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Nature of the superconducting fluctuations in photoexcited systems
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The photoexcited state associated with superconducting fluctuations above the superconducting critical
temperature Tc is studied based on the time-dependent Ginzburg-Landau approach. The excited state is created
by an electric-field pulse and is probed by a weak secondary external field, which is treated by the linear response
theory mimicking pump-probe spectroscopy experiments. The behavior is basically controlled by two relaxation
rates: one is γ1 proportional to the temperature measured from the critical point T − Tc, and the other is γ2

proportional to the excitation intensity of the pump pulse. The excited state approaches the equilibrium state
exponentially in a long time t � γ −1

1 , while in the intermediate-time domain we find a power-law or logarithmic
decay with different exponents for t � γ −1

2 and γ −1
2 � t � γ −1

1 , even though the system is located away from
the critical point. This is interpreted as the critical point in equilibrium being extended to a finite region in
the excited situation. The parameter dependences on both the pump and probe currents are also systematically
studied in all dimensions.
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I. INTRODUCTION

Externally excited systems can show various exotic states
that are not realizable as equilibrium states but nevertheless
survive for a long time in nonequilibrium. Such a possibil-
ity has been intensively studied by pump-probe experiments
using a laser pulse, and the intriguing photoexcited states
have been created and measured [1–8]. For superconducting
materials in strongly correlated systems, recent experiments
have shown gigantic enhancement of superconductivity in a
photoinduced state [4,9–15], which has attracted considerable
attention in the physics community. While the change in the
electron-phonon coupling through the phonon drive has been
studied as the origin of the photoinduced superconducting
state [16–26], photons also pump the electrons directly. Some
of the theoretical studies have proposed scenarios based on
photoexcited electron systems [27,28].

The superconductivity-like behavior above the transition
temperature Tc is reminiscent of paraconductivity originating
from the fluctuation effects: the electron conduction near the
superconducting transition point becomes much higher than
in the normal state. Usually, the superconducting fluctuation is
so small in three-dimensional systems that it has been mainly
discussed in low-dimensional systems [29]. With excitations,
however, the fluctuation effects may change. Here, we study
such a photoinduced phenomenon associated with the su-
perconducting fluctuation based on the time-dependent (TD)
Ginzburg-Landau (GL) approach.

The GL theory has been successfully applied to uncon-
ventional superconductors [30]. In the strongly correlated
systems, since the coherence length can be an order of a lattice
constant, the application of GL analysis may not be justified
but still describes well their qualitative behaviors. This indi-
cates that extrapolation from the long-wavelength (coherence
length) limit works well for existing superconductors. As for

the time-dependent case, it is argued that the TDGL equation
is not microscopically justified for gapped superconductors,
because the relaxation time of quasiparticles can become
longer than the time scale of the order parameter variation
[31,32]. The microscopic theory can support the TDGL model
for the gapless limit associated with various mechanisms by
magnetic impurities, inelastic phonon scattering, or by non-
magnetic impurities for unconventional superconductors [32].
On the other hand, once the TDGL equation is empirically in-
troduced as a phenomenological theory, it has been recognized
as a powerful tool for time-dependent phenomena such as vor-
tex dynamics and fluctuation paraconductivity/diamagnetism
[29,32]. Furthermore, specifically for the paraconductivity
defined in T > Tc, the TDGL approach with a stochastic
force reasonably reproduces the microscopically calculated
Aslamasov-Larkin contribution [29].

The TDGL theory has been applied to the pump-probe
spectroscopy below the transition temperature [27]. With a
fast pump process in real time, a broad range of frequency
components are excited. The TDGL equation can account for
the dynamics of small-frequency components, which should
dominate the long-time behavior. In this paper, we consider
the superconducting fluctuation effects in the photoexcited
state using the TDGL equation above the transition tempera-
ture, and the behaviors in the whole time scale can be uniquely
determined. The quench dynamics of superconducting fluc-
tuations with a sudden change of an attractive interaction
has been discussed in Ref. [33]. We consider here purely
electronic effects in photoexcited systems. The original paper
by Schmid has derived the fluctuation-induced current for
arbitrary strength of electric fields [34]. Also, recently the
nonlinear response was considered in relation to the nonre-
ciprocal transport phenomena in noncentrosymmetric systems
[35–37]. Thus the TDGL theory has the ability to tackle the
problem beyond the usual linear-response regime.
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When we apply the strong electric-field pulse, there are
two characteristic inverse-time scales γ1 and γ2. γ1 originates
from the reduced temperature measured from the critical
temperature Tc, and it determines a time constant for the
relaxation into the equilibrium state. The other one, γ2, comes
from the strength of the electric-field pulse. We show that
for t → ∞, the system relaxes to the equilibrium state with
the time constant γ −1

1 , but in the intermediate time domain
the power-law or logarithmically decaying regimes are found.
The exponents are different between the time regions t � γ −1

2
and t � γ −1

2 . As for the conductivity calculated from the
probe current, the enhancement by the pulse is not observed.
On the other hand, the anisotropy shows a nontrivial behavior:
although the system is spatially anisotropic due to the photoin-
duced current, the excited current quickly damps compared to
the superconducting fluctuation. Hence we find an isotropic
but still nonequilibrium state, which is confirmed through the
properties of probe currents. We also perform a systematic
study on the parameter dependences on the pump and probe
electric currents in all dimensions.

This paper is organized as follows. Section II provides the
theoretical formalism for the pump-probe procedure based
on the TDGL approach. The numerical results are given in
Secs. III and IV, where different pump procedures are taken.
We summarize these results in Sec. V. Appendixes A and
B are devoted to a detailed explanation for our numerical
calculation, and Appendix C summarizes the equilibrium
property realized for t < 0 (before the pump) and t → ∞.
The additional data for three dimensions and one dimension
are also shown in Appendix D.

II. PUMP-PROBE PROCEDURE IN THE TDGL EQUATION

A. General formulation

Let us begin with the TDGL equation with a random force
[34]

�
∂

∂t
ψ (r, t ) = −δF[ψ, A]

δψ∗(r, t )
+ f (r, t ), (1)

F[ψ, A] =
∫

dr ψ∗(r, t )

(
a − [∇ − 2ieA(r, t )]2

4m

)
ψ (r, t ),

(2)

j(r, t ) = −δF[ψ, A]

δA(r, t )
, (3)

where F and j are the GL free energy and superconducting
current density, respectively, and � is a time development fac-
tor. We have taken h̄ = kB = 1 unless otherwise stated explic-
itly. The classical complex field ψ (r, t ) is the superconducting
order parameter or macroscopic wave function. We consider
the spatially uniform electric field, and the vector potential can
be chosen as the one dependent only on time: A(r, t ) = A(t ).
We note that the fourth-order term |ψ (r, t )|4 is irrelevant here,
since we consider the system above the transition temperature
(T > Tc). The photoexcitations in the superconducting state
below Tc have been discussed in Ref. [27]. The coefficient of
the second-order term behaves as a = a′(T − Tc) (>0) with a
constant a′ ∼ k2

BTc

εF
(εF is the Fermi energy).

