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The proximity effect in hybrid superconducting–normal-metal structures is shown to affect strongly the
coherent oscillations of the superconducting order parameter � known as the Higgs modes. The standard Higgs
mode at frequency 2� is damped exponentially by the quasiparticle leakage from the primary superconductor.
Two new Higgs modes with the frequencies depending on both the primary and induced gaps in the hybrid
structure are shown to appear due to the coherent electron transfer between the superconductor and the normal
metal. Altogether, these three modes determine the long-time asymptotic behavior of the superconducting
order parameter disturbed either by the electromagnetic pulse or the quench of the system parameters and
thus are of crucial importance for the dynamical properties and restrictions on the operating frequencies for
superconducting devices based on the proximity effect used, e.g., in quantum computing, in particular, with
topological low-energy excitations.
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I. INTRODUCTION

The progress of modern nanotechnology opens new hori-
zons for engineering superconducting correlations in various
hybrid structures and creating, in fact, novel types of arti-
ficial superconducting materials with controllable properties
[1–11]. The proximity phenomenon arising in a nonsupercon-
ducting material from the electron exchange with a primary
superconductor can generate the induced superconducting or-
dering in a wide class of materials, including unconventional
ones [1–5,8–11]. The resulting superconducting state in these
materials can controllably reveal the exotic properties very
rarely found in natural metals or alloys and strongly different
from the ones of the primary superconductor. The induced
Cooper pairs can change, e.g., their spin structure from the
singlet to a triplet one in the presence of strong spin-orbit
coupling and Zeeman (or exchange) field [1,9,10]. This spin
transformation affects, of course, the momentum space struc-
ture of pairs: the routine s-wave condensate can turn into an
exotic p-wave one. The resulting Cooper pair structure leads
to the formation of topological low-energy excitations such
as Majorana fermions [1,9–11] and possesses a high potential
for the development of new types of nanoelectronic devices
perspective for applications in quantum computing, quantum
information processing, quantum annealing, quantum mem-
ory, and more [9,10].

It is no wonder that the study of both equilibrium and
nonequilibrium spectral and transport properties of these sys-
tems with an engineered superconducting state has recently
become one of the central research directions in condensed-
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matter physics. While dc properties of these structures have
been investigated in numerous theoretical and experimental
works, the dynamic effects and, in particular, high-frequency
response remain an appealing problem which definitely de-
serves deeper understanding. Indeed, the limitations on the
operating frequencies for the above-mentioned proximized
devices [12–17] can be solely given by the dynamic char-
acteristics of their induced superconducting ordering. The
nonlinear dynamic effects are also known to provide a new
route to the fascinating physics of coherent modification of
the density of states, etc., induced by microwave irradiation
[18,19].

Clearly, as typical quantum computing devices operate at
temperatures well below the gap of the primary superconduc-
tor, the study of the relaxation dynamics of the order param-
eter close to the critical temperature of the superconducting
transition is irrelevant for their description. A more adequate
theory can be obtained by considering the so-called coherent
quantum-mechanical dynamics of the system, which neglects
inelastic scattering processes. In addition, in superconduct-
ing systems with the unconventional pairing the dynamic
response is known to provide important information about the
order parameter structure [20,21] working as a spectroscopic
tool [22]. The analogous method can provide insight into the
internal structure of the primary and induced Cooper pairings
in superconducting hybrids.

Indeed, even the linear dynamic response of the super-
conductor near equilibrium provides a detection method for
the superconducting gap structure via the coherent order
parameter oscillations known also as Higgs modes [23–28].
The name is given due to the analogy to the Higgs boson in
particle physics [28]. In the low-temperature limit these near-
equilibrium Higgs oscillations of the order parameter mag-
nitude are described by the asymptotic long-time expression
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FIG. 1. Illustration of three Higgs modes in SIN structure, being
coherent Cooper pair splitting-recovery processes with three differ-
ent frequencies ω, decay rates, and amplitudes A.

� − �0 ∼ cos(2�0t )/
√

�0t , where �0 is the superconduct-
ing gap in equilibrium [23–27,29]. The Higgs mode was first
detected using Raman spectroscopy in the superconductors
with charge density wave ordering [30,31] as a peak at the
frequency 2�0 in the Raman spectrum of 2H-NbSe2 below
the superconducting transition temperature. Recent progress
with the terahertz (THz) experimental techniques allowed the
direct observation of the order parameter oscillations using
the pump-probe method [32]. The broadband pump excites
a power-law relaxing Higgs mode at the frequency 2�0,
while the narrow-band pump with a well-defined frequency
ω induces oscillations of the order parameter at the frequency
2ω. The resonant third-harmonic generation [33,34] provides
evidence of the Higgs mode excitation in the superconductors.
An alternative method of the Higgs mode detection through
second-harmonic measurements was recently discovered for
the current carrying states [35].

