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It has been shown that singlet Cooper pairs can be converted into triplet ones and diffuse into a ferromagnet
over a long distance in a phenomenon known as the long-range proximity effect (LRPE). This happens in
materials with inhomogeneous magnetism or spin-orbit coupling (SOC). Most of the previous studies focus
on the cases with small SOC and exchange field. However, the physics was not clear when SOC and exchange
field strength are both much greater than the disorder strength. In this work, we consider a two-dimensional
system with a large Rashba-type SOC and exchange field in the case where only one band is partially occupied.
We develop a generalized quasiclassical theory by projecting the Green function onto the partially occupied
band (POB). We find that when the SOC energy scale is comparable with the exchange field, there is no LRPE.
The reason is that the nonmagnetic impurities together with the large SOC and exchange field can effectively
generate spin-flip scattering, which suppresses the proximity effect. We also show that when increasing either
SOC or exchange field, the decay length of superconducting correlations can be significantly increased due to an
approximately restored time reversal symmetry or spin rotation symmetry around the z (out-of-plane) axis.
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I. INTRODUCTION

The proximity effect in a superconductor (S)/ferromagnet
(F) structure has been extensively studied during the past
decades. Experimentally a significant increase of conduc-
tivity has been observed in S/F structures indicating that
the Cooper pairs can penetrate into the ferromagnet over a
long distance [1–4]. This LRPE is unexpected because the
exchange field can destroy singlet Cooper pairs consisting of
two electrons with opposite spins. The theoretical explanation
of this unusual LRPE [5–7] is that the local inhomogeneity of
magnetization in the vicinity of an S/F interface can create
triplet pairing correlations that survive in the ferromagnet
[8–15]. The decay length of triplet pairing correlations in the
ferromagnet is of the order of the thermal coherence length
ξT = √

D/T while the singlet pairing decays over a much
shorter distance ξh = √

D/h where D, T , and h are diffusion
constant, temperature, and strength of the exchange field, re-
spectively. This LRPE also explains the long-range Josephson
currents in S-F-S junctions made of half metals [16,17], fer-
romagnetic multilayers [16], and ferromagnets with intrinsic
inhomogeneous magnetization [18]. Recently, it was realized
that the LRPE also exists in systems where the SOC operator
does not commute with the exchange field operator [19,20].
Interestingly, it has been shown that the system with SOC
and a uniform exchange field is actually gauge equivalent
to the system with an inhomogeneous exchange field. In
particular, it has been demonstrated that the condition for the
existence of LRPE is that the effective SU(2) electric field is
finite.

The previous studies on the proximity effect in S/F hybrid
structures focus on systems with a small spin splitting field. In
that case, the exchange field and SOC can be treated perturba-
tively as the time and space components of an effective SU(2)
potential [21–23]. To take into account the effective SU(2)

gauge field one just needs to replace the derivative operator
in the quasiclassical equations by a covariant derivative in-
cluding the SU(2) gauge field. The triplet pairing correlation
is generated at the interface as long as the SU(2) electric
field is finite. However, when considering systems where the
exchange field and SOC strength are much greater than the
disorder strength, both exchange field and SOC have to be
treated unperturbatively, such that the conclusion drawn from
the SU(2) fields no longer applies. Whether LRPE exists in
systems with a large exchange field and SOC has remained
therefore unclear.

In this work, we consider a two-dimensional system with
SOC and an exchange field both much greater than the disor-
der strength. We assume that the spin splitting is large enough,
such that only one band is partially occupied. The proximity
effect in this system is very different from that of a system
with a nearly degenerate Fermi surface. The reason is the
following. First, due to spin-momentum locking the singlet
and triplet pairing correlations are locked together and have
the same decay length [24–28], in contrast to the case of a
nearly degenerate Fermi surface in which singlet and triplet
pairing correlations can be treated independently. Second, the
effect of a nonmagnetic impurity self-energy depends on the
spin texture [29–34] on the Fermi surface, which is much
more complicated than that in the previous case. As a result,
we expect a very different proximity behavior in this large spin
splitting system. In order to investigate the proximity effect,
we first develop a generalized quasiclassical theory by pro-
jecting the Green functions onto the POB. We derive the most
general normalization condition ĝ2 = P̂ for this quasiclassical
theory where ĝ is the quasiclassical Green function and P̂ is
the projection operator onto the POB. We find that there is
no LRPE when αpF ≈ hz, where α is the SOC strength, pF