The random force f (r, t ) is also introduced to represent the
thermal fluctuation. Performing the Fourier transformation,

we get

�
∂

∂t
ψq(t ) = −

(
[q − 2eA(t )]2

4m
+ a

)
ψq(t ) + fq(t ). (4)

The solution for the macroscopic wave function is then written
as

ψq(t ) =
∫ t

−∞

dt ′

�
fq(t ′)

× exp

[
−

∫ t

t ′

dt ′′

�

(
[q − 2eA(t ′′)]2

4m
+ a

)]
. (5)

We assume that fq(t ) is spatially and temporally uncorrelated
such that the random average (denoted by a bracket symbol)
is given by

〈
f ∗
q (t ) fq′ (t ′)

〉 = C

V
δqq′δ(t − t ′), (6)

where V is a system volume. The constant C is determined
so that the random average is identical to the thermal average
[34], which results in C = 2�V T .

The most fundamental physical quantity in our system
is the superconducting fluctuation 〈|ψ |2〉. With the random
force, the effect of the superconducting fluctuation can be
taken into account and the quantity 〈|ψq(t )|2〉 becomes finite.
Since the quantity with the wave vector q is gauge-dependent,
we consider the real-space quantity

〈|ψ (r, t )|2〉 = 1

V

∑
q

〈|ψq(t )|2〉, (7)

which is now a gauge-invariant quantity, and is also spatially
uniform in our present setup. In the analysis, we separate the
contributions from the equilibrium state and the nonequilib-
rium one, and we define the deviation by

δ〈|ψq(t )|2〉 = 〈|ψq(t )|2〉 − 〈|ψq(t )|2〉eq, (8)

where 〈· · · 〉eq stands for the equilibrium value. In the follow-
ing, we use δO as the deviation of the quantity O from that in
the equilibrium state.

We separate the vector potential into two parts as A =
A0 + A1, where A0 and A1 represent pump and probe lights,
respectively. The vector potential A1 for the probe is treated
by the linear-response theory. The fluctuation contribution to
the electric current density is given by

j(t ) =
∑

q

e

mV
[q − 2eA(t )]〈|ψq(t )|2〉 = j0(t ) + j1(t ), (9)

where

j0(t ) = e

mV

∑
q

[q − 2eA0(t )]〈|ψq(t )|2〉0, (10)

j1(t ) = e

mV

∑
q

[q − 2eA0(t )]〈|ψq(t )|2〉1

− 2e2

mV

∑
q

〈|ψq(t )|2〉0A1(t ). (11)
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Here j0 is a photoexcited current density and j1 is a small
current induced by the probe light. The subscripts 0 and 1
represent the perturbation order of A1. If we consider the
equilibrium case, we reproduce the standard paraconductivity
formula [29,34], which is summarized in Appendix C based
on our formalism. The expressions in Eqs. (10) and (11) can
be used in all dimensions. For a film-shaped sample with
thickness d , the system can be regarded as two-dimensional
if the coherence length is much larger than the thickness (ξ �
d). In this case, the measurable three-dimensional current
density is given by j = j2D/d , where j2D is the current density
in two dimensions. In a similar manner, for a wire-shaped
sample with cross-sectional area S = dxdy, the current density
is given by j = j1D/S for ξ � dx,y.

We can also consider the time-dependent GL free energy
F , which is modified from the equilibrium by the photoexci-
tation. After taking the random average, we get

〈F (r, t )〉 =
∑

q

(
a + [q − 2eA(t )]2

4m

)
〈|ψq(t )|2〉 (12)

≡ Ffluct (t ) + Fkin(t ). (13)

The first term Ffluct (t ) = Va〈|ψ (r, t )|2〉 represents the fluc-
tuation contribution to the free energy, and the second term
represents the kinetic energy of Cooper pairs. To consider the
anisotropy in the kinetic energy, we divide the free energy as
Fkin = ∑

μ F (μ)
kin , where

F (μ)
kin (t ) =

∑
q

[qμ − 2eAμ(t )]2

4m
〈|ψq(t )|2〉. (14)

In the next two subsections, we specify the shape of the
pump/probe lights more concretely, and we derive the
detailed expressions for the above physical quantities.

Here we comment on the validity of the TDGL equation
in Eq. (1). As is clear from its expression, the higher-order
derivatives in space-time are neglected in Eq. (1), which
cannot be justified for a fast excitation process in general.
Hence our results at short time after the pump should be
regarded as the extrapolation from the slow dynamics. We
have also neglected the higher-order terms with respect to
the order parameter ψ , which can be important when the
photoexcitation makes |ψ | larger. However, as shown in the
rest of this paper, the amplitude of ψ decreases in general after
the pump, and therefore the higher-order term is not necessary
in our situation. We note that the higher-order terms such as
|ψ |4 must be included for T < Tc, although we concentrate
here on the T > Tc case.

B. Single pump-shot model

As the simplest form of the pump process, we consider the
electric field with a single delta function [single pump-shot
model; see Figs. 1(a) and 1(b)]. The time dependence of the
vector potential is

A(t ) = A0θ (t ) + A1θ (t − t1) sin 
(t − t1), (15)

where θ (t ) is Heaviside’s step function. While the realistic
setup in the experiments involves an oscillating Gaussian
shape, our choice of electric fields makes the equations simple
enough to evaluate decaying properties precisely in numerical
calculations. More specifically, the integration with respect
to time is evaluated analytically, and hence we can focus
on the implementation of q-integrals. With this setup, the
superconducting fluctuation is explicitly written as

δ
〈|ψq(t )|2〉 = C

V �2g(q)−1
e−tg(q−2eA0 )−1

(
1 − 2e(q − 2eA0) · A1θ (t − t1)

m�

[cos 
(t − t1) − 1]

)

− C

V �2g(q − 2eA0)−1
e−tg(q−2eA0 )−1

(
1 − 2e(q − 2eA0) · A1θ (t − t1)

m�

[cos 
(t − t1) − 1]

)

− C

V �2
· 2e(q − 2eA0) · A1θ (t − t1)

m�

· g(q − 2eA0)−1

g(q − 2eA0)−2 + 
2
e−(t−t1 )g(q−2eA0 )−1 + O

(
A2

1

)
, (16)

〈|ψq(t )|2〉eq = C

V �2g(q − 2eA0)−1

(
1 − 2e(q − 2eA0) · A1θ (t − t1)

m�

cos 
(t − t1)

)
+ C

V �2
· 2e(q − 2eA0) · A1θ (t − t1)

m�


×
[

g(q − 2eA0)−1

g(q − 2eA0)−2 + 
2
cos 
(t − t1) + 


g(q − 2eA0)−2 + 
2
sin 
(t − t1)

]
+ O

(
A2

1

)
(17)

for t > 0. We have defined the q-dependent function by g(q) = �
2 ( q2

4m + a)−1 to make the notation simple. There is no
exponentially time-dependent factor in 〈|ψq(t )|2〉eq, and hence it represents the contribution from equilibrium in the limit t → ∞.
Taking the q-summations with some form factors, we can get physical quantities such as the order parameter and electric
current, which are all gauge-invariant quantities. We note that even after the pump process finishes, there remains a finite vector
potential as shown in Fig. 1(a). However, this is not a physical degree of freedom, and it can be eliminated by a constant shift
in q-summation. We also note that the expression includes exponential functions and the integration range should be carefully
chosen in the numerical calculation. The technical details are summarized in Appendixes A and B. With these techniques, we
can have highly accurate numerical results that enable us to access the critical exponents of the decaying functions as shown
later in Sec. III.
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0 t1
t

Single pump-shot model
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probe

t0

A0

0 t1
A1

t

2π/Ω

pump
probe
E1

2π/Ω

0 t1 t

A(t) E(t)

Double pump-shot model

t0

FIG. 1. Sketches for the time dependences of (a) the vector potential and (b) the electric field in the pump-probe process considered in the
single pump-shot model. (c), (d) The same plots for the double pump-shot model.