In this paper we address an important effect of the quasi-
particle spectrum of the superconducting system on long-time
dynamic properties of Higgs modes and apply it to a system
with a proximity-induced superconducting gap. Key physical
phenomena related to the presence of the induced gap are
demonstrated in the example of a junction of the superconduc-
tor (S) and normal metal (N) coupled via an insulating barrier
(I) with finite transparency. We analyze the distinctive features
of the Higgs modes in this structure and make predictions for
the experimentally accessible relevant quantities.

Let’s first consider the qualitative picture of the Higgs
dynamics in the SIN system (Fig. 1) before proceeding with
further microscopic calculations. The Higgs modes in super-
conductors can be interpreted as a coherent splitting-recovery
process of Cooper pairs. The energy difference between the
ground state without quasiparticles and the excited state with
two quasiparticles governs the frequency 2�0 of this coherent
superposition of the above states as each unpaired quasiparti-
cle brings an additional energy �0. Due to this simple quali-
tative reasoning we may expect the frequencies of the Higgs
modes to be determined by the quasiparticle spectrum of the

system. In the SIN structure the superconducting correlations
penetrate to the normal metal and induce the hard gap �i in
the whole system, which is determined by the tunneling rate
�n from the normal metal to the superconductor, provided
�n � �0 [36]. The tunneling rate �n can be interpreted as the
inverse lifetime of the electron in the normal metal. It depends
on the transparency of the barrier, the thickness of the normal
subsystem, and the normal density of states at the Fermi level
in the superconducting material.

We claim that in the SIN structure there are three Higgs
modes corresponding to three possible processes shown in
Fig. 1. First, as in the isolated superconductor, the Cooper
pair may coherently split into two electrons, both located
in the superconductor [Fig. 1(a)]. The energy 2�0 of these
unpaired electrons determines the frequency of this process.
However, in the presence of the normal metal the Cooper
pair splitting can be accompanied by the coherent tunneling
process of either or both electrons [see Figs. 1(b) and 1(c),
respectively]. The minimal energy of each electron which
tunnels to the normal metal should be �i, so the frequency
of the corresponding Higgs mode is given by �0 + �i and
2�i for ne = 1 and 2 electrons tunneling to the normal metal,
respectively. The amplitudes A of these modes are expected
to be reduced by a factor of Dne , where D is the transparency
of the barrier (provided D � 1). On top of that in the first two
processes [Figs. 1(a) and 1(b)], the coherent superposition can
be destroyed by the incoherent decay of each electron located
in the superconductor to the normal metal (see green wavy
lines in Fig. 1) because the hard gap in the spectrum of the
whole system �i is below the energy of the quasiparticle in
the superconductor �0. This effect results in an exponential
damping of the Higgs modes with a rate �s to each �0

frequency contribution. The value �s is the inverse lifetime
of the electron in the superconductor determined by the tun-
neling rate from the superconductor to the normal metal. The
inverse process of quasiparticle tunneling from the normal
metal to the superconductor is suppressed because there are
no quasiparticle states in the superconductor with energy of
about �i; thus, the relaxation rate of the Higgs modes does
not depend on �n, at least up to second order in the barrier
transparency D2. To sum up, the main result of our work can
be written from the qualitative perspective as the following
structure of the gap oscillations in a SIN system in the limit
�s, �n � �0:

δ� ∼ cos(2�0t )√
�0t

e−2�st + D
cos[(�0 + �i )t]

(�0t )p
e−�st

+ D2 cos(2�it )

(�0t )q
, (1)

with certain power-law decay rates p and q.
In Sec. II we introduce the microscopic model and the

basic equations for the Green’s functions. In Sec. III the self-
consistent equations for the dynamics of the superconducting
order parameter are derived. Section IV is devoted to the
dynamics of the superconducting order parameter studied in
the limit �i = 0. In Sec. V the possibility of the experimental
observation of the Higgs modes in SIN systems is discussed.
In Sec. VI we sum up the results.
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II. MICROSCOPIC MODEL: BASIC EQUATIONS

