓, h|Ĥ ′

BdG|xy,↓, h〉
Ezx,h − Exy

= − i�is�xy↓,zx↑ sin kx

�t
, (A54)

− 〈xy,↓, e|Ĥ ′
BdG|yz,↓, h〉〈yz,↓, h|Ĥ ′

BdG|xy,↓, h〉
Eyz,h − Exy

= i�is�xy↓,yz↓ sin kx

�t
, (A55)

− 〈xy,↓, e|Ĥ ′
BdG|yz,↓, e〉〈yz,↓, e|Ĥ ′

BdG|xy,↓, h〉
Eyz,e − Exy

= i�is�xy↓,yz↓ sin kx

�t
, (A56)

− 〈xy,↓, e|Ĥ ′
BdG|zx,↓, h〉〈zx,↓, h|Ĥ ′

BdG|xy,↓, h〉
Ezx,h − Exy

= i�is�xy↓,zx↓ sin kx

�t
, (A57)

− 〈xy,↓, e|Ĥ ′
BdG|zx,↓, e〉〈zx,↓, e|Ĥ ′

BdG|xy,↓, h〉
Ezx,e − Exy

= i�is�xy↓,zx↓ sin kx

�t
, (A58)

with Eyz,h = Ezx,h = �t and Eyz,e = Ezx,e = −�t . Then, we
obtain the elements of the BdG Hamiltonian in the effective
single orbital description for the dxy band �↑,↑, �↑,↓, �↓,↑,
and �↓,↓,

�↑,↑ = −
∑

l �=xy,σ,τ

〈xy,↑, e|Ĥ ′
BdG|l, σ, τ 〉〈l, σ, τ |Ĥ ′

BdG|xy,↑, h〉
El,τ − Exy

= 2i�is

�t
[�xy↑,yz↑ sin kx + �xy↑,zx↑ sin ky], (A59)

�↓,↑ = −
∑

l �=xy,σ,τ

〈xy,↓, e|Ĥ ′
BdG|l, σ, τ 〉〈l, σ, τ |Ĥ ′

BdG|xy,↑, h〉
El,τ − Exy

= �S
↓,↑ + �T

↓,↑. (A60)

�S
↓,↑ = − iλSO

�t
[�xy↑,yz↑ + �xy↓,yz↓ + i�xy↑,zx↑ − i�xy↓,zx↓], (A61)

�T
↓,↑ = −2i�is

�t
[�xy↑,yz↓ sin kx + �xy↑,zx↓ sin ky]. (A62)

�↑,↓ = −
∑

l �=xy,σ,τ

〈xy,↑, e|Ĥ ′
BdG|l, σ, τ 〉〈l, σ, τ |Ĥ ′

BdG|xy,↓, h〉
El,τ − Exy

= �S
↑,↓ + �T

↑,↓, (A63)

104524-13



YURI FUKAYA et al. PHYSICAL REVIEW B 100, 104524 (2019)

�S
↑,↓ = iλSO

�t
[�xy↑,yz↑ + �xy↓,yz↓ + i�xy↑,zx↑ − i�xy↓,zx↓], (A64)

�T
↑,↓ = −2i�is

�t
[�xy↓,yz↑ sin kx + �xy↓,zx↑ sin ky], (A65)

�↓,↓ = −
∑

l �=xy,σ,τ

〈xy,↓, e|Ĥ ′
BdG|l, σ, τ 〉〈l, σ, τ |Ĥ ′

BdG|xy,↓, h〉
El,τ − Exy

= 2i�is

�t
[�xy↓,yz↓ sin kx + �xy↓,zx↓ sin ky], (A66)

where τ = e, h is the index of electron and hole space and
superscript S and T are the spin-singlet and spin-triplet pairing
in the (↑,↓) sector of the gap function, respectively.

For the B1 representation in the point group C4v , the gap
function in the effective model is

�↑,↑ = ∣∣�T
0

∣∣(− sin ky + i sin kx ), (A67)

�↑,↓ = �↓,↑ = 0, (A68)

�↓,↓ = ∣∣�T
0

∣∣(sin ky + i sin kx ), (A69)

with |�T
0 | = |2i|�T|d (xy,yz)

y |/�t . Hence, we can obtain the d
vector for the B1 representation in the effective model:

dx(k) = 1

2
[�↓,↓ − �↑,↑] = ∣∣�T

0

∣∣ sin ky,

dy(k) = 1

2i
[�↑,↑ + �↓,↓] = ∣∣�T

0

∣∣ sin kx, (A70)

dz(k) = �T
↑,↓ = 0.

It corresponds to the base functions of the spin-triplet pairing
for the B1 representation in the C4v point group. On the other

hand, we obtain the gap function in the effective model for the
A1 representation,

�↑,↑ = ∣∣�T
0

∣∣(sin ky + i sin kx ), (A71)

�T
↑,↓ = �T

↓,↑ = 0, (A72)

�S
↑,↓ = −�S

↓,↑ = ∣∣�S
0

∣∣, (A73)

�↓,↓ = ∣∣�T
0

∣∣(− sin ky + i sin kx ), (A74)

∣∣�S
0

∣∣ = −4λSOd (xy,yz)
y

�t
. (A75)

Therefore, the pairings for the A1 representation in the effec-
tive single orbital model are

ψ = �S
↑,↓ = ∣∣�S

0

∣∣,
dx(k) = 1

2
[�↓,↓ − �↑,↑] = −|�T

0 | sin ky,

(A76)

dy(k) = 1

2i
[�↑,↑ + �↓,↓] = |�T

0 | sin kx,

dz(k) = �T
↑,↓ = 0.

This d vector corresponds to the s + p wave for the A1

representation in the C4v point group and it is parallel to the g
vector in the BZ.
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