Although in general it is hard to derive the analytical expression, it is possible if we focus on the large t limit. In this case the
q-integrals are reduced to simple Gaussian integrals, and the superconducting fluctuation, electric current density, and kinetic
component of the GL free energy are explicitly obtained as

δ〈|ψ (r, t )|2〉 t→∞−−−→ C

2�V

(
m�

2π

)d/2( m

e2A2
0 + ma

− 1

a

)
t−d/2e− 2a

�
t , (18)

j0(t )
t→∞−−−→ −Ce2A0

�V

(
m�

2π

)d/2 1

e2A2
0 + ma

t−d/2e− 2a
�

t , (19)

δFkin(t )
t→∞−−−→ dC

8

(
m�

2π

)d/2( m

e2A2
0 + ma

− 1

a

)
t− d+2

2 e− 2a
�

t (20)

for the d-dimensional system. Namely, the time constant �/2a [which is identical to γ −1
1 defined below in Eq. (23)], which

originates from the temperature measured from the transition point, gives a characteristic timescale when approaching the
equilibrium state. However, the richer behaviors can be seen at a shorter time range, as discussed in Sec. III.

In the above formalism, we have considered the probing light induced at t = t1. In the numerical analysis in Sec. III, however,
we focus on the pump light effect for the single pump-shot model. The effects from probing light are considered only for the
double pump-shot model (see below), since the setup is the more realistic situation compared to the single pump-shot model.

C. Double pump-shot model

Here we consider a slightly more realistic situation. Since the electric field is applied with an oscillating manner in the
experimental setup, it is natural if the sum rule

∫ t0
0 E(t )dt = 0 is satisfied. With this constraint, the simplest form of the electric

field is the combination of the two delta functions with different signs [see Figs. 1(c) and 1(d)]. The time dependence of the
vector potential is given by

A(t ) = A0θ (t )θ (t0 − t ) + A1θ (t − t1) sin 
(t − t1). (21)

Namely, the pump process appears for 0 < t < t0 and the probe process for t1 < t . In this case, the deviation of the
superconducting fluctuation from the equilibrium state for t > t0 is written as

δ〈|ψq(t )|2〉 = C

V �2g(q)−1
e−(t−t0 )g(q)−1−t0g(q−2eA0 )−1

(
1 − 2eq · A1θ (t − t1)

m�

[cos 
(t − t1) − 1]

)

+ C

V �2g(q − 2eA0)−1
[1 − e−t0g(q−2eA0 )−1

]e−(t−t0 )g(q)−1

(
1 − 2eq · A1θ (t − t1)

m�

[cos 
(t − t1) − 1]

)

+ C

V �2g(q)−1
[e−(t−t1 )g(q)−1 − e−(t−t0 )g(q)−1

]

(
1 − 2eq · A1θ (t − t1)

m�

[cos 
(t − t1) − 1]

)

− C

V �2g(q)−1
e−(t−t1 )g(q)−1

(
1−2eq · A1θ (t − t1)

m�

cos 
(t − t1)

)
− C

V �2
· 2eq · A1θ (t − t1)

m�

· e−(t−t1 )g(q)−1

g(q)−1

g(q)−2 + 
2
,

(22)

where we have kept the terms up to O(A1) contributions. The order parameter in the equilibrium state is the same as Eq. (17)
with the replacement q − 2eA0 → q. For the time range 0 < t < t0, the system is essentially the same as the single pump-shot
model, and new expressions are not necessary.
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FIG. 2. Time evolution of the (a)–(c) superconducting fluctuation and the (d)–(f) excited current density in the single pump-shot model
with a logarithmic scale, which are measured as deviations from the equilibrium component. The quantities are plotted for (a), (d) three-,
(b), (e) two-, and (c), (f) one-dimensional systems. The dashed lines shown in (a), (c)–(f) are power functions shown in Eqs. (25)–(28). μ is
the direction where the pump pulse is shot, μ = z in the (d) three-, μ = y in the (e) two-, and μ = x in the (f) one-dimensional system. The
normalized constants are defined by ψ2

0 = C
γ1�2V

(2mγ1�)d/2 and J0 = eC
mγ1�2V

(2mγ1�)
d+1

2 .

III. NUMERICAL RESULTS FOR SINGLE
PUMP-SHOT MODEL

Here we show the physical quantities in the photoexcited
states of the single-pump shot model formulated in Sec. II B.
We concentrate on the photoexcited states in this section, and
the properties of the probing process are discussed in the more
realistic double-pump shot model in the next section. For the
single-pump shot model, the behaviors are controlled by the
following two parameters:

γ1 =2a

�
, (23)

γ2 =2e2A2
0

m�
, (24)

which have the dimension of the inverse of time. γ1 represents
the distance from the critical point, and γ2 shows the intensity
of the pump light. We take γ1 = 1 as a unit of energy, and the
controlling parameter is then γ2.

First, we consider the deviation δ〈|ψ (r, t )|2〉 of the super-
conducting fluctuation from equilibrium defined in Eq. (16),
which is shown in Figs. 2(a)–2(c). These figures are plotted
with a logarithmic scale to visualize the functional form of the
decaying functions of the physical quantities. After the pump
at t = 0, the superconducting fluctuation decreases from the
equilibrium value, i.e., δ〈|ψ (r, t )|2〉 < 0. The decrease stops
at t ∼ γ −1

2 , where the fluctuation becomes minimum, and then
it increases toward the equilibrium value. It is notable that
in the whole time range, the photoexcitation gives a negative

contribution to the superconducting fluctuation, which is in
contrast to a naive expectation that the photoexcitation may
increase the superconducting fluctuation. The photoinduced
electric current is also shown in Figs. 2(d)–2(f), which is a
decreasing function with respect to time. Namely, the effect
of photoexcitation appears maximally around t = 0, which
is different from the behaviors of the fluctuation shown in
Figs. 2(a)–2(c).

For a sufficiently long time regime, all the quantities in
Fig. 2 decay with an exponential form with the damping
constant γ1 (= 1). Indeed, this behavior is consistent with the
analytical asymptotic form given in Eqs. (18) and (19). In the
shorter time regime, on the other hand, we find the power-
law or logarithmic behaviors for both the superconducting
fluctuation and electric current in all dimensions. Usually the
power-law behaviors are observed in systems located at the
critical point [38]. In contrast, the present case is away from
the transition point (T > Tc), but we still observe the power-
law decay. In large γ2 cases, such as γ2 = 50, 100, 103, and
104, the power-law regime is separated into two parts at t ∼
γ −1

2 . We can see from Fig. 2 that if we take γ2 < γ1, one of
the power-law or logarithmic regimes vanishes. In the former
studies in nonequilibrium states, the power-law behavior in
superconductors has also been found in Refs. [39] and [40].

