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We study the interplay of interactions and topology in a pseudospin Weyl system, obtained from a minimally
modified Hubbard model, using the numerically exact auxiliary-field quantum Monte Carlo method comple-
mented by mean-field theory. We find that the pseudospin plays a key role in the structure of the pairing
amplitude. An attractive on-site interaction leads to pairing between quasiparticles carrying opposite spin and
opposite topological charge, resulting in the formation of real-spin singlet pairs that are a mixture of pseudospin
singlet and pseudospin triplet. Our results provide a detailed characterization of the exotic pairing behavior in
this system, and they represent an important step toward a more complete understanding of superconductivity
in the context of topological band structures, which will help guide searches for topological superconductivity
in real materials and ultracold atoms.
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I. INTRODUCTION

Pairing and superconductivity have been focal points of
condensed-matter physics for several decades, whereas the
comparatively modern discovery of topological materials has
generated intense recent interest in the role of topology in
condensed-matter systems. The microscopic, many-body ori-
gins of superconductivity are the subject of an expansive
body of theoretical and computational work, while exhaustive
schemes have been developed to classify topological systems
based on symmetries of the Hamiltonian and band structure.
There is a fundamental conceptual division between these
efforts; pairing is a many-body behavior that only emerges
in the presence of electron interactions, while topological
behavior is typically characterized by the noninteracting one-
body picture. A successful unification of these concepts is
a crucial step toward a more complete treatment of many
intriguing problems, including topological superconductivity.
Given the enticing potential applications of these ideas in
quantum computing and information, a detailed quantitative
description is a compelling open challenge.

Since the inception of the Hubbard model, quantum lattice
models have served as a testbed for theories of pairing and
superconductivity. One prominent example is the repulsive
Hubbard model, which has been at the center of a persis-
tent and ongoing effort to understand the origin and mecha-
nisms of superconductivity in the cuprates. These models are
broadly relevant across condensed matter, nuclear, and atomic
physics, and most recently in the context of ultracold atoms,
which offer the possibility of high-accuracy and finely tunable
experimental realizations of a variety of lattice models [1,2].

While pairing has been a central theme of condensed-
matter research for over 60 years, the past decade has seen
the emergence of new classes of materials with topological
character, in particular the class of Weyl semimetals [3–8],
which have revolutionized condensed-matter physics. These
materials are especially interesting because they become su-
perconducting at sufficiently low temperature [9–14]. The

presence of superconductivity in these Weyl systems prompts
an intriguing question: to what extent is the superconductivity
due to Weyl fermions that seem to be present near the Fermi
energy?

Here we introduce a simple lattice fermion model, which is
a straightforward extension of the two-dimensional (2D) Hub-
bard model, with Weyl quasiparticles near the Fermi surface
that interact via on-site attraction. Other models of Weyl sys-
tems have been studied either without interactions [15] or at
the mean-field level [16,17], but these mean-field approaches
are approximative and their results can be unreliable. Exact
diagonalization, while free of approximations, is limited to
very small-sized systems, and is therefore unsuitable for the
detection of long-range correlations and pairing. Quantum
Monte Carlo methods, based on the truly underlying degrees
of freedom, the electrons, have demonstrated unique capabil-
ity in the treatment of strongly correlated many-body systems,
including systems with fermionic pairing [18–22]. However,
many lattice models with topological character suffer from
the fermion sign problem, so very few unbiased many-body
studies of strongly correlated topological systems have been
done [23–26], and a quantitative description of pairing in these
systems remains an important goal.

With a minimal modification to the well-known attractive
Hubbard model, we obtain a Hamiltonian whose one-body
term describes a Weyl system, even in the absence of spin-
orbit coupling. The one-body part is a set of stacked 1D
Su-Schrieffer-Heeger (SSH) chains [27] coupled via an in-
terchain hopping term to form a 2D lattice. The addition of
interactions, which render the model analytically intractable
and exceptionally computationally challenging, leads to the
emergence of several exotic behaviors including pairing be-
tween Weyl quasiparticles. We find that with suitable hopping
parameters, the system supports a phase with pairs com-
posed of quasiparticles from the same pseudohelicity branch,
but of opposite topological charge (chirality). We study the
model using the cutting-edge auxiliary-field quantum Monte
Carlo (AFQMC) method, complemented by mean-field theory

2469-9950/2019/100(10)/104522(14) 104522-1 ©2019 American Physical Society

https://orcid.org/0000-0001-7164-3140
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.104522&domain=pdf&date_stamp=2019-09-20
https://doi.org/10.1103/PhysRevB.100.104522


ROSENBERG, ARYAL, AND MANOUSAKIS PHYSICAL REVIEW B 100, 104522 (2019)

calculations, for a variety of system sizes to obtain good
control over the finite-size effects. The AFQMC and mean-
field approaches are in reasonable agreement. The Hamilto-
nian preserves time-reversal symmetry, which guarantees that
our AFQMC calculations are free of the sign problem [28],
meaning that these results are numerically exact and offer a
uniquely accurate, detailed quantitative description of pairing
behavior in a strongly correlated topological system. In addi-
tion to demonstrating the capability of the AFQMC technique
to treat interacting topological systems, this work can serve
as a guide to ongoing experimental efforts in topological
superconducting materials.

The quantitative picture we develop yields several obser-
vations about the nature of pairing in this topological model.
We find that the attractive interaction leads to spin singlet
pairing of Weyl quasiparticles of the same helicity but op-
posite topological charge into a BCS-like superconductivity,
which emerges at a small but finite interaction strength. We
also examine in detail the pairing mechanism and its effects
on the spatial variation of the pairing amplitude. While the
constituents of each pair have nontrivial topological character,
the attractive on-site interaction leads to a topological-charge-
neutral form of superconductivity. We also discuss pairing
mechanisms capable of producing topological superconduc-
tivity in this Weyl system [29], which is a direction of future
research.

The remainder of the paper is organized as follows: In
Sec. II we introduce our lattice model. In Sec. III we de-
scribe our approach, which combines AFQMC and mean-field
theory calculations. We present our results in Sec. IV, and
we conclude with a discussion of experimental implications,
routes toward topological superconductivity, and an outlook
in Sec. V.

II. THE MODEL

Our model has the following lattice Hamiltonian:

Ĥ0 = −v
∑

n,m,σ

(
c(A)†

n,m σ c(B)
n,m σ + H.c.

)

−w
∑

n,m,σ

(
c(A)†

n,m σ c(B)
n−1,m σ + H.c.