This qualitative picture can be confirmed by the direct
microscopic calculations. The considered SIN system can be
described by the following tunneling Hamiltonian:

Ĥ =
∑
kσ

ξ s
k â†

kσ
âkσ +

∑
k

(�â†
k↑â†

k̄↓ + �∗âk̄↓âk↑)

+
∑
lσ

ξ n
l b̂†

lσ b̂lσ +
∑
klσ

(γkl â
†
kσ

b̂lσ + γ ∗
kl b̂

†
lσ âkσ ), (2)

where âkσ and â†
kσ

are the electron annihilation and creation
operators in the superconducting layer, k is the index of the
single-electron state, σ is the projection of the electron spin,
and k̄ denotes the index of the state obtained from state k
by the time inversion operation. The operators b̂lσ and b̂†

lσ
are the electron annihilation and creation operators in the
normal layer. The last term describes the tunneling between
the superconductor and the normal metal. Assuming the insu-
lating layer to be dirty so that the electron momentum is not
conserved, we consider the tunneling matrix elements γkl to
be Gaussian uncorrelated random values 〈γklγ

∗
k′l ′ 〉 = γ 2δkk′δll ′

[36,37]. This model approximately describes the tunneling
junction if the magnitude of the tunneling matrix element γ 2

is equal to τ 2S/(VsVn), where τ is the geometry-independent
tunneling amplitude, S is the junction area, and Vs and Vn are
the volumes of the superconducting and normal subsystems,
respectively. The superconducting order parameter � is given
by the self-consistency equation:

� = λ

Vs

∑
k

〈âk↑âk̄↓〉, (3)

where λ is the pairing constant, Vs is the volume of the
superconductor, and the brackets 〈· · · 〉 denote a quantum-
mechanical averaging. Here we assume the thickness of the
superconducting subsystem is small compared to the super-
conducting coherence length, so we can consider � to be
homogeneous within the sample.

We study the dynamics of the system using the nonequilib-
rium Keldysh technique. Following the approach developed
in [6,7,36,38,39], we introduce the Green’s functions of the
superconductor Ğss

kk′ (t, t ′), normal metal Ğnn
ll ′ (t, t ′), and two

tunneling Green’s functions, Ğsn
kl (t, t ′) and Ğns

lk (t, t ′). These
Green’s functions are the 4 × 4 matrices in the Keldysh-
Nambu space:

Ğαβ

kk′ (t, t ′) =
(

Ǧαβ(R)
kk′ (t, t ′) Ǧαβ(K )

kk′ (t, t ′)

0 Ǧαβ(A)
kk′ (t, t ′)

)
, (4)

where Ǧαβ(R/A/K )
kk′ are the retarded, advanced, and Keldysh

Green’s functions, respectively, and the indices α and β

denote s and n. The equations for the Green’s functions read

i
∂

∂t
Ğss

kk′ − H̆ s
k Ğss

kk′ −
∑

l

γkl τ̆3Ğns
lk′ = δ(t − t ′)δkk′ ,

(5)

i
∂

∂t
Ğns

lk − H̆n
l Ğns

lk −
∑

k′
γ ∗

k′l τ̆3Ğss
k′k = 0,

i
∂

∂t
Ğnn

ll ′ − H̆ s
nĞnn

ll ′ −
∑

k

γ ∗
kl τ̆3Ğsn

kl ′ = δ(t − t ′)δll ′ ,

(6)

i
∂

∂t
Ğsn

kl − H̆ s
k Ğsn

kl −
∑

l ′
γkl ′ τ̆3Ğnn

l ′l = 0,

where

H̆ s
k =

(
Ȟ s

k 0

0 Ȟ s
k

)
, Ȟ s

k =
(

ξ s
k �

�∗ −ξ s
k

)
, (7)

H̆n
l =

(
Ȟn

l 0

0 Ȟn
l

)
, Ȟn

l =
(

ξ n
l 0

0 −ξ n
l

)
, (8)

τ̆3 =
(

τ̌3 0

0 τ̌3

)
, τ̌3 =

(
1 0

0 −1

)
. (9)

The self-consistency condition takes the form

�(t ) = iλ

4V

∑
k

Tr
[
(τ̌1 + iτ̌2)Ǧss(K )

kk (t, t )
]
, (10)

where 2 × 2 Pauli matrices are

τ̌1 =
(

0 1
1 0

)
, τ̌2 =

(
0 −i
i 0

)
. (11)