The above exponential and power-law/logarithmic behav-
iors are summarized in Fig. 3, which is one of the central
results of this paper. The phase diagram in the plane of t and γ2

is categorized into three regimes: the exponentially decaying
regime (t > γ −1

1 , III), the power-law or logarithmic decaying
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ln t

ln γ−1
1

ln γ2ln γ2 = − ln t

FIG. 3. A sketch of the phase diagram in the plane of the log-
arithmic time ln t and the logarithmic excitation strength ln γ2. The
dashed lines show crossovers.

regime (γ −1
2 < t < γ −1

1 , I), and another power-law regime
(t < γ −1

2 , II). The pump-pulse intensity γ2 characterizes the
power-law/logarithmic damping behavior, while the system
temperature γ1 ∝ (T − Tc) characterizes exponentially decay-
ing behavior. The line that separates regimes I and II termi-
nates at the point where it crosses with the vertical t = γ −1

1
line.

The power-law/logarithmic behavior is intuitively inter-
preted as follows. When the system is very close to the
superconducting transition point, the value of γ −1

1 ∼ a−1 goes
to infinity and then only regimes I and II are left. Hence
this power-law/logarithmic decay originates from a charac-
teristic behavior at the critical point. For a sufficiently weak
pump, regime II survives for a long time, whereas regime
I is dominant for a strong pump with large γ2 ∝ A2

0. Away
from the critical point (a > 0), the power-law/logarithmic
regimes end at the time scale of γ −1

1 and crossover into
the exponentially decaying regime. This indicates that the
critical point is effectively expanded into a finite regime by
the pump shot and it shrinks with evolving time to approach
the equilibrium state. We note that the fluctuation itself is
suppressed, as shown in Figs. 2(a) and 2(c) and Eq. (16),
although it is divergent at the critical point in equilibrium.
Hence the behavior with the power-law/logarithmic decay
and with finite fluctuation amplitude is characteristic for an
excited state in nonequilibrium.

We also comment on the region in which the GL approach
is justified. The GL theory can account for the long wave-
length and slow dynamics, and the corresponding character-
istic length and time are given by the coherence length ξ ∼
h̄/

√
ma and the correlation time tc ∼ �/a ∼ γ −1

1 . Hence the
time range with t � tc ∼ γ −1

1 is not justified in a strict sense,
but rather our results should be regarded as an extrapolation
from the GL theory.

With the help of Fig. 3, we can have analytic forms
of the power-law and logarithmic functions. For regime I

(γ −1
2 < t < γ −1

1 ), we take the limit γ2 → ∞ and obtain the
asymptotic behaviors of fluctuations and currents for each
dimension as

δ〈|ψ (r, t )|2〉 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−4πmC

V

√
2πm

�
t−1/2 (d = 3),

2πmC

�V

[
γ + ln

(
2a

�
t

)]
(d = 2),

−πC

�V

√
m

a
(d = 1),

(25)

j0(t ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2πm2�CA0

Ve2A4
0

√
πm�

2
t−5/2 (d = 3),

−πm2CA0

Ve2A4
0

t−2 (d = 2),

−mCA0

Ve2A4
0

√
πm�

2
t−3/2 (d = 1),

(26)

where γ is Euler’s gamma constant. For regime II (t < γ −1
2 ),

on the other hand, the critical behaviors are seen in the weak
excitation limit (γ2 → 0). We then obtain the time depen-
dences as

δ〈|ψ (r, t )|2〉 �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2e2A2
0C

3π�2V

√
2m

π�
t1/2 (d = 3),

e2A2
0C

π�2V
t

[
γ + ln

(
2a

�
t

)]
(d = 2),

−e2A2
0C

m�2V

√
m

a
t (d = 1),

(27)

j0(t ) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−16πCe2A0

3V

√
2πm

�
t−1/2 (d = 3),

4πCe2A0

�V

[
γ + ln

(
2a

�
t

)]
(d = 2),

−2πCe2A0

V

√
2

ma
(d = 1).

(28)

These time dependences are consistent with the numerical
results shown in Fig. 2.

Let us turn our attention to the photoexcitation effects on
the free energy. Figures 4(a)–4(c) show the time dependence
of the total GL free energy δF (t ) defined in Eq. (12) for the
fixed A0. The total free energy δF (t ) increases substantially
after the pump, whose main contribution comes from the
kinetic energy. We also plot the direction-dependent kinetic
energy δF (μ)

kin defined in Eq. (14) and the fluctuation contribu-
tion δFfluct. For the three-dimensional case shown in Fig. 4(a),
the kinetic energy along the z direction is positive, while the
other x, y-direction components are negative. With evolving
time, the kinetic energy decreases and the nonequilibrium
component of the total free energy becomes negative. This
sign change is captured by analytic asymptotic functions for
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FIG. 4. Time dependence of the GL free energy defined in
Eq. (12) in the single pump-shot model (δFtot = δFfluct + δFkin) in
the (a) three-, (b) two-, and (c) one-dimensional systems, and we
have taken γ2 = 100. μ and ν mean the components of the kinetic
GL free energy, where μ is the direction where the pump pulse is
shot and ν is the other direction, μ = z, and ν = x, y in the (a) three-
dimensional system and μ = y and ν = x in the (b) two-dimensional
system. The normalized constant is defined by F0 = C

2�
(2mγ1�)d/2.

the kinetic energy, whose forms are

δFkin(t ) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−mC

4π

√
m�

2π
t−3/2 (d = 3),

−mC

4π
t−1 (d = 2),

− C

2�

√
m�

2π
t−1/2 (d = 1)

(29)

for γ −1
2 < t < γ −1

1 (regime I), and

δFkin(t ) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

e2A2
0C

6π�

√
2m�

π
t−1/2 (d = 3),

−e2A2
0C

2π

[
γ + ln

(
2a

�
t

)]
(d = 2),

e2A2
0C

2m�

√
m

a
(d = 1)

(30)

for t < γ −1
2 (regime II). The fluctuation contribution δFfluct (t )

is basically the same quantity as the superconducting fluctu-
ation given by δ〈|ψ (r, t )|2〉. In Fig. 4, however, it does not
make a significant contribution to the free energy.

At the end of this section, let us estimate the realistic
values for the characteristic timescales and observable current
signals. We focus on the two-dimensional system as in the
cuprate superconductors where the fluctuation phenomena
have been observed. We first consider the time constants
γ −1

1 , γ −1
2 defined in Eqs. (23) and (24). For the estimation,

we employ the results from the BCS theory, a ∼ (kBTc )2

εF

T −Tc
Tc

and � ∼ kBTc
εF

h̄ [32]. Taking εF = 1.0 eV, Tc = 1.0 × 102 K,

and T = 1.1Tc, we obtain γ −1
1 � 1.5 × 10−1 ps. As for the

estimation of γ −1
2 , we need the value of the strength of the

electric field E0 and its duration time τ . Although we consider
the delta function for the pump electric field in Fig. 1, we
regard it as a box shape with the width τ and the height E0τ .
For a typical experimental situation, the strength of the electric
field is roughly E0 ∼ 1 MV/cm and the duration is τ ∼ 1 ps
[11]. With these conditions we get γ −1

2 ∼ 1.6 × 10−10 ps,
which is much smaller than γ −1

1 . Hence, region I in Fig. 3
is likely to be observed.