)

− td
∑

n,m,σ

(
c(B)†

n,m σ c(A)
n,m±1σ + c(B)†

n,m σ c(A)
n+1,m±1 σ + H.c.

)
,

(1)

where the operator c(A)†
n,mσ creates an electron of spin σ on the A

site of the unit cell at position R = na x̂ + mb ŷ. Each unit cell
is composed of an A site and a B site. The intra- and inter-unit-
cell hopping strengths in the x̂ direction are controlled by the
parameters v and w, respectively, and the diagonal hopping
strength is given by td .

In momentum space, the Hamiltonian can be written

Ĥ0 =
∑
kσ

c†
kσH(k)ckσ , (2)

with the vector c†
kσ = (c(A)†

kσ , c(B)†
kσ ) and the matrix H(k) =

−h(k) · σ. This has the form of a Weyl Hamiltonian, where
σ = (σx, σy, σz ) is a vector of the Pauli matrices in the

sublattice (or pseudospin) basis, and

h(k) =

⎛
⎜⎝

v1 + w1 cos(kxa)

w1 sin(kxa)

0

⎞
⎟⎠, (3)

with v1 = v + 2td cos(kyb) and w1 = w + 2td cos(kyb). We
plot the lattice geometry and band structure in Fig. 1. For
v + w < 4td , there are two Weyl nodes at k = (0,±kN ), with
kN = cos−1[−(v + w)/4td ]. These nodes are protected by the
combined inversion (A → B, k → −k) and time-reversal
symmetry of the lattice Hamiltonian. For a more detailed
characterization of the topological features of the model, see
Appendix A.

The connection between the pseudospin basis and the
diagonal pseudohelicity basis is defined by the unitary trans-
formation,

(χ (−)†
kσ

, χ
(+)†
kσ

)

= (
c(A)†

kσ
, c(B)†

kσ

) 1√
2

(
−e−iθhk /2 e−iθhk /2

eiθhk /2 eiθhk /2

)
, (4)

which introduces a new set of creation operators, χ
(±)†
kσ

, with
the angle, θhk ≡ tan−1(hy

k/hx
k ), where hx

k and hy
k are com-

ponents of the vector h(k). In the pseudohelicity basis, the
tight-binding Hamiltonian takes the form

Ĥ0 =
∑

k,σ,α=±
ε

(α)
k χ

(α)†
kσ

χ
(α)
kσ

, (5)

ε
(±)
k = ±

√(
hx

k

)2 + (
hy

k

)2
. (6)

This simple lattice model with a topological band structure
provides an ideal setting in which to study the interplay
of topology and superconductivity at the many-body level.
With this motivation in mind, we proceed by introducing
interactions into the system in the form of an on-site attractive
Hubbard term,

ĤI =
∑
i,α

Unα
i↑nα

i↓, (7)

where i labels the unit cell, α = A, B, and the interaction
parameter U < 0. Our full Hamiltonian is now

Ĥ = Ĥ0 + ĤI, (8)

with Ĥ0 defined by Eq. (2), and ĤI defined by Eq. (7).

III. METHODS

A. Auxiliary-field quantum Monte Carlo

Strongly correlated many-body systems are a well-known
theoretical and computational challenge. One method that has
demonstrated considerable accuracy in the treatment of these
types of systems is the auxiliary-field quantum Monte Carlo
method (AFQMC) [30–32]. The method has been widely
applied to both quantum chemistry [33,34] and model Hamil-
tonians [18–20,22,35,36]. In sign-problem-free cases, such
as the attractive spin-unpolarized Hubbard model, AFQMC
calculations are numerically exact. The technique can be used
to calculate an array of ground-state properties and provide
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FIG. 1. Lattice and band structure. In (a) we show the geometry of the lattice with a two-site unit cell (green box) labeled by n and
m. Hopping only occurs between the two different sublattices (indicated by the color of the site). The band structure of the noninteracting
Hamiltonian is plotted in (b). We highlight one of the nodal points, characterized by a linear band crossing. The red curve along the lower band
represents the Fermi surface at a filling of n ∼ 0.95, and the arrows show the Berry potential at the Fermi surface. The Berry phase around
either node is ±π , indicating that the nodes carry equal but opposite topological charges. This is reflected by the vortex behavior of the Berry
potential, which has equal magnitude but opposite chirality around either node.

a reliable quantitative many-body description of the pairing,
spin, and charge behaviors of strongly correlated systems.

The AFQMC algorithm is built on the idea of imaginary-
time projection, by which the many-body ground state, |�0〉,
of a Hamiltonian, Ĥ , can be computed via application of a
many-body projection operator to an initial trial wave func-
tion, |�T 〉,

|�0〉 ∝ lim
β→∞

e−βĤ |�T 〉, (9)

where β is imaginary time, and we require 〈�T |�0〉 �= 0
(the trial wave function must have nonvanishing overlap with
the many-body ground state). In the AFQMC framework,
the many-body projection operator is decomposed into a
set of one-body operators coupled to auxiliary fields. The
projection process in Eq. (9) is then recast as a path integral
in auxiliary-field space that can be evaluated using Monte
Carlo techniques. See Appendix B for details on the AFQMC
method. Our calculations treat periodic lattices with over 700
sites and 650 electrons to provide a systematic and high-
accuracy characterization of the ground-state properties of the
system.

B. Bogoliubov–Valatin–de Gennes–BCS theory

To complement the AFQMC approach outlined above, we
have performed a set of calculations within the BCS mean-
field theory (MFT) framework. The many-body Hamiltonian
in Eq. (8) can be written in quadratic form using an appropri-
ate mean-field decomposition,

ĤMF = Ĥ0 − μN̂ +
∑
kα

(

(αα)c(α)†

k↑ c(α)†
−k↓ + H.c.

)
, (10)

with


(αβ ) = U

Nc

∑
k′

〈
c(α)
−k′↓c(β )

k′↑
〉
, (11)

where α, β take the values A and B, μ is the chemical
potential, N̂ counts the total number of electrons, and Nc is
the number of unit cells. The Hamiltonian preserves inversion
symmetry (k → −k and A → B), which, taking into account
the summation over k in Eq. (11), imposes the following
identities:


AA = 
BB, 
AB = 
BA. (12)
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FIG. 2. Momentum-space pairing amplitude in the pseudohelicity basis. The left panel plots |ψ−−
k | from AFQMC, and the middle panel

plots the same quantity from MFT. The solid light-blue lines represent the noninteracting Fermi surface, and the size of each green dot is
proportional to the total occupation. The right panel shows |ψ−−

k | along the path indicated by the red dashed line and arrows in the left panel.
In this panel, the noninteracting Fermi surface is indicated by the vertical dashed lines. The system is a periodic 13 × 27 unit-cell lattice, with
v = 0.6, w = 1.2, td = 0.9, and U = −0.8.