is the Fermi momentum, and hz is the z component of the
exchange field. This is because the SOC and exchange field
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FIG. 1. (a) Sketch of the system under consideration. A bulk
superconductor induces pairing correlation in a 2D electron layer
placed under it. (b) Schematic picture of the band structure (with
ky = 0) of the 2D electron layer. The bands are split by the SOC and
the exchange field, and the chemical potential is within the magnetic
gap, such that the Green function can be projected to the POB.

break both spin rotation and time reversal symmetries, such
that the nonmagnetic impurities can effectively generate spin-
flip scattering, which hugely suppresses the proximity effect.
Interestingly, for an increasing SOC, the proximity effect can
be significantly enhanced until the decay length reaches the
thermal coherence length ξT . This is because the time reversal
symmetry is approximately restored in the limit αpF � hz.
Similarly, the LRPE can also exist in the limit hz � αpF due
to spin rotation symmetry around the z axis.

II. MODEL

We consider a 2D electron layer with a large Rashba SOC
and an exchange field (induced from a ferromagnetic insulator
beneath it) placed under a bulk superconductor and coupled
to it via tunneling through a thin insulator layer as shown in
Fig. 1(a). The Hamiltonian describing this system is given by
(h̄ = kB = 1)

Ĥ = ĤS + ĤN + ĤT , (1)

where ĤN is the Hamiltonian of a 2D electron layer

ĤN =
∫

d2r c†(r)

×
[−∇̂2

2mN
+ αk̂ · η + h · σ + UN (r) − μN

]
c(r), (2)

and ĤS describes the bulk superconductor

ĤS =
∫

d2rdz�†(r, z)

[−∇̂2 − ∂2
z

2mS
+ US (r) − μS

]
�(r, z)

+��̂
†
↑(r, z)�̂†

↓(r, z) + �∗�̂↓(r, z)�̂↑(r, z). (3)

The coupling Hamiltonian HT has the form

ĤT =
∫

d2rd2r′[c†(r)t̂�(r′, 0) + �†(r′, 0)t̂†c(r)]. (4)

Here �†(r, z) = [�†
↑(r, z), �†

↓(r, z)] is the creation oper-
ator of an electron in the bulk superconductor and c†(r) =
[c†

↑(r), c†
↓(r)] is the electron creation operator in the 2D elec-

tron layer. t̂ is the operator representing tunneling between
the bulk superconductor and the 2D electron layer. r is a
2D vector in the plane of the 2D electron layer and z is the
out-of-plane coordinate. The 2D gradient is ∇̂ = (∇̂x, ∇̂y).
σ = (σx, σy, σz) are Pauli matrices acting on the spin space
and η is defined by η = (−σy, σx). mS/N , μS/N , US/N , and
� denote the effective mass, chemical potential, disorder
potential, and pairing potential in the bulk superconductor/2D
electron layer, respectively. h is the exchange field. Here we
assume that the strength of SOC and the z component of the
exchange field are much greater than the disorder strength
αpF , hz � 1/τ , where τ is the scattering time, whereas the
in-plane components of h are small hx, hy 
 1/τ . We also
assume that the chemical potential is within the magnetic gap
and only one band is partially occupied as shown in Fig. 1(b).
The S/F interface is located at z = 0 and the right edge of the
bulk superconductor is at x = 0. Uniform pairing correlations
can be induced in the left part (with x < 0) and the Cooper
pairs penetrate into the right part (with x > 0) and decay along
the x direction over a characteristic length ξ .