We also make an estimate of the value of the photoinduced
current. Using the above parameters, we obtain the normal-
ization current density J0, which is defined in the inset of
Fig. 2, as J0 = 1.5 × 102 A m−1. This value is compared to the
normal current, which is simultaneously induced by light. The
normal conductivity is typically σn ∼ 1.0 × 103 
−1 cm−1

in the normal state [41]. Using the same E0 as above and
the distance 10 Å between the layers made of coppers and
oxygens in cuprates, we obtain the normal current density
Jn ∼ 104 A m−1. Since the signal from fluctuation currents
can be 10 or 100 times larger than J0, as shown in Fig. 2, the
photoinduced current can be comparable to the normal current
in the short time region.

IV. NUMERICAL RESULTS FOR THE DOUBLE
PUMP-SHOT MODEL

We consider the more realistic double pump-shot model
shown in Figs. 1(c) and 1(d) as introduced in Sec. II C. We
take t0 = 1 as a unit of time, which is located at the end of
the pump process [see Figs. 1(c) and 1(d)]. In this section,
we discuss only the two-dimensional system because the
behaviors are similar in the other dimensions. The results for
the one- or three-dimensional system are shown in Appendix
D to make the data complete.

A. Properties of the excited state

We first summarize the results for the excited state here,
and then we discuss the probe current in the next subsection.
The electric field pulse is induced at t = 0 along the −y
direction, and at t = t0 along the +y direction for two
dimensions. Correspondingly, the physical quantities are
largely modified around these two characteristic time scales.
Since the results for the time range 0 < t < t0 are the same
as in the single-shot model, we focus on the regime t > t0.
Figure 5(a) shows the time dependence of the superconduct-
ing fluctuation in the double pump-shot model. The damping
behavior is similar to that in the single pump-shot model:
the power-law and exponential decay are observed. At short
time, however, there is almost no time dependence. This is
due to the remaining nonequilibrium contribution at t = t0
induced from the first pump shot at t = 0, which makes the
difference from the single pump-shot model. On the other
hand, with strong pump, the power-law/logarithmic behavior
is observed, which corresponds to regime I in Fig. 3. Namely,
while regime II in the single pump-shot model may not be
seen depending on the excitation process, regime I is more
robustly present for the case with a strong excitation pulse.

Figure 5(b) shows the electric current density. In contrast to
Fig. 5(a), the qualitative behaviors are the same as those in the
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FIG. 5. Time dependences of (a) the superconducting fluctua-
tion, (b) the excited current density, and (c) the GL free energy with
the logarithmic time scale in the double pump-shot model. We have
taken t0 = 1, γ1 = 1, and (c) γ2 = 100 to compare with the results
of the single pump-shot model in the two-dimensional system. μ and
ν used in (c) have the same meanings as Fig. 4(b). The normalized

constants are defined by ψ2
0 = 2mC

�V , J0 = 2eC
�V

√
2m�

t0
, and F0 = mC

t0
.

single pump-shot model even for small t − t0 [see Fig. 2(e)].
This is because the current induced from the first shot at t = 0
is a simple decreasing function and almost vanishes at t = t0,
where the second pulse is induced. Thus the characteristic
power-law/logarithmic behaviors are not specific to the
single pump-shot model. We also show in Fig. 5(c) the time
evolution of the free energies, which is again similar to the
single pump-shot model. The estimated signal for the double
pump-shot model is the same order of magnitude as in the
single pump-shot model if the strength of the external field is
the same (see also the discussions at the end of Sec. III).

B. Paraconductivity in photoexcited systems

In this subsection, we consider the probe current in the
photoexcited state. With the two-dimensional double pump-
shot model, the probe electric field is written as E1(t ) =
E1 cos 
(t − t1), and the current density in Eq. (11) is written
as

j1μ(t,
) =
∑

ν

[
σ (1)

μν (t,
)[cos 
(t − t1) − 1]

+ σ (2)
μν (t,
) sin 
(t − t1) + σ (3)

μν (t,
)
]
E1ν,

(31)

where μ, ν = x, y, z. In equilibrium, if we take the time
average, σ (1) and σ (2) represent the real and imaginary parts
of the ac paraconductivity summarized in Appendix C, and
σ (3) = 0.

Let us first focus on the dc paraconductivity with 
 → 0.
In this case, the probe current measured from the equilibrium

FIG. 6. (a) Time dependence of the nonequilibrium component
of the dc paraconductivity, which is normalized by its equilibrium
component σeq = e2C

2πVa . (b) Anisotropy parameter δσxx/δσyy. Note
that the vertical axis in (b) is measured from unity (isotropic limit).
We have taken γ1 = 1 and t1 = 1.1 with the time unit t0 (= 1).

value is simply written as

δ j1μ(t ) = δσμμ(t )E1μ, (32)

which describes the characteristics of the nonequilibrium
state. Figure 6(a) shows the dc paraconductivity in the pho-
toexcited states for γ1 = 1 and t1 = 1.1, which is normalized
by the equilibrium component of the conductivity (σ = σeq +
δσ ). We note that δσμμ(t ) can be finite even for the case
without pump (i.e., A0 = 0), since the sudden switching-on
of the probing field turns the system into nonequilibrium.
As shown in Fig. 6, the paraconductivity is decreased (i.e.,
δσ < 0) when the pump light A0 is induced. This observa-
tion is consistent with the decrease of the superconducting
fluctuation in Fig. 5(a). Hence, this result cannot account for
the experiments in which the conductivity is largely enhanced
[4,13]. A relatively small change in Fig. 6 as a function γ2

is due to the choice of measuring time t1 = 1.1: at this time
the induced current has become a small value. Since δσ is the
same order of magnitude as the equilibrium component σeq,
the paraconductivity characteristic for nonequilibrium states
can in principle be observed for the two- and one-dimensional
systems where the paraconductivity σeq is detectable.

With the pump process, the system becomes anisotropic
because of the one-direction-oriented electric fields. We
show in Fig. 6(b) the anisotropy parameter δσxx/δσyy

for the nonequilibrium component of the paraconductivity.
This quantity shows a peaked structure as a function of
time. Namely, the photoexcited current makes the system
anisotropic and for t → ∞ the system relaxes into the
isotropic equilibrium state. The parameter γ2-dependence is
also not simple. For a weak pump such as γ2 = 0.1, the
photoinduced current j0 is small and then the anisotropy
is also small. With increasing γ2, the anisotropy parameter
increases with increasing photoinduced current. However, for
a sufficiently strong pump, the anisotropy becomes smaller
again, as shown in Fig. 6(b). This is because the strong pump
creates a quickly damping current with a large exponent, as
shown in Eq. (26), and little current is left when probing
current is induced. Thus the anisotropy behaves in a nontrivial
manner as a function of γ2.
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FIG. 7. Frequency dependence of the ac paraconductivity σ (3) at
several different times. In these figures, we have taken γ1 = 1, γ2 =
100, and t1 = 1.1 (t0 = 1 is the unit of time). The normalization
constant is defined by σ0 = 8e2Ct0

�V .

Finally, we briefly discuss the ac paraconductivity in the
photoexcited state. We can separate the time and frequency
dependences of δσ (1,2), which are written as

δσ (1)
μμ (t,
) = 8e2

m�V

δF (μ)
kin (t )


2
, (33)

δσ (2)
μμ (t,
) =2e2

m

δ〈|ψ (r, t )|2〉



, (34)

where μ means the direction where the pump pulse is shot.
These forms can be understood from Eqs. (9), (10), (11), (14),
(22), and (31). The time dependence of these quantities has
already been discussed in the above, and new plots are not
necessary.