In the basis of the pseudohelicity eigenstates,

ĤMF =
∑

k,σ,α=±

(
ε

(α)
k − μ

)
χ

(α)†
kσ

χ
(α)
kσ

+
∑
kα

(

χ

(α)†
k↑ χ

(α)†
−k↓ + H.c.

)
, (13)

with ε
(±)
k defined in Eq. (6) and


 = 
AA = 
BB. (14)

The identities in Eq. (12) guarantee that pairing only occurs
between quasiparticles from the same pseudohelicity branch.
Therefore, in this basis, the mean-field Hamiltonian is block-
diagonal, and the gap equation takes the form of the standard
BCS gap equation:

1 = U
1

2Nc

∑
k

1

E±
k

, (15)

E (±)
k =

√
(ε (±)

k − μ)2 + (
(±) )2, (16)

with the Bogoliubov-Valatin quasiparticles given by the well-
known transformation:

γ
(±)

k↑ = u(±)
k χ

(±)
k↑ + v

(±)
k χ

(±)†
−k↓ , (17)

γ
(±)†

k↓ = u(±)
k χ

(±)†
k↓ − v

(±)
k χ

(±)
−k↑, (18)

where

u(±)
k =

[
1

2

(
1 − ε

(±)
k − μ

E (±)
k

)]1/2

, (19)

v
(±)
k =

[
1

2

(
1 + ε

(±)
k − μ

E (±)
k

)]1/2

. (20)

IV. RESULTS

A. Mean-field theory calibration

As outlined in the preceding section, our approach com-
bines cutting-edge many-body AFQMC calculations with
mean-field theory. Our model is free of the fermion sign

problem, which means that the AFQMC results are numer-
ically exact and can be used to calibrate the mean-field
theory on finite-size systems. We begin this section with a
comparison of AFQMC and MFT calculations of the pairing
amplitude (defined in Sec. IV C) across several parameter
sets. This comparison provides a qualitative validation of the
mean-field description, which is an important complement
to the AFQMC analysis, and it also offers an estimate of
any finite-size effects in the AFQMC calculations. We find
that the mean-field treatment correctly captures the promi-
nent features of the AFQMC results, and that the finite-size
effects are generally small. We illustrate below the quality of
agreement between the MFT and AFQMC results with several
representative examples; additional examples are given in
Appendix D.

In Fig. 2, we present a comparison of results for the pairing
amplitude in the pseudohelicity basis from AFQMC and MFT.
There is good qualitative agreement between the calculations,
which show that pairing occurs primarily in the vicinity of
the noninteracting Fermi surface, and that there is relatively

FIG. 3. Comparison of momentum-space pairing amplitude from
AFQMC and MFT. We plot |ψ−−

k | for two different values of
hopping asymmetry, along the path defined in the left panel of
Fig. 2. Results from AFQMC are represented by filled symbols, and
results from MFT are represented by open symbols. Both systems
are periodic 13 × 27 unit-cell lattices, with td = 0.9 and U = −1.2.
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little occupation of momentum states above the noninteracting
Fermi surface. The MFT result shows a smoother momentum
distribution, with occupation spreading above the noninter-
acting Fermi surface toward the node at k = (0,±kN ), and
a correspondingly smooth pairing amplitude, but the essential
features of the AFQMC result are evident in the MFT calcula-
tion. As we illustrate in Fig. 3, this qualitative agreement holds
for increased interaction strength and different values of the
hopping asymmetry, |v − w|. Having established a reasonable
level of agreement between the AFQMC and MFT results, we
can extend our discussion to systems directly in the thermo-
dynamic limit with a certain degree of confidence. Because of
their size, these systems are computationally inaccessible to
AFQMC, but they are manageable with MFT.

B. Pseudospin distribution and bond order

Several features that emerge from the lattice Hamiltonian
inform our investigation of the pairing behavior in this system.
We first consider the pseudospin distribution, presented in
the left panel of Fig. 4. We plot the pseudospin direction,
(〈Sx

k〉, 〈Sy
k〉), calculated from the many-body expectation val-

ues of the operators,

Sk = 1

2

∑
α,β,σ

σα,β c(α)†
kσ c(β )

kσ
, (21)

where σ = (σx, σy, σz ) is a vector of the Pauli matrices in
pseudospin space. We note that 〈Sz

k〉 = 0 due to symmetry.
On the right side of Fig. 4 we show the momentum space
“effective field” h(k) given by Eq. (3). Notice that the pseu-
dospin is parallel to the effective field, even in the presence
of interactions. This implies that the Weyl quasiparticles in
the system experience this field, and the pairing mechanism
should be consistent with this effect; in general, different
forms of superconducting order can compete, and the ground
state represents the most energetically favorable pairing state
in the presence of this pseudospin distribution. We elaborate

FIG. 4. Pseudospin distribution and effective field. In the left
panel, the orange arrows represent the many-body expectation value,
(〈Sx

k〉, 〈Sy
k〉), defined by Eq. (21), which gives the magnitude and

orientation of the pseudospin at each lattice momentum. The dot size
is proportional to the total occupation, 〈nA

k + nB
k〉. The right panel

plots the “effective field” h(k) given by Eq. (3). Notice that the
pseudospin is parallel to the effective field, even in the presence of
interactions. The system is a periodic 13 × 27 unit-cell lattice with
v = 0.5, w = 1.3, td = 0.9, and U = −1.2.

FIG. 5. Bond-density order. In (a) we plot a section of 〈ρx
�ρ

x
m〉

and 〈ρx
�ρ

±x±y
m 〉 for v = 0.5, w = 1.3 on a periodic lattice with real-

space dimension 26 × 27. The thickness of the lines is proportional
to the magnitude of the bond density along that bond. The upper
panel of (b) plots 〈ρx

�ρ
x
m〉 for several values of hopping asymmetry,

and the lower panel plots 〈ρx
�ρ

±x±y
m 〉. In the upper panel, r refers to

the x-coordinate of sites along y = 6, and in the lower panel it refers
to the x-coordinate of sites along the diagonal with origin at (x, y) =
(0, 1).

on this connection between the pairing mechanism and the
pseudospin distribution later in this section.