In this work, our focus is to study how the pairing cor-
relation decays in the right part of the 2D electron layer.
Before going into explicit calculations, we can qualitatively
investigate the proximity effect by analyzing the properties
of impurity scattering. In the case where the SOC strength is
comparable with the strength of the exchange field αpF ≈ hz,
the spins are on average polarized in the z direction but also
have considerable in-plane components as shown in Fig. 2(a).
In this case, nonmagnetic impurities couple quasiparticle
states with different spins leading to an effective spin-flip
scattering [dashed arrows in Fig. 2(a)], which suppresses the
proximity effect. In this case LRPE does not take place. In
the large SOC limit αpF � hz, the spins are almost pinned
in the xy plane and form a helical texture [Fig. 2(b)]. The
electrons with opposite momenta also have nearly opposite
spins, which means that the time reversal symmetry is ap-
proximately preserved. Therefore, the electron scattering that
does not break the time reversal symmetry cannot lead to a
large effective spin-flip scattering, allowing for the presence
of LRPE. In the large exchange field limit hz � αpF , the spins
are almost polarized in the z direction and no spin can be
flipped [35] [Fig. 2(c)]. Thus LRPE is allowed if equal spin
pairing is formed.
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FIG. 2. Sketch of spin textures of the Fermi surfaces. The circles
represent the Fermi surfaces, the solid arrows represent the directions
of spin polarization, and the dashed arrows represent the effective
spin-flip scattering. (a) When αpF ≈ hz the in-plane and out-of-plane
components of the spin polarization are comparable. (b) For αpF �
hz the spins are almost pinned in the xy plane and form a helical
texture. (c) When αpF 
 hz the spins are almost polarized in the z
direction.

III. QUASICLASSICAL THEORY

In order to quantitatively study the proximity effect, we
first develop a quasiclassical theory for the 2D electron layer
and then include the effect of the bulk superconductor as a
boundary condition. We start with the Gorkov equation for the
right part of the 2D electron layer. Within Born approximation
and in spin⊗particle-hole space, the Gorkov equation can be
written as (

Ĝ−1
0 + μ − �̂

)
Ĝ = 1 (5)

Ĝ−1
0 = − k̂

2

2mN
− αk̂ · η + (iωn + h · σ)τ3. (6)

Here, ωn is the Matsubara frequency ωn = (2n + 1)πT
with n = 0, 1, 2 · · · ; τ3 is the Pauli matrix acting on the
particle-hole basis, and �̂ is the disorder self-energy obtained
from Born approximation, �̂ = 〈Ĝ〉/τ , where 〈·〉 means an
angular average over the momentum directions. In order to
solve the Gorkov equation, we perform the quasiclassical
approximation and obtain the Eilenberger equation [36,37]

pF

mN
∇ĝ + α

2
{η,∇ĝ}

=
[

ĝ, ωnτ3 + ih′ · σ′ + ihzσ3 + iαpF η · nF + 〈ĝ〉
2τ

]
. (7)

Here h′ and σ ′ are in-plane components of the ex-
change field and Pauli matrices, respectively, defined by
h′ = (hx, hy), σ ′ = (σx, σy). We have performed a Fourier
transformation of the Green function in Eq. (5) with respect

to the relative space argument and then taken the integral over
εp = p2/2mN − S − μN with S = √

h2
z + α2 p2, which results

in

ĝ(ωn; R, nF ) =
∫

dεp

iπ
Ĝ(ωn; R, p). (8)

Here nF = pF /|pF | is a unit vector in the direction of momen-
tum pF at the Fermi level. Denoting Q̂ ≡ ihzσ3 + iαpF η · nF ,
we emphasize that the main difference between Eq. (7) and
an ordinary Eilenberger equation is that on the right hand side
the dominant term is Q̂ rather than 〈ĝ〉/τ .