The behaviors of σ (3) are more complex because we
cannot separate the time t and frequency 
 dependences.
Figure 7 shows the frequency dependence of σ (3)(t,
) at
different times. We can see from Fig. 7 that σ (3) is also
a simple decreasing function of both time and frequency.
Since σ (3) behaves as a constant for 
 → 0 and ∼
−2 for
the large-
 limit, its shape is Lorentzian-like. Thus all the
frequency dependences are characterized by the three com-
ponents δσ (1,2,3)(t,
).

V. SUMMARY

Based on the time-dependent Ginzburg-Landau (TDGL)
theory, we have clarified the properties of superconduct-
ing fluctuation for systems with photoexcitation. While the
long-time behavior approaching equilibrium is characterized
by exponential decay with a time constant determined by
the temperature, in the intermediate regime the nontrivial
power-law/logarithmically decaying regimes are identified.
The power-law/logarithmic decay is usually observed in
systems located at the critical point, but it can be seen in
the photoexcited system even away from the critical point,
and the exponents are different depending on the excitation
strength. This is interpreted as an extension of the critical
point into a finite regime by photoexcitation. Although the
superconducting fluctuation is divergent at the critical point
in the equilibrium case, in the excited state it is reduced from
the value in equilibrium for the whole time range.

In addition to the properties of excited states, we have
also formulated and calculated the probing currents using the

linear-response theory. We have measured the anisotropy of
the conductivity in the excited state, which becomes maximal
at the intermediate photoexcitation strength, in contrast to
a naive expectation that the stronger pump just creates a
larger anisotropic state. This behavior is closely related to the
exponent change in the current density as a function of the ex-
citation amplitude in the power-law decaying regime. We have
also clarified the time evolution of the ac conductivities. The
probing currents discussed in this paper may be experimen-
tally observed in one- and two-dimensional systems since the
magnitude of the nonequilibrium components of the linear-
response conductivity is comparable to the equilibrium one.

These results are obtained based on the simple TDGL
equation, which is applicable to a wide class of materials,
and it provides a foundation for further exploration of the
fluctuation phenomena in nonequilibrium superconductors.
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APPENDIX A: DIMENSIONLESS FORMS
OF PHYSICAL QUANTITIES

1. Definition of dimensionless functions

In this Appendix, we define dimensionless functions to
evaluate the physical quantities numerically. First of all, we
introduce the unit time T , which is chosen as γ −1

1 for the
single pump-shot model and as t0 for the double pump-shot
model, to make the notation simple. In addition, we define the
constants as

q0 =
√

2m�

T , k = γ1T , x0 = sgn (e)
√

γ2T
A0

|A0| , (A1)

where the definitions of γ1 and γ2 are given in Eqs. (23) and
(24). We have chosen x0 > 0 in this paper. Using these con-
stants, the wave vector is written as q − 2eA0 = q0(x − x0).
We define several dimensionless functions in a d-dimensional
system as

X (a, b) =
∫

dx
(2π )d

1

x2 + k
e−(a+b)(x− b

a+b x0 )2
, (A2)

X̃ (a, b) =
∫

dx
(2π )d

1

(x − x0)2 + k
e−(a+b)(x− b

a+b x0 )2
, (A3)

Yμ(a, b) =
∫

dx
(2π )d

xμ

x2 + k
e−(a+b)(x− b

a+b x0 )2
, (A4)

Ỹμ(a, b) =
∫

dx
(2π )d

xμ

(x − x0)2 + k
e−(a+b)(x− b

a+b x0 )2
, (A5)

Zμν (a, b) =
∫

dx
(2π )d

xμxν

x2 + k
e−(a+b)(x− b

a+b x0 )2
, (A6)
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Z̃μν (a, b) =
∫

dx
(2π )d

xμxν

(x − x0)2 + k
e−(a+b)(x− b

a+b x0 )2
, (A7)

W (a, c) = 1

d

∫
dx

(2π )d

x2(x2 + k)e−ax2

(x2 + k)2 + c2
, (A8)

−−→
c→0

W (a, 0) − W (2)(a)c2 + O(c4), (A9)

W (2)(a) = 1

d

∫
dx

(2π )d

x2e−ax2

(x2 + k)3
, (A10)

V (a, c) = − 1

d

∫
dx

(2π )d

x2e−ax2

(x2 + k)2[(x2 + k)2 + c2]
, (A11)

which are evaluated for each dimension separately. The limit
c → 0 corresponds to the limit 
 → 0. The function W (2) is
used when we consider the dc paraconductivity. We note that
Yμ(a, 0) = 0 since the integrand is an odd function, and there
is the relation Zμν (a, 0) = δμνW (a, 0).

a. Three-dimensional system

We can choose A0 = A0ẑ without a loss of generality. Then
we have the relations

Yx = Yy = 0, (A12)

Zμν = 0 (μ �= ν), (A13)

Zxx = Zyy, (A14)

since the integrand is an odd function. We obtain the detailed
functional forms as

X (a, b) = 1

4π2
√

a + b
G0

(
k(a + b),

2bx0√
a + b

)
, (A15)

Yz(a, b) = 1

4π2(a + b)
G1

(
k(a + b),

2bx0√
a + b

)
, (A16)

Zzz(a, b) = 1

4π2(a + b)3/2
G2

(
k(a + b),

2bx0√
a + b

)
, (A17)

Zxx(a, b) =
√

π

16π2(a + b)3/2
− k

2
X (a, b) − 1

2
Zzz(a, b).

(A18)

Here the function Gk (a, b) is defined by

Gk (a, b) = e− b2

4

∫ ∞

0
dx

xk+2e−x2

x2 + a

∫ 1

−1
ds skebxs (A19)

= e− b2

4

∑
σ=±

k∑
l=0

σ l−1bl−k−1a(k)
l Fl+1(a, σb), (A20)

where {
a(0)

l

} = 1, (A21){
a(1)

l

} = −1, 1, (A22){
a(2)

l

} = 2,−2, 1, (A23){
a(3)

l

} = −6, 6,−3, 1, (A24)

and

Fn(a, b) =
∫ ∞

0
dx

xne−(x− b
2 )2

x2 + a
. (A25)

b. Two-dimensional system

We can choose A0 = A0ŷ without loss of generality. Then,
we use the relations

Yx = 0, (A26)

Zμν = 0 (μ �= ν). (A27)

We get

X (a, b) = 1

2π
G(1)

(
k(a + b),

2bx0√
a + b

)
, (A28)

Yy(a, b) = 1

2π
√

a + b
G(2)

(
k(a + b),

2bx0√
a + b

)
, (A29)

Zyy(a, b) = 1

4π (a + b)
G(3)

(
k(a + b),

2bx0√
a + b

)
, (A30)

Zxx(a, b) = 1

4π (a + b)
G(4)

(
k(a + b),

2bx0√
a + b

)
. (A31)

We have defined the new functions

G(1)(a, b) =
∫ ∞

0
dx

xe−(x− b
2 )2

x2 + a
Ĩ0(bx), (A32)

G(2)(a, b) =
∫ ∞

0
dx

x2e−(x− b
2 )2

x2 + a
Ĩ1(bx), (A33)