We next study the effect of the asymmetric hopping along
the x̂-direction, which results in an oscillation of the bond
density, defined by the operator ρ

μ

� = ∑
σ c†

r�σ
cr�+μ̂σ , that

measures the density on the �th bond along the μ-direction,
where the first site of the bond is located at position r�. We
compute the bond-density correlation function, 〈ρμ

� ρν
m〉, for

several values of hopping asymmetry and interaction strength.
A typical example is presented in Fig. 5. We observe a clear
oscillation along the x̂-direction that is proportional to the
hopping asymmetry [see the upper panel in Fig. 5(b)]. A
similar oscillation, with smaller amplitude, is evident along
the diagonal directions [lower panel in Fig. 5(b)]. The mag-
nitude of this order is relatively insensitive to the strength
of the interaction, which suggests that the behavior is a
primarily one-body effect, though as we illustrate later, the
hopping asymmetry responsible for this bond-density wave
is also intricately related to the pairing behavior in real and
momentum space.

C. Pairing from a topological band structure

We now present a detailed picture of the pairing behavior.
Our description focuses on the pairing amplitude, which is
obtained from the eigenstate corresponding to the leading
eigenvalue of the two-body density matrix [37]. We define the
elements of this matrix in the pseudohelicity basis as

Mμνμ′ν ′
kq = 〈



†μν

k 
μ′ν ′
q

〉
, (22)

where



†μν

k = 1√
2

(
χ

(μ)†
k↑ χ

(ν)†
−k↓ − χ

(μ)†
k↓ χ

(ν)†
−k↑

)
, (23)

and μ, ν = ±. We note that with an attractive on-site interac-
tion, in the absence of spin-orbit coupling, there is no spin-
triplet pairing. Additionally, pairing between pseudohelicity
quasiparticles from different branches (μ �= ν above) is iden-
tically zero, so the pairing matrix can be written in 2Nc × 2Nc

form (where Nc is the number of unit cells). The matrix
elements of the two-body density matrix, given by Eq. (22),
are computed during the AFQMC simulation. We then employ
the framework developed by Yang [37] to determine the nature
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of the off-diagonal long-range order in the two-body density
matrix: At the conclusion of the AFQMC simulation, the
two-body density matrix is formed from the computed matrix
elements and then diagonalized. The projections of the leading
eigenvector onto the pairing basis states, |�μν

pair〉 = 

μν

k |�0〉,
where |�0〉 is the interacting ground state, are the so-called
pairing amplitudes ψ

μν

k in the μ-ν sectors.
In the pseudospin basis, the elements of the two-body

density matrix are constructed with the following set of pair
creation operators:



†AA
k = 1√

2

(
c(A)†

k↑ c(A)†
−k↓ − c(A)†

k↓ c(A)†
−k↑

)
,



†BB
k = 1√

2

(
c(B)†

k↑ c(B)†
−k↓ − c(B)†

k↓ c(B)†
−k↑

)
,



†ABt
k = 1

2

{(
c(A)†

k↑ c(B)†
−k↓ − c(A)†

k↓ c(B)†
−k↑

)
+ (

c(B)†
k↑ c(A)†

−k↓ − c(B)†
k↓ c(A)†

−k↑
)}

,



†ABs
k = 1

2

{(
c(A)†

k↑ c(B)†
−k↓ − c(A)†

k↓ c(B)†
−k↑

)
− (

c(B)†
k↑ c(A)†

−k↓ − c(B)†
k↓ c(A)†

−k↑
)}

. (24)

As in the pseudohelicity basis, all of these operators create
spin singlets. The first three create pseudospin triplet pairs,
and the fourth creates a pseudospin singlet. In this basis,
the leading eigenvector of the two-body density matrix has
four sectors, corresponding to pairing states created by the
above operators acting on the interacting ground state, and the
corresponding pairing amplitudes are denoted as ψAA

k , ψ
ABt
k ,

ψ
ABs
k , and ψBB

k .
In the remainder of this section, we analyze in quantitative

detail the effects of both interaction and hopping asymmetry
on pairing in this system. All the results we present are for
densities slightly below half-filling, n ≈ 0.94, and interac-
tion strengths consistent with the energy scales in relevant
materials [13]. The Hamiltonian has particle-hole symmetry,
which establishes a direct mapping between electron-doped
and hole-doped systems, and it implies that the results are
symmetric about half-filling.

Figure 6 summarizes the behavior of the pairing amplitude
in the pseudohelicity basis versus interaction strength and
hopping asymmetry (see Appendix E for other parameter
values). This quantity is directly related to the gap function,
which can be measured via STM or Bogoliubov quasiparticle
interference [38–40]. The results presented for the pairing
amplitude are obtained from a linear interpolation of the
numerical data. We see a significant amplitude for pairing
between quasiparticles from the lower helicity band, mostly
confined to the vicinity of the noninteracting Fermi surface.
Some pairing is evident away from the Fermi surface, which
is a reflection of the underlying band structure. The regions
where the pairing amplitude has significant magnitude away
from the Fermi surface correspond to states near the edges
of the Brillouin zone that surround the deep minimum of the
lower helicity band. These states are close in energy to the
Fermi energy (see Fig. 1) and therefore participate in pairing.
Interestingly, the AFQMC calculations reveal a small ampli-
tude for pairing in the upper helicity band, with a peak near

FIG. 6. Pairing amplitude in the pseudohelicity basis from
AFQMC. Plotted in (a) is |ψ−−

k |, and in (b) is |ψ++
k |. The solid light-

blue lines represent the noninteracting Fermi surface, and the dot size
is proportional to the total occupation at a given momentum. The
system is a periodic 13 × 27 unit-cell lattice with v = 0.7, w = 1.1,
td = 0.9, and U = −0.8. (c) |ψ−−

k | along the lower Fermi surface
vs hopping asymmetry (td = 0.9 and U = −0.8). (d) |ψ−−

k | along
the lower Fermi surface vs interaction strength (v = 0.6, w = 1.2,
td = 0.9). In (c) and (d) θ is the angle along the Fermi surface
[defined using the nodal point, k = (0,−kN ), as the origin, with
θ = 0 lying along the kx-axis in the shifted coordinate system].