Since the dominant term on the right hand side of Eq. (7)
is Q̂, the leading term of the quasiclassical Green function ĝ
should commute with Q̂ and all other terms are of the order of
1/τSF 
 1 where SF is the absolute value of the eigenvalue of
Q̂ at the Fermi level, SF =

√
α2 p2

F + h2
z . Using the condition

of [ĝ, Q̂] = 0, we can write down the most general form of ĝ

ĝ =
∑
λ=±

aλ|ψλ,e〉〈ψλ,e| + bλ|ψλ,h〉〈ψλ, h|

+ dλ|ψλ,e〉〈ψλ,h| + eλ|ψλ,h〉〈ψλ,e|, (9)

where |ψλ,e/h〉 are eigenvectors of operator Q̂ satisfying
Q̂|ψλ,e/h〉 = λiE |ψλ,e/h〉 with λ = ± being band indices and
e/h labeling particle and hole eigenvectors. As the upper band
is very far away from the chemical potential, the quasiclassical
Green function ĝ should contain no information of the upper
band. Therefore, we can safely drop the |ψ+,e/h〉 terms in ĝ
and write it as

ĝ = a|ψ−,e〉〈ψ−,e| + b|ψ−,h〉〈ψ−, h|
+ d|ψ−,e〉〈ψ−,h| + e|ψ−,h〉〈ψ−,e| (10)

with

|ψ−,e〉 = (−αpF eiφ/2, (SF + hz )e−iφ/2, 0, 0)
T
/N (11)

|ψ−,h〉 = (0, 0, (SF + hz )eiφ/2, −αpF e−iφ/2)
T
/N, (12)

where a, b, d, e are arbitrary constants, N is the normalization
factor N = √

2SF (SF + hz ) and φ is the angle between nF and
the y axis so that cos(φ) = ny, sin(φ) = nx. By doing this we
actually project the Green function onto the POB. Next we
write Eq. (7) in the new basis ψ− = (ψ−,e, ψ−,h)T and obtain
the effective low energy Eilenberger equation

vF ∇ĝ =
[

ĝ,wnτ̃3 + i
αpF

SF
(h′ × ẑ) · nF + 〈ĝ〉/2τ

]
. (13)

Here ẑ is the unit vector in the z direction. Equation (13)
cannot uniquely determine the quasiclassical Green function
ĝ and has to be supplemented by a normalization condition.
However, we cannot simply borrow the ordinary normaliza-
tion condition ĝ2 = 1̂ as ĝ lives only in a subspace of the whole
Hilbert space. In order to find the normalization condition for
this model, we project the single particle bulk Green function
onto the POB and apply the quasiclassical approximation,
which leads to

Ĝ = P̂

P̂(iωnτ3 + ivF ∂r − U − �̂S )P̂ − εpP̂
, (14)
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where �̂S is the self-energy of the bulk superconductor and P̂
is given by P̂ = |ψ−,e〉〈ψ−,e| + |ψ−,h〉〈ψ−,h|. We define Ô =
P̂(iωnτ3 + ivF ∂r − U − �̂S )P̂ and have Ĝ = P̂/(Ô − εpP̂).
According to Eq. (8), the principal value integral along the
real εp axis is equal to the sum of two integrals along
contours which consist of the real axis (from −∞ to +∞)
closed by semicircles in the upper and lower half planes∫ = 1

2

∮
up + 1

2

∮
dn. Working out the contour integral, we obtain

[38]

ĝ = P̂up − P̂dn. (15)

Here, P̂up/dn is the projection operator defined by P̂up/dn =
|ψup/dn〉〈ψup/dn| and |ψup/dn〉 is the eigenvector of operator Ô
with eigenvalue having the positive/negative imaginary part.
Therefore, we have ĝ2 = P̂up + P̂dn. Since P̂up + P̂dn is the
identity operator in the ψ− subspace, we immediately have
P̂up + P̂dn = P̂. Thus the normalization condition reads

ĝ2 = P̂. (16)

For convenience, we can write ĝ in a more symmetric form
ĝ = ∑3

i=0 giτ̃i where τ̃0 = P̂ and other τ̃i are operators which
have a Pauli matrix representation in the ψ− basis. In terms of
the coefficients gi, the normalization condition can be written
as g0 = 0, g2

1 + g2
2 + g2

3 = 1.