G(3)(a, b) =
∫ ∞

0
dx

x3e−(x− b
2 )2

x2 + a
[Ĩ0(bx) + Ĩ2(bx)], (A34)

G(4)(a, b) =
∫ ∞

0
dx

x3e−(x− b
2 )2

x2 + a
[Ĩ0(bx) − Ĩ2(bx)], (A35)

where Ĩn(z) = e−|z|In(z) and In(z) is a modified Bessel func-
tion of the first kind.

c. One-dimensional system

We obtain the dimensionless functions in the following
forms:

X (a, b) =
√

a + b

2π

∑
s=±

F0

(
k(a + b),

2bx0s√
a + b

)
, (A36)

Yx(a, b) = 1

2π

∑
s=±

sF1

(
k(a + b),

2bx0s√
a + b

)
, (A37)

Zxx(a, b) = 1

2π
√

a + b

∑
s=±

F2

(
k(a + b),

2bx0s√
a + b

)
, (A38)

where the function Fn(a, b) is given in Eq. (A25).
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2. Single pump-shot model

We consider the physical quantities in the single pump-shot model. We first define the constants by

J0 =eCT qd+1
0

m�2V
, (A39)

σ0 =2e2CT 3qd+2
0

m2�3V
, (A40)

ψ2
0 =CT qd

0

�2V
, (A41)

F0 =CT qd+2
0

4m�2
. (A42)

The electric current density defined in Eqs. (9), (10), and (11) is rewritten as

δ jμ(t,
) = e−kt/T

[
−J0Ỹμ

(
t

T , 0

)
+ σ0

Es
1μ(t )

2
T X

(
0,

t

T

)
+ σ0

∑
ν

Ec
1ν (t )


2T 2
Z̃μν

(
t

T , 0

)]

− e−kt/T
[
σ0

Es
1μ(t )

2
T X

(
t

T , 0

)
+ σ0

Ec
1μ(t )


2T 2
W

(
t

T , 0

)]
+ e−k(t−t1 )/T σ0E1μV

(
t − t1
T ,
T

)
, (A43)

where we have defined Es
1(t ) = E1 sin 
(t − t1) and Ec

1(t ) = E1[cos 
(t − t1) − 1] to make the notations simple. When we
take the 
 → 0 limit, we expand these expressions up to second order.

The deviation of the superconducting fluctuation originating from the pump is given by

δ〈|ψ (r, t )|2〉
ψ2

0

= e−kt/T X

(
0,

t

T

)
− e−kt/T X̃

(
0,

t

T

)
. (A44)

We also consider the GL free energy. As shown in Eq. (13), the fluctuation contribution δFfluct (t ) is written as

δFfluct (t )

F0
= k

δ〈|ψ (r, t )|2〉
ψ2

0

, (A45)

where the superconducting fluctuation is given in Eq. (A44). The kinetic component of the GL free energy is written as

δF (μ)
kin (t )

F0
= e−kt/T Zμμ

(
0,

t

T

)
− 2x0μe−kt/T Yμ

(
0,

t

T

)
+ x2

0μe−kt/T X

(
0,

t

T

)
− e−kt/T W

(
t

T , 0

)
. (A46)

3. Double pump-shot model

Next, we consider the double pump-shot model. The electric current density δ jμ(t,
) is rewritten as

δ jμ(t,
) = e−kt/T − (t−t0 )t0
tT x2

0

[
J0Yμ

(
t − t0
T ,

t0
T

)
+ σ0

Es
1μ(t )

2
T X

(
t − t0
T ,

t0
T

)
+ σ0

∑
ν

Ec
1ν (t )


2T 2
Zμν

(
t − t0
T ,

t0
T

)]

+ e−k(t−t0 )/T

[
J0Ỹμ

(
t − t0
T , 0

)
+ σ0

Es
1μ(t )

2
T X̃

(
t − t0
T , 0

)
+ σ0

∑
ν

Ec
1ν (t )


2T 2
Z̃μν

(
t − t0
T , 0

)]

− e−kt/T − (t−t0 )t0
tT x2

0

[
J0Ỹμ

(
t − t0
T ,

t0
T

)
+ σ0

Es
1μ(t )

2
T X̃

(
t − t0
T ,

t0
T

)
+ σ0

∑
ν

Ec
1ν (t )


2T 2
Z̃μν

(
t − t0
T ,

t0
T

)]

− e−k(t−t0 )/T
[
σ0

Es
1μ(t )

2
T X

(
t − t0
T , 0

)
+ σ0

Ec
1μ(t )


2T 2
W

(
t − t0
T , 0

)]
+ e−k(t−t1 )/T σ0E1μV

(
t − t1
T ,
T

)
. (A47)

The case with 0 < t � t0 is the same situation corresponding to the single pump-shot model, which we have already considered
in the above subsection. We then consider the region t > t0. The fluctuation is written as

δ〈|ψ (r, t )|2〉
ψ2

0

= e−kt/T − (t−t0 )t0
tT x2

0 X

(
t − t0
T ,

t0
T

)
+ e−k(t−t0 )/T X̃

(
t − t0
T , 0

)
− e−kt/T − (t−t0 )t0

tT x2
0 X̃

(
t − t0
T ,

t0
T

)

− e−k(t−t0 )/T X

(
t − t0
T , 0

)
. (A48)
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FIG. 8. Frequency dependences of L1 and L2 in the (a) three-, (b) two-, and (c) one-dimensional systems.

Next, we consider the GL free energy. The fluctuation contribution is the same as Eq. (A45). The kinetic component is

δF (μ)
kin (t )

F0
= e−kt/T − (t−t0 )t0

tT x2
0 Zμμ

(
t − t0
T ,

t0
T

)
+ e−k(t−t0 )/T Z̃μμ

(
t − t0
T , 0

)
− e−kt/T − (t−t0 )t0

tT x2
0 Z̃μμ

(
t − t0
T ,

t0
T

)

− e−k(t−t0 )/T W

(
t − t0
T , 0

)
. (A49)

APPENDIX B: NUMERICAL EVALUATION FOR THE DIMENSIONLESS FUNCTIONS

The dimensionless functions defined in Appendix A are written in the following general form:∫ ∞

0
dx F (x)e−(x− b

2 )2 =
∫ ∞

− b
2

dx F
(

x + b

2

)
e−x2

(B1)

� Lmax − Lmin

2

∫ 1

−1
dy F

(
Lmax − Lmin

2
y+Lmax + Lmin

2
+b

2

)
e−

(
Lmax−Lmin

2 y+ Lmax+Lmin
2

)2

, (B2)

where Lmax > Lmin with the expressions

Lmin = −L, Lmax = L (2L < b),

Lmin = −b

2
, Lmax = 2L − b

2
(b < 2L). (B3)

We assume that the function F (x) behaves asymptotically as
a power function. Then, due to the presence of the exponential
function, it is safe to choose L � 5, since e−52 � 1.4 × 10−11

are so small. We have used the Gauss-Legendre method [42]
when we integrate the function numerically.