the nodal point [Fig. 6(b)]. This type of pairing only appears
in the mean-field picture for interaction strengths |U | � 2.0.
As the hopping asymmetry decreases, the curvature of the
elliptical Fermi surface decreases, which brings the two sides
of the Fermi surface closer together. The effect of this change
to the geometry of the Fermi surface on the pairing behavior
is evident in the magnitude of the pairing amplitude along the
lower Fermi surface [Fig. 6(c)]. As the hopping asymmetry
decreases, there is increased pairing inside the Fermi surface,
close to the nodal point, and the pairing is of equal magnitude
along either side of the Fermi surface. The pairing amplitude
shows similar quantitative changes with increasing interaction
strength, which leads to larger values of the pairing amplitude
along the Fermi surface. The mean-field description in the
thermodynamic limit is consistent with the behavior seen in
the AFQMC calculations on finite-size systems (see Fig. 7).
Here we find that the pairing amplitude is essentially constant
along the noninteracting Fermi surface, and that the pairing
amplitude away from the Fermi surface is closely connected
to the underlying band structure. As the hopping asymmetry
decreases, the helicity bands become flatter and the pairing
amplitude away from the Fermi surface increases while the
pairing amplitude along the Fermi surface decreases.

Several interesting features of the pairing behavior emerge
in the pseudospin basis. We explore the connection between
the pseudospin degree of freedom and pair formation in Fig. 8.
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FIG. 7. Momentum-space pairing amplitude in the pseudohelic-
ity basis from MFT. Plotted on the left is |ψ−−

k | in the thermodynamic
limit, with v = 0.6, w = 1.2, td = 0.9, and U = −1.2. On the right
we plot the same quantity along the path drawn in Fig. 2, at different
values of hopping asymmetry (with td = 0.9 and U = −1.2).

We see from the pseudospin distribution that there is a 2π

vortexlike rotation of the pseudospin around the upper node
at k = (0, kN ) and a corresponding rotation with opposite
vorticity around the lower node at k = (0,−kN ). This be-
havior is related to the pairing mechanism, sketched by the
circles and connected arrows, which illustrate the formation
of zero-momentum pairs along the inner and outer edges of
the Fermi surface. Each pair is a real-spin singlet, as well as a
mixture of a pseudospin singlet and a pseudospin triplet. Pairs
formed by electrons in states on the outer edges of the Fermi
surface have a large net pseudospin triplet component because
the electrons in these states have nearly parallel pseudospin,
and consequently this component of the pairing amplitude has
a large magnitude. The same effect diminishes the pairing
amplitude in the pseudospin singlet sector along the outer
edges of the Fermi surface. Along the inner edges, the net
pseudospin triplet content of the pair is smaller and goes to

FIG. 8. Pseudospin distribution and pairing amplitude from
AFQMC. In the left panel, the orange arrows represent the many-
body expectation value, (〈Sx

k〉, 〈Sy
k〉), defined by Eq. (21), which

gives the magnitude and orientation of the pseudospin at each lattice
momentum. The dot size is proportional to the total occupation,
〈nA

k + nB
k 〉. The right panel plots the various components of the

pairing amplitude along the noninteracting Fermi surface (light blue
curves in the left panel) centered at k = (0,−kN ), as in Fig. 6.
Also illustrated are two examples of the k → −k pairing mechanism
that produces pairs with different net pseudospin. The system is a
periodic 13 × 27 unit-cell lattice with v = 0.6, w = 1.2, td = 0.9,
and U = −1.2.

FIG. 9. Momentum-space pairing amplitude in the pseudospin
basis from AFQMC. Plotted on the left is |ψAA

k |. The upper half
of the middle panel plots |ψABt

k | in the upper half of the BZ, and
the lower half plots |ψABs

k | in the lower half of the BZ (note that
both quantities are symmetric about the kx-axis). On the right, these
three components of the pairing amplitude are plotted along the path
defined in Fig. 2. Here, v = 0.6, w = 1.2, td = 0.9, U = −0.8, and
the system is a periodic 13 × 27 unit-cell lattice.

zero before changing orientation, which leads to a node in the
triplet sector of the pairing amplitude. There is also pairing
in the pseudospin singlet sector along the inner edges of the
Fermi surface. This sector of the pairing amplitude exhibits a
node at kx = 0, corresponding to the momenta at which the
pair becomes a net pseudospin triplet.

We present a typical example of the pairing amplitude
in the pseudospin basis in Fig. 9. The left panel plots the
AA-sector of the pairing amplitude. This component has a
significant amplitude along the Fermi surface and near the
edges of the BZ. As in the pseudohelicity basis, for finite-
size systems the pairing amplitude is larger along the outer
edges of the Fermi surface relative to the inner edges. In
the middle panel, we show the pseudospin triplet and singlet
sectors, which illustrate the effects of the pseudospin degree
of freedom in the formation of pairs, as described above.
While ψ

ABt
k has a large amplitude along the outer edges of

the Fermi surface, ψ
ABs
k is zero, whereas along the inner

edges both components are nonzero, with ψ
ABs
k having a

node at kx = 0. The right panel, which shows each sector
of the pairing amplitude along the path in momentum space
drawn in Fig. 2, provides another illustration of the nodal

FIG. 10. Momentum-space pairing amplitude in the pseudospin
basis from MFT. Plotted on the left is the real part of ψABt

k , and in the
middle is the imaginary part of ψABs

k (note that ψABt
k is purely real,

and ψABs
k is purely imaginary). The system is in the thermodynamic

limit, with v = 0.7, w = 1.1, td = 0.9, and U = −1.2. On the right,
the upper panel plots |ψABt

k | along the lower Fermi surface (as in
Fig. 6) for several values of hopping asymmetry (with the remaining
parameters equal to those in the left and middle panels), and the lower
panel plots |ψABs

k | for the same parameters as the upper panel.
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FIG. 11. Real-space pairing amplitude from AFQMC in the
pseudohelicity basis. In (a) we plot ψ−−

r in the region near the origin,
for v = 0.6, w = 1.2, td = 0.9, and U = −0.8, where r labels the
two-site unit cell. In the upper panel of (b) we show ψ−−

r along the
x-axis for several values of |v − w|, with td = 0.9 and U = −0.8,
and in the lower panel we show the same quantity vs interaction
strength, with v = 0.6, w = 1.2, td = 0.9. The system is a periodic
13 × 27 unit-cell lattice.

structure of the different components, in particular the node in
ψ

ABt
k between the inner and outer edges of the Fermi surface.

The corresponding real-space behavior and nodal structure of
ψABt

r and ψABs
r are plotted in Appendix E.