IV. PROXIMITY EFFECT IN THE DIFFUSIVE LIMIT

Here, we consider the diffusive limit 1/τ � ω, hx, hy,�.

In this limit, the dominant term on the right hand side of
Eq. (13) is 〈ĝ〉/2τ . Thus the leading term ĝ0 of the quasiclas-
sical Green function ĝ satisfies

[ĝ0, 〈ĝ0〉/2τ ] = 0. (17)

We need to be careful when calculating 〈ĝ0〉 since the basis τ̃

is now nF dependent. The proper way to do the angular aver-
age is to write τ̃ in the usual spin⊗particle-hole basis, perform
the angular average for the 4 × 4 matrix, and then project it
back onto the ψ− space. We first consider the case αpF ≈ hz.
In this case, we find that the only solution of Eq. (17) is
ĝ0 = gs,3τ̃3 where gs,3 is nF independent constant (details can
be found in Appendix A). The τ̃1 and τ̃2 terms which represent
pairing correlations do not appear in the leading term ĝ0. This
means that there is almost no proximity effect when αpF is
comparable with hz. The physical picture is that in this case,
the time reversal symmetry and spin rotation symmetry are
both broken and the disorder potential can effectively generate
spin-flip scattering, which destroys the LRPE. In order to find
the solution of ĝ0 with a finite off-diagonal term, we need to
consider the limits αpF � hz and αpF 
 hz. In the former
case, the system has an approximate time reversal symmetry
and in the latter case the spin rotation symmetry around the z
axis is approximately restored.

A. Large SOC limit

Considering the limit αpF � hz, we can find one approxi-
mate solution of Eq. (17), which is ĝ0 = ĝs = ∑

i gs,iτ̃i, where
gs,i are nF independent coefficients. The angular average

is calculated as 〈ĝ0〉 = 1
2 ĝ0 + X

2 τ̃3ĝ0τ̃3 with X = h2
z /S2

F (see
Appendix B). Hence we have

[ĝ0, 〈ĝ0〉/2τ ] = X

2
[ĝ0, τ̃3ĝ0τ̃3/2τ ]. (18)

It can be seen that this solution does not strictly satisfy
Eq. (17) but only with a small error of the order of X . This
error is acceptable since we already drop some small terms of
the order of ωnτ in deriving Eq. (17). Then the Green function
can be expanded up to the first two terms of the 2D har-
monics ĝ = ĝs + nF · ĝa,i = ∑

i(gs,i + nF · ga,i )τ̃i where the
zeroth harmonic is isotropic and its amplitude is much larger
than that of the first harmonic. Substituting this expansion into
Eq. (13) and taking an average over all directions of nF in the
coefficients, we obtain

1

2
vF ∇̃ĝa =

[
ĝs, ωnτ̃3 + X

2
τ̃3ĝsτ̃3/2τ

]
, (19)

where ∇̃ is the covariant derivative ∇̃· = ∇ · + iαpF

SF vF
ẑ ×

h′[τ̃3, ·], in which the small in-plane components of the ex-
change field hx and hy play the role of the U (1) gauge field.
Multiplying Eq. (13) by nF and taking the angular average for
the coefficients, we obtain

τvF ∇̃ĝs = 1
4 ĝaĝs, (20)

where we have used the fact that X 
 1, wn 
 1/τ . Combin-
ing Eqs. (19) and (20), we arrive at the Usadel equation [39]

4D∇̃(ĝs∇̃ĝs) =
[
ωnτ̃3 + X

4
τ̃3ĝsτ̃3/τ, ĝs

]
, (21)

where the diffusion constant D is given by D = τv2
F /2. Com-

pared to the usual case, we have an extra term X
4 τ̃3ĝsτ̃3/τ ,

which represents an effective spin-flip scattering due to impu-
rities coupling different spin-momentum locked states [40]. It
is a small term proportional to X and does not totally destroy
the proximity effect. We consider the weak proximity limit
and write the Green function as ĝs ≈ τ̃3 + f̂ = τ̃3 + f1τ̃1 +
f2τ̃2. Substituting this expansion into Eq. (21), we have