Using the Green’s functions of the isolated superconductor
and the normal metal, Ğs

k and Ğn
l , we eliminate the tunneling

Green’s functions:

Ğns
lk =

∑
k′

γ ∗
k′l Ğn

l τ̆3 ∗ Ğss
k′k,

Ğsn
kl =

∑
l ′

γkl ′ Ğs
k τ̆3 ∗ Ğnn

l ′l ,
(12)

where the asterisk (∗) denotes the convolution operation

(X ∗ Y )(t, t ′) =
∫

X (t, t ′′)Y (t ′′, t ′) dt ′′ (13)

and the Green’s functions Ğs
k and Ğn

l satisfy the following
equations:

i
∂

∂t
Ğs

k − H̆ s
k Ğs

k = δ(t − t ′),

i
∂

∂t
Ğn

l − H̆n
l Ğn

l = δ(t − t ′).
(14)

Thus, we can write two formally independent equations for
the Green’s functions in the superconductor and the normal
metal:

i
∂

∂t
Ğss

kk′ − H̆ s
k Ğss

kk′ −
∑

k′′
�̆s

kk′′ ∗ Ğss
k′′k′ = δ(t − t ′)δkk′ , (15)

i
∂

∂t
Ğnn

ll ′ − H̆n
l Ğnn

ll ′ −
∑

l ′′
�̆n

ll ′′ ∗ Ğnn
l ′′l ′ = δ(t − t ′)δll ′ , (16)

where the self-energies of the superconductor and the normal
metal are

�̆s
kk′′ =

∑
l

γklγ
∗
k′′l τ̆3Ğn

l τ̆3, (17)

�̆n
ll ′′ =

∑
k

γ ∗
klγkl ′′ τ̆3Ğs

k τ̆3. (18)

104515-3



VADIMOV, KHAYMOVICH, AND MEL’NIKOV PHYSICAL REVIEW B 100, 104515 (2019)

FIG. 2. Diagrams for the Green’s functions in the superconductor
and the normal metal. (a) Exact Dyson equation for the Green’s
functions (before averaging). (b) Self-consistent Born approximation
for the averaged Green’s function. The × symbol denotes tunneling;
the dashed line denotes the correlator between the matrix elements
of the tunneling operator.

These equations written in diagram form are shown in
Fig. 2(a). These equations are not practical to use as they
contain the tunneling matrix elements γkl , which are random
quantities. One can average the equations over the random
matrix elements, and the average of the product of the matrix
elements can be expanded as sums of correlators due to
the Wick theorem; thus, the averaged Green’s function can
be written as a sum of diagrams. We omit the diagrams
with the intersecting correlators; thus, we neglect the vertex
corrections. Such an approach is known as a self-consistent
Born approximation. The diagrammatic form of the Dyson
equation for this approximation is shown in Fig. 2(b). After
averaging, the self-energies and the Green’s function appear
to be diagonal in the normal-mode picture and obey the
following equations:

i
∂Ğs

k

∂t
− H̆ s

k Ğs
k − �̆s ∗ Ğs

k = δ(t − t ′),
(19)

i
∂Ğn

l

∂t
− H̆n

l Ğn
l − �̆n ∗ Ğn

l = δ(t − t ′),

�̆s = γ 2
∑

l

τ̆3Ğn
l τ̆3,

(20)
�̆n = γ 2

∑
k

τ̆3Ğs
k τ̆3.

In the wide-band approximation the sum over the normal
modes can be replaced by the integral over the normal energy∑

k → νsVs
∫

dξ s
k (

∑
l → νnVn

∫
dξ n

l ):

�̆s = �s

π

∫
τ̆3Ğn

l τ̆3 dξ n
l ,

�̆n = �n

π

∫
τ̆3Ğs

k τ̆3 dξ s
k , (21)

where we have introduced the tunneling rates of electrons
from the superconductor �s = πτ 2νn/ds and the normal metal
�n = πτ 2νs/dn and ds = Vs/S and dn = Vn/S are the thick-
nesses of the superconducting and normal layers, respectively.