This exotic pairing behavior also emerges from MFT cal-
culations in the thermodynamic limit, an example of which
we present in Fig. 10. We see a clear display of the nodal
structures of both the pseudospin triplet and singlet sectors
of the pairing amplitude. The triplet component shows a sign
change along the inner edges of the Fermi surface (left panel
of Fig. 10), and the singlet component shows a nodal line,
dividing the BZ along the ky-axis (middle panel). These nodal
structures appear to be largely insensitive to the magnitude of
the hopping asymmetry (provided the asymmetry is nonzero).

We find similarly rich pairing properties in real space. Fig-
ure 11 presents the real-space structure of the pseudohelicity
pairing amplitude, given by the Fourier transform of ψ−−

k
(we note that ψ−−

r is purely real). There is a prominent peak
at the origin, reflecting the large on-site component of the
pair. Away from the origin there are a set of smaller peaks
separated by nodes along the x and y axes. We observe that
the pairing amplitude becomes more spatially extended as

FIG. 12. Real-space pairing amplitude from MFT in the pseudo-
helicity basis. In (a) we plot ψ−−

r from MFT in the thermodynamic
limit for the same hopping parameters as Fig. 11(a), and with
interaction strength U = −1.2. In (b) we plot slices of ψ−−

r along
the x-axis and the y-axis.

the hopping asymmetry decreases. This behavior is evident
in the upper panel of Fig. 11(b) and the inset, which shows
ψ−−

r along the x-axis at decreasing values of |v − w|. The
central peak is reduced for smaller values of the hopping
asymmetry, while the additional peaks along the axis grow.
The lower panel illustrates that the central peak of the pairing
amplitude increases with interaction strength, but otherwise
the qualitative behavior does not change over the range of
interaction strengths we have considered. These behaviors are
also evident in the MFT description in the thermodynamic
limit (Fig. 12).

V. DISCUSSION AND CONCLUSION

The discovery of superconducting Weyl materials has
ushered in a new era in condensed-matter physics. These
materials have a number of exciting potential applications
in quantum computing and quantum information that have
motivated an intense effort to understand their properties.
An accurate quantitative description of these systems at the
many-body level remains an essential goal. Such a description
presents a unique challenge, demanding a unified treatment
of topology and strong correlations. In this work, we provide
a detailed, high-accuracy characterization of the rich pairing
behaviors of a strongly correlated topological system. We
find that both the spin and pseudospin (sublattice) degrees
of freedom play an important role, leading to a pairing am-
plitude with multiple components that have different spatial
behaviors. These behaviors, as well as the pairing mechanism,
are connected to the pseudospin distribution and bond-density
order. We observe that in the pseudohelicity basis, pairing
occurs only between quasiparticles from the same pseudohe-
licity band carrying opposite topological charge, which results
in topological-charge-neutral pairs.

This topologically neutral form of superconductivity is a
consequence of the on-site attractive interaction, which favors
the formation of spin-singlet pairs with zero net topologi-
cal charge. The ongoing search for Majorana fermions has
indicated that higher-order pairing symmetries, for instance
p-wave pairing, may be an essential ingredient in topological
superconductors. Simple modifications to this model, such as
the addition of spin-orbit coupling, or nonlocal interactions,
can induce pairing mechanisms with these different symme-
tries. As we have demonstrated, the AFQMC method is well-
suited to treat these types of topological systems, which makes
understanding the origins and mechanisms of topological su-
perconductivity at the many-body level a promising direction
for future research.

Our model offers a simple, fundamental description of
the pairing properties that emerge in the recently discovered
class of superconducting Weyl materials. Modern cold atom
experiments also offer an ideal platform to simulate and study
lattice models based on these and other materials. There
have already been experimental realizations of the Hubbard
model [1,41–43], as well as more exotic variations, including
Weyl systems [2,44–46]. These experiments offer a clean,
highly tunable setting in which to explore the intersection of
topology and interaction [47]. Our results provide important
guidance to this next generation of experiments exploring the
intersection of topological band structures and interaction, and
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in turn these experiments can serve as a testbed for numerical
many-body approaches probing interaction effects in strongly
correlated topological systems.

In summary, we have presented an illustrative and quan-
titative description of the pairing properties of an interact-
ing topological system. Our model contains a pair of Weyl
nodes that generate a dipolelike pseudospin distribution in
momentum space. This distribution exhibits a strong effect
on the nature of the pairing amplitude, which represents the
most energetically favorable paired state in the presence of the
distribution. As a consequence, we observe pairing between
quasiparticles that carry opposite topological charge, resulting
in a topological-charge-neutral pairing amplitude composed
of real-spin singlets that are a mixture of a pseudospin singlet
and triplet. We provide a thorough characterization of these
exotic pairing behaviors using a combination of numerically
exact AFQMC calculations and mean-field theory in the ther-
modynamic limit. Our results demonstrate the power of the
AFQMC method to treat strongly interacting topologically
nontrivial systems at the many-body level. This is an impor-
tant step toward a more complete understanding of pairing
and strong correlations in the context of topological band
structures, a subject that has captivated the condensed-matter
community given the potentially impactful applications of
topological superconductivity across quantum computing and
quantum information.
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APPENDIX A: TOPOLOGICAL CHARACTERIZATION
OF THE NONINTERACTING MODEL:

BERRY PHASE AND FERMI ARCS

In this Appendix, we provide a detailed description of the
topological features of our model. As alluded to in the main
text, the lattice Hamiltonian given in Eq. (3) takes the form of
a Weyl Hamiltonian with a linear dispersion in the vicinity
of the band touching points. These nodal points occur at
k = (0,±kN ), with kN = cos−1[−(v + w)/4td ], provided v +
w < 4td . This Weyl form emerges from a Taylor expansion of
h(k) around the nodal points, which yields

hlinear (k) =

⎛
⎜⎝

a1ky

a2kx

0

⎞
⎟⎠, (A1)

with a1 = ±4td sin(kN ) and a2 = (w − v)/2. In this case, to
leading order in kx and ky, the dispersion around each node is
linear. In the kx-ky plane, the dispersion is elliptical, with the
degree of anisotropy determined by the ratio of a1 to a2.