APPENDIX C: TDGL THEORY IN EQUILIBRIUM

1. General formulation

We review the TDGL theory in an equilibrium system
based on our formalism [29]. We assume the weak vector po-
tential A(t ) without specifying its form. The superconducting
fluctuation with the wave vector is obtained as

〈|ψq(t )|2〉 = C

�2V

∫ t

−∞
dt ′ exp

[
− 2

�

(
q2

4m
+ a

)
(t − t ′)

]

×
(

1 + 2e

m�

∫ t

t ′
dt ′′ q · A(t ′′)

)
+ O(A2),

(C1)

where we used the random average given by Eq. (6). We can
expand the representation of the current up to the first order of

A as

j(t ) =
∑

q

e

mV
[q − 2eA(t )]〈|ψq(t )|2〉, (C2)

≡ j0(t ) + j1(t ) + O(A2), (C3)

where

j0(t ) = e

mV

∑
q

q〈|ψq(t )|2〉0 = 0, (C4)

j1(t ) = e

mV

∑
q

q〈|ψq(t )|2〉1 − 2e2

mV
A(t )

∑
q

〈|ψq(t )|2〉0, (C5)

≡ jP
1 (t ) + jD

1 (t ). (C6)

We have treated the vector potential as perturbation. We note
that the integrand of j0(t ) with respect to q is an odd function.
The subscripts “0” and “1” mean the perturbation order of
A. “P” and “D” denote “paramagnetic” and “diamagnetic”
contributions. We abbreviate the argument r since the current
is spatially uniform.

Performing the Fourier transformation, the current is
rewritten as

jμ(ω) = Kμν (ω)Aν (ω), (C7)

≡ (
KP

μν (ω) + KD
μν (ω)

)
Aν (ω), (C8)
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where

KP
μν (ω) = 2e2C

m2�3V 2

∑
q

qμqν

g(q)2

1 − iωg(q)
, (C9)

= 2e2C

m2�3V 2

∑
q

qμqνg(q)2
∞∑

n=0

[iωg(q)]n, (C10)

KD
μν (ω) = − 2e2C

m�2V 2
δμν

∑
q

g(q). (C11)

The paraconductivity σμν (ω) is then obtained by

σμν (ω) = Kμν (ω)

iω
. (C12)

Note the relation KP
μν (ω)|n=0 = −KD

μν (ω). The total kernel
can be rewritten as

Kμν (ω) = 2e2C

im�2V 2ω
δμν

∑
q

∞∑
n=1

[iωg(q)]n+1

n + 1
. (C13)

When we define a dimensionless frequency ω̃ = ω
γ1

= �ω
2a , the

response kernel is further rewritten as

Kμν (ω) = e2C

im�Va

1

ω̃
δμνI (ω̃), (C14)

where

I (ω̃) =
∫

dq
(2π )d

[
−iω̃

4ma

q2 + 4ma
− ln

(
1 − iω̃

4ma

q2 + 4ma

)]
.

(C15)

In the following, we perform the q-integral for each dimen-
sion.

2. Three-dimensional system

The ac paraconductivity for d = 3 is given by

σμν (ω) = e2C
√

m

3πV
a−1/2δμν

[
L1

(
�ω

2a

)
+ iL2

(
�ω

2a

)]
,

(C16)

where

L1(ω̃) = 1

ω̃2

[
2−

√
2(

√
1+ω̃2 + 1)+ω̃

√
2(

√
1 + ω̃2 − 1)

]
,

(C17)

L2(ω̃) = 1

ω̃2

[
−3ω̃+

√
2(

√
1+ω̃2 − 1)+ω̃

√
2(

√
1+ω̃2+1)

]
.

(C18)

The dependence of these quantities with respect to ω̃ is shown
in Fig. 8(a).

3. Two-dimensional system

The ac paraconductivity for d = 2 is given by

σμν (ω) = e2C

2πV
a−1δμν

[
L1

(
�ω

2a

)
+ iL2

(
�ω

2a

)]
, (C19)

FIG. 9. Time dependences of the (a), (b) superconducting fluc-
tuation, the (c), (d) excited current and the (e), (f) GL free energy
with the logarithmic time scale in the double pump-shot model. The
panels (a), (c), (e) are for three-dimensional systems and (b), (d),
(f) for one-dimensional system. We take the parameter as γ1 = 1
and (e), (f) γ2 = 100 to compare with the results of the single
pump-shot model (t0 = 1). μ and ν used in (e) have the same
meanings as Fig. 4(a). The normalized constants are defined by

ψ2
0 = Ct0

�2V

(
2m�

t0

)d/2
, J0 = eCt0

m�2V

(
2m�

t0

) d+1
2

and F0 = C
2�

(
2m�

t0

)d/2
.

where

L1(ω̃) = 1

ω̃2

[
ω̃ arctan ω̃ − 1

2
ln(1 + ω̃2)

]
, (C20)

L2(ω̃) = 1

ω̃2

[
arctan ω̃ + 1

2
ω̃ ln(1 + ω̃2) − ω̃

]
. (C21)

These functions are shown in Fig. 8(b).

4. One-dimensional system

The ac paraconductivity for d = 1 is given by

σμν (ω) = e2C

2V
√

m
a−3/2δμν

[
L1

(
�ω

2a

)
+ iL2

(
�ω

2a

)]
, (C22)

where

L1(ω̃) = 1

ω̃2

[
−2 +

√
2(

√
1 + ω̃2 + 1)

]
, (C23)

L2(ω̃) = 1

ω̃2

[
ω̃ −

√
2(

√
1 + ω̃2 − 1)

]
. (C24)

These functions are shown in Fig. 8(c).
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FIG. 10. Time dependences of the nonequilibrium component of
(a) the dc paraconductivity and (b) anisotropy parameter δσxx/δσzz

in the three-dimensional systems (double pump-shot model). The
vertical axis in (a) is normalized by the equilibrium component of the
paraconductivity σeq = e2C

3πV

√
m
a . Note that the vertical axis in (b) is

measured from the unity (isotropic limit). The dc paraconductivity
for one-dimensional systems is also shown in (c), where the values
are also normalized by σeq = e2C

2V
√

ma3 . We have taken γ1 = 1 and
t1 = 1.1 with the time unit t0 (= 1).

We note that the vertical axis in Fig. 8 is normalized by
the L1(ω̃ → 0). For all the dimensions, L1 (L2), which is the
real (imaginary) part of paraconductivity, is an even (odd)
function of frequency. These quantities satisfy the Kramers-
Kronig relation. As seen from Fig. 8, the behavior in the

FIG. 11. Frequency dependence of the ac paraconductivity σ (3)

at several different times in the (a) three- and (b) one-dimensional
systems (double pump-shot model). In these figures, we have taken
γ1 = 1, γ2 = 100, and t1 = 1.1 with the unit time t0 (= 1). The

normalization constant is defined by σ0 = 4e2C
m�2V

(
2m�

t0

)d/2
.

low-frequency region is sharper for the lower-dimensional
system.

APPENDIX D: ADDITIONAL DATA FOR THE DOUBLE
PUMP-SHOT MODEL IN THREE- AND

ONE-DIMENSIONAL SYSTEMS

While the double pump-shot model in the two-dimensional
system is studied in the main text, here we show the re-
sults in three dimensions and one dimension to make the
data complete. Figure 9 shows the time dependence of the
fluctuation, current density, and free energy, which are plots
similar to Fig. 5. Figures 10 and 11 show the nonequilibrium
component of the dc and ac paraconductivities, respectively,
which correspond to Figs. 6 and 7 of the main text.
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