III. DYNAMICAL EQUATIONS FOR THE
ORDER PARAMETER

In order to study the near-equilibrium dynamics of the sys-
tem we expand the order parameter near �0 while assuming
its phase is zero in equilibrium without loss of generality:

�(t ) = �0 + δ�(t ) + i�0δθ (t ). (22)

Here δ� and δθ are the perturbations of the magnitude and the
phase of �, respectively. One can introduce the corresponding
perturbations to the Green’s functions and the self-energies:

Ğs
k = Ğs

0k + δĞs
k, Ğn

k = Ğn
0l + δĞn

l ,

�̆s/n = �̆
s/n
0 + δ�̆s/n, (23)

where Ğs
0k , Ğn

0l , and �̆
s/n
0 are the equilibrium Green’s func-

tions and self-energies of the superconductor and the normal
metal accounting for tunneling. The Dyson equations should
also be linearized with respect to δ� and δθ , so the closed
set of equations for the linear perturbations of the Green’s
functions and the self-energies reads

i
∂

∂t
δĞs

k − Hs
0kδGs

k − �s ∗ δĞs
k − δ�s ∗ Ğs

0k = δHsGs
0k,

i
∂

∂t
δĞn

l − Hn
l δGn

l − �n ∗ δĞn
l − δ�n ∗ Ğn

0l = 0,

δ�̆s = �s

π

∫
τ̆3δĞn

l τ̆3 dξ n
l ,

δ�̆n = �n

π

∫
τ̆3δĞs

k τ̆3 dξ s
k . (24)

The perturbation to the single-mode Hamiltonian of the super-
conductor is δH̆ s = δ�τ̆1 − i�0δθ τ̆2, where τ̆ j are the 4 × 4
Pauli matrices in Keldysh-Nambu space:

τ̆ j =
(

τ̌ j 0
0 τ̌ j

)
(25)

One can easily solve the equations for δG in the Fourier form:

δĞs
k (ω,ω′) = Ğs

0k (ω)[δH̆ s(ω − ω′) + δ�̆s(ω,ω′)]Ğs
0k (ω′),

δĞn
l (ω,ω′) = Ğn

0l (ω)δ�̆n(ω,ω′)Ğn
0l (ω

′), (26)

where the Fourier transform of the Green’s functions is de-
fined as follows:

δĞ(t, t ′) = 1

(2π )2

∫
δĞ(ω,ω′)e−iωt+iω′t ′

dω dω′,

Ğ0(t − t ′) = 1

2π

∫
Ğ0(ω)e−iω(t−t ′ ) dω.

(27)

We introduce the quasiclassic Green’s function δğs =∫
δĞs

k dξ s
k and write an algebraic equation for it:

δğ(ω,ω′) =
∫

Ğs
0k (ω)δH̆k (ω − ω′)Ğs

0k (ω′) dξ s
k

+ �n�s

π2

∫
Ğs

0k (ω)τ̆3Ğn
0l (ω)τ̆3δğ(ω,ω′)

× τ̆3Ğn
0l (ω

′)τ̆3Ğs
0k (ω′) dξ s

k dξ n
l . (28)

The above equation can be considered a system of 12 lin-
ear equations for the 12 components of the matrix Green’s
function ğ(ω,ω′) (retarded, advanced, and Keldysh, each of
which is a 2 × 2 matrix). Each integral can be evaluated
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analytically because the equilibrium Green’s functions are
rational functions of the normal energies ξ s

k and ξ n
l . The

solution can be written in the following form:

δğ(ω,ω′) = Ă�(ω,ω′)δ�(ω − ω′)

+ �0Ăθ (ω,ω′)δθ (ω − ω′). (29)

One should use the self-consistency equation (10)

δ�(ω) = iλνs

8π

∫
Tr τ̌1δǧ(K )(ω′ + ω,ω′) dω′,

δθ (ω) = iλνs

8π�0

∫
Tr τ̌2δǧ(K )(ω′ + ω,ω′) dω′

(30)

and write down the equations for the frequencies of the
eigenmodes of δ� and δθ :

δ�(ω) = K�(ω)δ�(ω) + K ′(ω)�0δθ (ω),

δθ (ω) = K ′′(ω)
δ�(ω)

�0
+ Kθ (ω)δθ (ω),

(31)

where the expression for the kernels is given as follows:

K�(ω) = iλνs

8π

∫
Tr τ̌1Ǎ(K )

� (ω′ + ω,ω′) dω′,

K ′(ω) = iλνs

8π

∫
Tr τ̌1Ǎ(K )

θ (ω′ + ω,ω′) dω′,

K ′′(ω) = iλνs

8π

∫
Tr τ̌2Ǎ(K )

� (ω′ + ω,ω′) dω′,

Kθ (ω) = iλνs

8π

∫
Tr τ̌2Ǎ(K )

θ (ω′ + ω,ω′) dω′.