The Berry potential provides another measure of the topo-
logical character of this band structure. In terms of the pseudo-

FIG. 13. Berry potential vector around a single Weyl node. The
top panel plots the Berry potential vector (in arbitrary units) as a
function of momentum relative to one of the Weyl nodes for the
parameters v = 0.6, w = 1.2, and td = 0.9, which yield a fairly
isotropic dispersion. The bottom panel plots the same quantity for
v = 0.2, w = 1.0, and td = 0.4, which yield a more anisotropic
dispersion. The anisotropy of the Berry potential vector is a conse-
quence of the anisotropy of the dispersion.

helicity eigenstates, |±〉, the Berry potential vector A±(k) =
〈±|∇k|±〉 in the linear regime is given by

A±(k) = a1a2

2a2
1k2

y + 2a2
2k2

x

⎡
⎣ ky

−kx

0

⎤
⎦. (A2)

As noted in the main text, the Hamiltonian preserves both
time-reversal and inversion symmetry, which leads to a van-
ishing Berry curvature at all points in the BZ, with the
exception of the nodal points, where the Berry curvature di-
verges. Despite this property of the Berry curvature, the Berry
potential and the Berry phase around either node are nonzero.
Figure 13 plots the vector field A−(k) around a single Weyl
point for two different values of anisotropy in a1 and a2. The
vector field around the other Weyl point has equal magnitude
but opposite vorticity. The top panel of Fig. 13 corresponds
to a small anisotropy, while the bottom panel corresponds to
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(a) (b)

(c)

FIG. 14. Band dispersion along (a), (c) the ky- and (b) the kx-direction in units of 2π/b and 2π/a, respectively. In (a) and (c) the lattice
has open boundary conditions along x̂, and in (b) along ŷ. The system has parameters v = 0.6, w = 1.2, and td = 0.9. The dispersion in (c) is
the same as that in (a) except that the lattice is terminated on a different bond along the x̂-direction. Note how the edge states switch sides
depending on the strength of the terminating bond.

a large anisotropy. Note that when a1 = a2, the vortex pattern
of the Berry potential is isotropic. An isotropic Berry potential
and its corresponding dispersion with Weyl nodes can be
engineered by an appropriate choice of hopping parameters.
For example, setting a1 = a2 = 1 gives w = 2 + v and td =√

1 + 4(1 + v)2/4. The integral of the Berry potential, A±(k),
along any path that encloses a single node gives the Berry
phase, which, for the two Weyl nodes in this model, is equal
to ±π .

For systems with v + w � 4td , the two nodes merge at
k = (0,±π ) and annihilate, which opens a gap in the spec-
trum without breaking any symmetries of the Hamiltonian.
When the equality above holds (i.e., v + w = 4td ) there is a
single nodal point, however the dispersion around this point
is quadratic. In this situation, the low-energy Hamiltonian is
given by

hquadratic(k) =

⎛
⎜⎝

−b1k2
x + b2k2

y

2b1kx

0

⎞
⎟⎠, (A3)

where b1 = w − 2td and b2 = 2td . To leading order in kx, the
dispersion in this case is linear. However, unlike Eq. (A1),
which is linear in both kx and ky, this dispersion is quadratic
to leading order in ky.

Finally, we consider the surface spectrum and Fermi arc
states. In Fig. 14 we present the surface spectrum, calculated
for a system with open boundary conditions along either the x̂-
or ŷ-direction. Figure 14(a) plots the dispersion along the
ky-direction for a ribbon of finite length in the x̂-direction. The
two Weyl nodes at ky = ±kN are connected by dispersionless
one-dimensional modes, the Fermi arc states, which are local-
ized on the two edges of the ribbon. Such one-dimensional
edge modes are inherited from the zero-dimensional edge
states of the SSH chain, which is the building block of our
lattice. These edge states are absent for a ribbon terminated
along the ŷ-direction, as seen in Fig. 14(b). However, unlike
the SSH chain, which hosts edge states only when the lattice
terminates on the bond with stronger hopping [48], in our
model, edge states are present irrespective of the hopping
strength along the terminating bond. The strength of the
terminating bond does, however, determine the orientation of
the edge states, as illustrated in Fig. 14(c).

APPENDIX B: THE AUXILIARY-FIELD QUANTUM
MONTE CARLO METHOD

In this Appendix, we provide a concise overview of the
AFQMC method intended to highlight the essential features
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of the technique, and we refer interested readers to several
pedagogical presentations of the formalism for additional
details [30–32].

Building on our discussion in the main text, the AFQMC
algorithm relies on the projection process defined by Eq. (9).
This long imaginary-time projection interval is then divided
into m = β/δτ time slices,

e−βĤ = (e−δτ Ĥ )m, (B1)

which establishes an iterative procedure to obtain the limit in
Eq. (9),

|� (n+1)〉 = e−δτ Ĥ |� (n)〉, (B2)

with |� (0)〉 = |�T 〉.
Writing our Hamiltonian in the general form Ĥ = K̂ + V̂ ,

where K̂ refers to the one-body terms and V̂ refers to the
two-body terms, we proceed by applying the Trotter-Suzuki
decomposition [49,50], followed by a Hubbard-Stratonovich
transformation [51]:

(e−δτ Ĥ )m = (e−δτ K̂/2e−δτV̂ e−δτ K̂/2)m + O(δτ 2), (B3)

e−δτV̂ = e−δτ
∑

i,α Unα
i↑nα

i↓

=
∏
i,α

1

2

∑
xα

i =±1

e(γ xα
i −δτU/2)(nα

i↑+nα
i↓−1), (B4)

with α = A, B, and γ defined by cosh(γ ) = exp(−δτ U/2).
Here we have chosen to decouple in the charge channel [52],
though decompositions in other channels, such as spin or
pairing, exist [21], and the choice of decomposition can affect
the efficiency of the simulation [53]. This procedure yields the
following form for the propagator:

e−δτ Ĥ =
∫

dx p(x)B̂(x), (B5)

where x = {x1, x2, . . . , xNS } is a set of auxiliary fields at a
given time slice, p(x) is a normalized probability density
function, and B̂(x) is a one-body operator. The set of auxiliary
fields, x, has dimension NS equal to the size of the single-
particle basis, which in this case is double the number of unit
cells. Note that we have written the propagator in a more
general form, as an integral over continuous auxiliary field
variables; for the discrete charge decomposition in Eq. (B4),
this integral is replaced by a summation over discrete auxiliary
field variables. With this choice of Hubbard-Stratonovich
transformation, p(x) is uniform, and

B̂(x) ≡ e−δτ K̂/2
∏
i,α

b̂i
(
xα

i

)
e−δτ K̂/2, (B6)

TABLE I. Comparison of exact diagonalization results with
AFQMC results.