4τD∇̃2 f̂ = X f̂ + 2ωnτ f̂ . (22)

Solving this equation, we get

f̂ = f0

(
0 e−2iαhyx/SF vF

e2iαhyx/SF vF 0

)
e−κx (x > 0), (23)

where f0 is a constant determined by the boundary condition
and

κ =
√

X

4τD
+ ωn

2D
+ 4h2

xα
2 p2

F

S2
F v2

F

. (24)
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The Pauli matrices τ̃1/2 written in the usual spin⊗particle-
hole space are given by

τ̃+ = τ̃
†
− = (τ̃1 + iτ̃2)/2

=̂

⎛
⎜⎝

0 0 −αpF (SF − hz )eiφ

0 0 (SF + hz )e−iφ −αpF

0 0 0 0
0 0 0 0

⎞
⎟⎠

/
2SF . (25)

The αpF terms represent the singlet pairing correlations
while the SF + hz and SF − hz terms represent the triplet
pairing. One can see that the induced pairing correlation
is a combination of singlet and triplet pairing, which are
locked together and have the same decay length ξ = 1/κ ≈
min {

√
4τD

X ,
√

2D
ωn

, SF vF
2hxαpF

}. It can be seen that the different
components of the exchange field play different roles in the
proximity effect. hz and hx tend to suppress the decay length to
be

√
4τD

X and SF vF
2hxαpF

, respectively, while hy does not affect the
decay length but introduces a phase gradient in the induced
pairing correlations, similar to the anomalous Josephson ef-
fect induced by the SOC and Zeeman effect [41–46]. In the
case of no hx and relatively small X , the decay length becomes
ξ ≈

√
4τD

X . The decay length thus depends directly on the
time reversal symmetry breaking factor X . When decreasing
X , the time reversal symmetry is further restored and the
proximity effect is promoted until the decay length reaches
the thermal coherence length ξT . When increasing X , the time
reversal symmetry is further broken, and the decay length is
suppressed to the mean free path l = τvF . Thus the system
can smoothly cross over to the αpF ≈ hz regime, where the
decay length is of the order of l .

B. Large exchange field limit

Next, we consider the opposite limit hz � αpF . In this
limit, the spins of the Fermi surface are almost polarized in
the z direction [Fig. 2(c)]. Thus the spin rotation symmetry
around the z axis is almost restored. In this case, we can find
another approximate solution of Eq. (17), which is

ĝ0 = gs,+eiφτ̃+ + gs,−e−iφτ̃− + gs,3τ̃3, (26)

where τ̃+ and τ̃− are defined by τ̃+ = (τ1 + iτ2)/2, τ̃− =
(τ̃1 − iτ̃2)/2, and gs,+gs,− gs,3 are nF independent constants.
Unlike the large SOC limit, we have here a phase factor
in the τ̃− and τ̃+ terms. It is convenient to absorb the
phase factor into the basis by defining a new basis |ψ ′

−〉 =
(|ψ ′

−,e〉, |ψ ′
−,h〉)T = (eiφ/2|ψ−,e〉, e−iφ/2|ψ−,h〉)T. Then the so-

lution can be written in this new basis as

ĝ0 =
∑

i

gs,iτ̃
′
i , (27)

where τ̃ ′
i are Pauli matrices acting on the |ψ ′

−〉 basis and gs,i

are constants. The angular average of ĝ0 becomes 〈ĝ0〉 = ĝ0 +
Y
2 τ̃ ′

3ĝ0τ̃
′
3 with Y = (SF − hz )2/4S2

F (see Appendix B). Using
the same method as for the large SOC limit, we get the Usadel
equation

D∇̃(ĝs∇̃ĝs) =
[
ωnτ̃

′
3 + Y

4
τ̃ ′

3ĝsτ̃
′
3/τ, ĝs

]
. (28)