(32)

The off-diagonal kernels K ′ and K ′′ are equal exactly to zero
in the systems which have electron-hole symmetry and can be
neglected if the Fermi level in both the superconductor and
the normal metal is far from the Van Hove singularities in the
density of states [40]. The singular points of [1 − K�(ω)]−1

and [1 − Kθ (ω)]−1 correspond to the frequencies of the Higgs
and Anderson-Bogoliubov modes of the superconductor. The
perturbations of the magnitude and the phase of the order
parameter are completely independent, so hereafter, we focus
only on the study of the Higgs modes.

The linear response of the superconducting order parame-
ter to an external force f (ω) takes the following form:

δ�(t ) = 1

2π

∫
f (ω)e−iωt dω

1 − K�(ω)
. (33)

Previous studies [32–34,41] show that this force can originate,
e.g., from the pulses of the external electromagnetic field.

The results of numerical evaluation of Eqs. (28), (29), and
(32) are shown in Fig. 3, where the typical frequency depen-
dencies of the real and imaginary parts of [1 − K�(ω)]−1 are
shown for some particular values of the tunneling rates in
the zero-temperature limit T = 0. The spectrum of the Higgs
modes appears to be consistent with the picture shown in
Fig. 1. The broadened features at the frequencies ω ≈ ±2�0

and ω ≈ ±(�0 + �i ) are seen clearly, while the singularity
at ω = ±2�i can be seen only in the zoomed-in inset. The
latter singularity corresponds to the low-frequency Higgs
mode [Fig. 1(c)]. This mode has no exponential damping as
�i is a hard gap of the whole system (the singular point

FIG. 3. The real and imaginary parts of [1 − K�(ω)]−1 in the
case of the finite tunneling rates �s and �n. The inset shows the singu-
larity at frequency 2�i which cannot be observed in the regular scale.
For the given parameters �s = 0.1�0 and �n = 0.3�0 the induced
gap �i is approximately equal to 0.2�0. Here �� = �0 + �i. The
dashed line shows [1 − K�(ω)]−1 for the isolated superconductor
�s = �n = 0.

of the kernel is exactly at the real axis). This means that
this low-frequency mode gives the major contribution to the
oscillations of the order parameter in the long-time limit,
t  �−1

s , �−1
n ; however, the amplitude of this mode is a few

orders of magnitude lower than the amplitude of the usual
Higgs mode due to the low transparency of the insulating
barrier.

IV. ZERO-INDUCED-GAP LIMIT �i = 0

In this section we consider the analytically tractable case
of the zero-temperature limit and �n = 0, which corresponds
to the bulk normal metal Vn → ∞ with suppressed induced
superconducting ordering and vanishing induced gap �i = 0.
In the Sec. IV A and IV B detailed calculations of the kernel
(32) and the linear response for the order parameter (33) are
given, with the main results summed up in Eqs. (40) and (44).

A. Evaluation of the kernel K�

In the above-mentioned limit the kernel K� can be evalu-
ated analytically. In this case the self-energies of the supercon-
ductor are determined by the equilibrium Green’s functions of
the normal metal, and in the zero-temperature limit we have

�̌s(R/A)(ω) = ±i�s, �̌
s(K )(ω) = −2i�ssgnω (34)

Ǧs(R/A)
0k = (

ω ± i�s − Ȟ s
0k

)−1
, (35)

Ǧs(K )
0k = [

Ǧs(R)
0k − Ǧs(A)

0k

]
sgnω. (36)

The self-energies are constant δ�s = 0, so the solution of
Eqs. (24) takes the following form:

δĞs
k (ω,ω′) = Ğs

0k (ω)δH̆ s(ω − ω′)Ğs
0k (ω′). (37)
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Using the self-consistency equation (10), one can obtain an
expression for the kernel of the Higgs mode:

K�(ω) = iλνs

8π

∫∫
Tr

[
τ̌1Ǧs(R)

0k (ω + ω′)τ̌1Ǧs(K )
0k (ω′)

+ τ̌1Ǧs(K )
0k (ω′ + ω)τ̌1Ǧs(A)

0k (ω′)
]

dω′ dξ s
k . (38)

This integral diverges logarithmically; however, it can be
regularized using the equilibrium self-consistency equation

for �0:

1 = iλνs

8π�0

∫
Tr τ̌1Gs(K )

0k (ω) dω dξ s
k . (39)

Finally, after long but straightforward calculations one can
obtain the following expression for the kernel of the Higgs
mode:

1 − K�(ω)

λνs
= i

√
4�2

0 − ω2

2ω
ln

⎡
⎣ 2�2

0 + i�sω +
√

�2
s + �2

0

√
4�2

0 − ω2

2�2
0 − ω(ω + i�s) +

√
4�2

0 − ω2
√

�2
0 − (ω + i�s)2

ω + i
√

4�2
0 − ω2

−ω + i
√

4�2
0 − ω2

⎤
⎦

+ i

√
4�2

0 − (ω + 2i�s)2

2ω + 4i�s
ln

⎡
⎣2�2

0 − (ω + 2i�s)(ω + i�s) +
√

4�2
0 − (ω + 2i�s)2

√
�2

0 − (ω + i�s)2

2�2
0 − i�s(ω + 2i�s) +

√
4�2

0 − (ω + 2i�s)2
√

�2
s + �2

0

⎤
⎦. (40)

In the isolated superconductor, �s = 0, the kernel as a function of the complex frequency ω has two branch points at ω =
±2�0 which give the usual polynomially damped Higgs mode in the superconductor. In the presence of tunneling, �s > 0,
these branch points shift to the points ω = ±2�0 − 2i�s corresponding to exponential damping of this mode. Moreover, two
additional branch points at ω = ±�0 − i�s appear, triggering a new Higgs mode, which has already revealed itself in Fig. 3.
The absence of the low-frequency mode at 2�i is rather expected for the considered case �n = 0 because the electrons of the
normal metal are not affected by the proximity with the superconductor and thus cannot form a Cooper pair as in Fig. 1(c). As a
result they do not contribute to the order parameter oscillations.

B. Evaluation of the order parameter linear response

The integral (33) can be evaluated if we close the integration contour as shown in Fig. 4:

1

2π

∮
C

f (ω)e−iωt dω

1 − K�(ω)
= −i

∑
j

e−iω j t resω j f (ω)

1 − K�(ω j )
, (41)

where C is the integration contour, ω j are the poles of the external force f (ω) within the contour C, and resω j f (ω) is the residue
of f (ω) at the pole ω j . Thus, the integral in Eq. (33) can be expressed as a sum of the integrals along the branch cuts and the
terms with the residues of the external force:

δ�(t ) = −i
∑

j

e−iω j t resω j f (ω)

1 − K�(ω j )
− 1

2π

{∫ +∞−i�s

�0−i�s

[
f (ω)e−iωt

1 − K�(ω − i0)
− f (ω)e−iωt

1 − K�(ω + i0)

]
dω

+
∫ +∞−2i�s

2�0−2i�s

[
f (ω)e−iωt

1 − K�(ω − i0)
− f (ω)e−iωt

1 − K�(ω + i0)

]
dω +

∫ −2�0−2i�s

−∞−2i�s

[
f (ω)e−iωt

1 − K�(ω − i0)
− f (ω)e−iωt

1 − K�(ω + i0)

]
dω

+
∫ −�0−i�s

−∞−i�s

[
f (ω)e−iωt

1 − K�(ω − i0)
− f (ω)e−iωt

1 − K�(ω + i0)

]
dω

}
. (42)

The integrals along the branch cuts can be evaluated approximately assuming f (ω) is regular near the branch points of K�(ω).
Also we suppose that the main contribution to these integrals comes from the vicinity of the singularities. The expansion of the
kernel K�(ω) near its branch points at ω = ±2�0 − 2i�s and ω = ±�0 − i�s in the limit �s � �0 reads as follows:

ω = �0−i�s + � :
1 − K�

λνs
≈ π

2
√

3
+ 2�s

√−2�

�
3/2
0

,

ω = −�0−i�s − � :
1 − K�

λνs
≈ π

2
√

3
− 2�s

√−2�

�
3/2
0

,

ω =2�0 − 2i�s + � :
1 − K�

λνs
≈ π (1 + i)

√
�s

�0
+ π

2

√
− �

�0
,

ω = −2�0 − 2i�s − � :
1 − K�

λνs
≈ π (1 − i)

√
�s

�0
− π

2

√
− �

�0
.

(43)
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FIG. 4. Area of analyticity of the kernel K�. The four black dots
are the branch points ω = ±�0 − i�s and ω = ±2�0 − 2i�s; the
thick black lines are the branch cuts. The thick gray line shows the
integration contour in Eq. (41).