N Lx Ly U v w td EED EQMC

8 4 3 −8.0 0.5 1.3 0.6 −36.64137 −36.6459(80)
8 4 3 −8.0 0.2 1.0 0.3 −34.30740 −34.3099(76)
2 4 2 −12.0 0.2 0.8 0.4 −12.68698 −12.6820(43)
4 4 2 −12.0 0.8 1.0 0.9 −28.69211 −28.6930(70)

FIG. 15. Comparison of exact diagonalization results with
AFQMC results for the bond-density and s-wave pair-pair correlation
functions. The operator 
†

i = c†
i↑c†

i↓, where i labels a lattice site. The
system is a 2 × 3 unit-cell lattice with v = 0.6, w = 1.2, td = 0.9,
U = −8.0, and N = 8 electrons.

with b̂i(xα
i ) ≡ exp [(γ xα

i − δτU/2)(nα
i↑ + nα

i↓ − 1)]. The
many-body propagator is now composed of one-body
operators with the fermions in external auxiliary fields. The
integration over auxiliary field configurations recovers the
two-body interactions.

The many-body, ground-state expectation value of an ob-
servable Ô is calculated according to

〈Ô〉 = 〈�T |e−βĤ/2Ôe−βĤ/2|�T 〉
〈�T |e−βĤ |�T 〉 . (B7)

Using the definition of the propagator in Eq. (B5), the denom-
inator in Eq. (B7) can be written∫

〈�T |
m∏

�=1

dx(�) p(x(�) )B̂(x(�) )|�T 〉 ≡
∫

W (X)dX, (B8)

where

W (X) = 〈�l |�r〉
m∏

�=1

p(x(�) ), (B9)

FIG. 16. Comparison of momentum-space pairing amplitude in
the pseudohelicity basis from AFQMC and MFT. We show |ψ−−

k |
along the path defined in Fig. 2 for two values of hopping asymmetry.
The AFQMC result is represented by closed symbols and the MFT
result by open symbols. The system is a periodic 13 × 27 unit-cell
lattice with td = 0.9 and U = −0.8.
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FIG. 17. Comparison of momentum-space pairing amplitude in
the pseudohelicity basis along the Fermi surface from AFQMC and
MFT. We plot |ψ−−

k | along the noninteracting Fermi surface, with θ

defined as in Fig. 6. The solid lines represent the AFQMC result and
the dashed lines represent the MFT result. The system is a periodic
13 × 27 unit-cell lattice with td = 0.9 and U = −0.8.

FIG. 18. Real-space pairing amplitude in the pseudohelicity ba-
sis. The left column shows |ψ−−

r | for v = 0.5, w = 1.3, td = 0.9,
and the right column shows the same quantity for v = 0.8, w = 1.0.
From top to bottom, U = −0.8,U = −1.0,U = −1.2. The system
is a periodic 13 × 27 unit-cell lattice.

and we have introduced the notation

〈�l | = 〈�T |B̂(x(m) )B̂(x(m−1)) · · · B̂(x(n) ),

|�r〉 = B̂(x(n−1))B̂(x(n−2)) · · · B̂(x(1) )|�T 〉.

In the above, x(�) represents an auxiliary field configuration
at time slice �, and the collection of auxiliary fields X =
{x(1), x(2), . . . , x(m)} defines a path in auxiliary field space.

The expectation value in Eq. (B7) can now be recast as a
path integral in auxiliary-field space,

〈Ô〉 =
∫

O(X)W (X)dX∫
W (X)dX

, (B10)

with

O = 〈�l |Ô|�r〉
〈�l |�r〉 . (B11)

This integral can be evaluated using standard Monte Carlo
techniques, such as the METROPOLIS algorithm, which samples
auxiliary fields from W (X) to obtain a Monte Carlo estimate
of the expectation value in Eq. (B10). Our calculations employ
a single Slater determinant trial wave function corresponding
to the ground state of the noninteracting Hamiltonian, and a
typical projection time, β ∼ 85 (units of v−1), discretized into
3500 time slices with 
τ = 0.025. To accelerate the sampling
procedure, we employ a dynamic force bias [18,31], which
improves the acceptance ratio and consequently the efficiency
of the algorithm. In addition, we remove the infinite variance
problem using the bridge link method [54].

APPENDIX C: CALIBRATION OF AFQMC RESULTS
AGAINST EXACT DIAGONALIZATION

In Table I we present a comparison of exact diagonalization
and AFQMC calculations of the total energy.

FIG. 19. Real-space pairing amplitude in the pseudospin basis.
The left panel shows ψABt

r and the right panel shows ψABs
r (both

quantities are purely real) for v = 0.6, w = 1.2, td = 0.9, and U =
−0.8. The system is a periodic 13 × 27 unit-cell lattice. These
parameters correspond to Fig. 9 in the main text.
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FIG. 20. Momentum-space pairing amplitude in the pseudohelicity basis vs hopping asymmetry. The left panel shows |ψ−−
k | for v = 0.5,

w = 1.3, td = 0.9; the middle panel for v = 0.6, w = 1.2; and the right panel for v = 0.8, w = 1.0. All results are for td = 0.9 and U = −1.2,
on a periodic 13 × 27 unit-cell lattice.

In Fig. 15 we present a comparison of exact diagonalization
and AFQMC calculations of different correlation functions.

APPENDIX D: ADDITIONAL COMPARISON OF AFQMC
AND MEAN-FIELD RESULTS

In this Appendix, we provide results to supplement the
comparisons between AFQMC and MFT calculations shown
in the main text. Figure 16 shows a similar level of qualitative
agreement, especially in the limit of small hopping asym-
metry. Generally, the AFQMC result has a larger magnitude
near the noninteracting Fermi surface, while the MFT result is
larger away from the Fermi surface. We see similar qualitative
agreement in Fig. 17, where both methods show a difference
in the magnitude of the pairing amplitude along the outer
edges of the Fermi surface relative to the inner edges at large

values of hopping asymmetry. This difference decreases with
decreasing hopping asymmetry.

APPENDIX E: ADDITIONAL AFQMC RESULTS
FOR THE PAIRING AMPLITUDE

We provide in Figs. 18–20 a survey of results from
AFQMC for the pairing amplitude versus interaction strength
and hopping asymmetry. In real space we observe that the
central peak of the pairing amplitude grows with interaction
strength, but otherwise the qualitative behavior is relatively
insensitive to the interaction strength over the range of inter-
action strengths we consider. For smaller values of hopping
asymmetry, the pairing amplitude is more spatially extended
and isotropic, and still relatively insensitive to the interaction
strength.
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