Again in the weak proximity limit, we obtain the pair correla-
tion in the magnet as

f̂ = f0

(
0 e−2iαhyx/SF vF

e2iαhyx/SF vF 0

)
e−κx (x > 0) (29)

with

κ =
√

Y

τD
+ 2ωn

D
+ 4h2

xα
2 p2

F

S2
F v2

F

. (30)

The representations of the operators τ̃ ′ are Pauli matrices
in the |ψ ′

−〉 basis, and in the usual spin⊗particle-hole space
they are given by

τ̃ ′
+ = τ̃

′†
− = (τ̃ ′

1 + iτ̃ ′
2)/2

=̂

⎛
⎜⎝

0 0 −αpF eiφ (SF − hz )ei2φ

0 0 (SF + hz ) −αpF eiφ

0 0 0 0
0 0 0 0

⎞
⎟⎠

/
2SF . (31)

There hence exists LRPE with a decay length ξ = 1/κ ≈
min {

√
τD
Y ,

√
D

2ωn
, SF vF

2hxαpF
} dominated by triplet pairing. Again

in the case of no hx and relatively small Y , the decay length
becomes ξ ≈

√
τD
Y . It can be seen that now the spin rotation

symmetry breaking factor Y takes the similar role of the
time reversal symmetry breaking factor X in the opposite
limit. Without hx, the decay length can be increased up
to the thermal coherence length when Y is decreased due
to the further restored spin rotation symmetry around the
z axis. On the other hand, when increasing Y , the decay
length is suppressed to the mean free path l = τvF and
the system again can smoothly cross over to the αpF ≈ hz

regime.

V. BOUNDARY CONDITION

In this section, we show how to calculate the constant
f0 in Eqs. (23) and (29) through a boundary condition. In
this system the superconducting proximity effect contains
two processes: One is inducing uniform pairing correlations
in the left part (x < 0) of the 2D electron layer and the
other is the Cooper pairs penetrating into the right part
(x > 0). To calculate the induced pairing correlation in the
left part, we add the self-energy of the bulk superconductor
into the Gorkov equation of the 2D electron layer following
Refs. [26,27,47]. The Gorkov equation for the left part of the
2D electron layer reads(

Ĝ−1
0 + μ − �̂ − �̂S

)
Ĝ = 1. (32)

Here, Ĝ−1
0 , μ, and � are the same as defined in Sec. II. �S is

the self-energy of the bulk superconductor given by

�̂S = t̂†(p)ĜS (p, z = 0)t̂ (p), (33)

where t̂ is the tunneling operator as defined in Eq. (4) and p is
a 2D vector in the plane of the 2D electron layer. We assume
translational invariance for the bulk superconductor and the
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left part of the electron layer, such that the Green function ĜS

has only one momentum parameter. ĜS (p, z = 0) is calculated
as

ĜS (p, z = 0) =
∫

d pz

2π
ĜS (p, pz ) (34)

and ĜS (p, pz ) is determined by the Born self-consistency
equation(

iωnτ3 − p2 + p2
z

2mS
− �τ1 + μS − i

2τS
〈ĜS〉

)
ĜS = 1, (35)

where τS is the impurity scattering time in the bulk supercon-
ductor. The tunneling operator t̂ is in general a 4 × 4 matrix
in spin⊗particle-hole space. In the limit t/SF 
 1, only the
quasiparticles in the ψ− subspace can tunnel into the 2D
electron layer, which means that the tunneling matrix has the
form

t̂ = t P̂t , (36)

where t is the tunneling amplitude. P̂t is defined by
P̂t = |ψ−,e〉〈ψ−,e| + |ψ−,h〉〈ψ−,h| for αpF � hz and
P̂t = |ψ−,e〉〈ψ ′

−,e| + |ψ−,h〉〈ψ ′
−,h| for αpF 
 hz. Substituting

Eqs. (33)–(36) into Eq. (32), performing the quasiclassical
approximation and projecting onto the POB, we obtain the
Eilenberger equation for the left part of the 2D electron layer

vF ∇ĝ =
[

ĝ,wτ̃3 + i
αpF

SF
(h′ × ẑ) · nF

+ t2�′τ̃1 + 〈ĝ〉/2τ

]
(x < 0). (37)