Using these expansions, one can finally obtain an asymptotic
expression for the near-equilibrium oscillations of the super-
conducting gap in the intermediate-time limit �−1

0 � t �
�−1

s :

δ�(t ) ≈ − i
∑

j

e−iω j t resω j f (ω)

1 − K�(ω j )

+ 1

2πλνs

{
12

√
2�se−�st

[
f (�0)e−i�0t−i π

4 + c.c.
]

(π�0t )3/2

+2
√

�0e−2�st
[

f (2�0)e−2i�0t+i π
4 + c.c.

]
(πt )1/2

}
. (44)

The first term in (44) describes the forced oscillations of the
order parameter which occur at the frequencies corresponding
to the poles of the Fourier spectrum of the external force f (ω).
The finite tunneling rate �s leads to the exponential damping
of the oscillations of the order parameter and the appearance
of a new Higgs mode at the frequency �0, with the magnitude
suppressed by the factor �s/�0. This mode corresponds to
the middle-frequency mode �0 + �i shown in Fig. 1(b) in
the limit �i = 0. Let’s emphasize once again that all of the
above analysis was related to the case of the small tunneling
rates �s � �0. In the opposite limit �s  �0 we get the
gapless superconductivity with a pure imaginary frequency of
the Higgs mode: ω = −i�2

0/�s. The relaxation of the order
parameter in this limit is described by the decaying exponent
δ�(t ) ∝ exp(−�2

0t/�s).

V. DISCUSSION

The Higgs modes of the SIN system can be studied using
a pump-probe experiment similar to the one developed in
Ref. [32]. The measured δ�(t ) can be analyzed using the
Fourier transform. The Fourier spectrum is expected to have
two peaks at ω ≈ 2�0 and ω ≈ �0 + �i, corresponding to
the above Higgs modes of the SIN system. In the limit of
low transparency D � 1 the mode with the frequency 2�i

has too low magnitude, so its experimental observation can

be hampered; however, it may be visible at intermediate
transparencies D ∼ 1, �i � �0. Another way to detect the
Higgs modes is the experimental study of the frequency
dependence of the third-harmonic generation [33,34]. The
electromagnetic wave with frequency � excites the Higgs
mode with frequency 2�. The magnitude of the generated
nonlinear signal with frequency 3� should depend on the
magnitude of the oscillations of the order parameter, and
therefore, one can expect the appearance of the broadened
resonances in the third-harmonic response if the frequency 2�

is close to the frequency of any of the Higgs modes. However,
the effect of generation of nonequilibrium quasiparticles by
the electromagnetic radiation with frequency � > 2�i may
complicate the observation of the resonant effect in the third-
harmonic generation. The overheating can be significantly re-
duced at intermediate transparencies D ∼ 1 when the induced
gap is high enough 3�i > �0. This improves the observability
of the resonance at 2� = �0 + �i predicted above. Also in
the case of a finite temperature the inelastic processes such
as electron-phonon scattering [42] should lead to the damping
of the Higgs modes and may complicate their observability.
The influence of the inelastic processes is expected to be
stronger in the normal metal than in the superconductor due
to the lower induced gap �i < �0 and higher density of the
equilibrium quasiparticles. Thus, the low-frequency modes
should be affected more strongly than the usual 2�0 mode.
However, the inelastic processes may be suppressed if the
temperature is well below the induced gap T � �i when there
are no equilibrium quasiparticles in the system.

The dynamical effects considered here are relevant for
various systems with proximity-induced superconductivity in
both the usual metals [43] and topologically nontrivial ma-
terials [44–47]. Note that the parameters �s ∼ 0.1�0, �n ∼
0.3�0 used in Fig. 3 are rather typical for all above-mentioned
experiments with transparent SN junctions. The correspond-
ing frequencies lie in the same sub-THz range as in the
experimental papers [32,33] probing Higgs modes in purely
superconducting samples.

VI. CONCLUSION

To sum up, the effect of the quasiparticle spectrum of the
superconducting system on the low-temperature dynamics of
the order parameter has been studied using an example of
a hybrid superconductor-insulator-normal metal system. Two
additional Higgs modes in such system have been discovered.
The frequencies of these modes are formed by sums of the
two quasiparticle energies, which are in good agreement with
the qualitative interpretation of the Higgs modes as coher-
ent processes of splitting and recovery of the Cooper pairs
(Fig. 1). The proposals of experimental observation of these
Higgs modes in a hybrid SIN system have been developed
on the basis of the existing THz techniques used to study the
Higgs modes in pure superconductors.
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