Here, we have used the tunneling condition t/μN 
 1, such
that the renormalization of μN by the bulk superconductor
is negligible and the only effect of the bulk superconductor
self-energy is introducing the �′τ̃1 term defined by �′ =
Tr(τ̃1�̂S)/2, which is finite and proportional to αpF /2SF and
�. The quasiclassical Green function ĝ can be obtained from
Eq. (37) in the dirty limit as it is uniform and isotropic in
the left part, ∇ĝ = 0. Since the bulk superconductor does
not change any property of the 2D electron layer except
introducing the pairing correlation, the junction at x = 0
can be regarded as totally transparent. Therefore, we can
use the continuous boundary condition at x = 0, which is
ĝ(x = 0+) = ĝ(x < 0). Then f0 can be straightforwardly read
out from ĝ(0+). Substituting the expression of f0 back into
Eqs. (23) and (29), we get the complete form of the proximity
induced pairing correlations.

VI. EXPERIMENTAL DETECTION

The proximity effect can be detected experimentally by
measuring the Josephson current through an S/F/S junction
[48–53] in a setup as shown in Fig. 3. For simplicity, we
assume that the two superconductors have the same pairing
amplitude but with a phase difference. We first consider the
case of αpF � hz. In the weak proximity limit, making use of
Eq. (23) and (29) and matching the boundary conditions on
the two sides f (x = 0) = f0e−iφ/2, f (x = L) = f0eiφ/2, we

FIG. 3. The setup in which the supercurrent is measured. The
two superconductors have the same pairing amplitude and a phase
difference φ.

get the induced pairing correlations [25]

f = f0

sinh(κL)

(
0 A

A∗ 0

)
(38)

with

A = e
2iαpF hy (x−L)

SF vF
+iφ/2 sinh(κx)

− e
−2iαpF hyx

SF vF
−iφ/2 sinh[κ (x − L)], (39)

where L is the width of the junction. In the limit κL � 1, the
supercurrent density is calculated as

I = −i
πσN

e
T

∑
ωn>0

Tr[τ̃3ĝ∂xĝ]

= −πσN f 2
0

e
sin

(
φ + 2hyαpF L

SF vF

)
T

∑
ωn>0

κ

sinh(κL)

≈ −2πσN f 2
0

e
sin

(
φ + 2hyαpF L

SF vF

)
T

∑
ωn>0

κe−κL, (40)

where σN = 2e2N0D is the normal-state conductivity and the
lower line is valid for κL � 1. At low temperatures T ≈ 0,
the frequency summation can be converted to an integral

I = −2πσN f 2
0

e
sin

(
φ + 2hyαpF L

SF vF

) ∫
dω κe−κL

= −8πDσN f 2
0

eL3
sin

(
φ + 2hyαpF L

SF vF

)

× (CL2 + 2
√

CL + 2)e−√
CL. (41)

Here, C depends on the x and z components of the exchange

field, C = X
4τD + 4h2

xα
2 p2

F

S2
F v2

F
. From the expression of the current,

one can see that the critical supercurrent is suppressed by
both hz and hx. Another feature of the supercurrent is that the
zero supercurrent state corresponds to a finite phase difference
φ0 = − 2hyαpF L

SF vF
, which is due to breaking the inversion and

mirror symmetries in the x direction. At high temperature
T � 2DC, D/L2, the lowest frequency gives the dominating
part to the current. Thus we have

I ≈ −2πσN f 2
0

e
sin

(
φ + 2hyαpF L

SF vF

)
T

√
πT

2D
e−√

πT/2DL,

(42)
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FIG. 4. Suggested experimental realizations: (a) The case
αpF 
 hz is realized when the bulk superconductors and a ferro-
magnetic insulator are put on the top of a 3D TI. A barrier is created
between the ferromagnetic insulator and TI, such that the induced
exchange field is small. (b) The case αpF 
 hz can be obtained with
a semiconductor nanowire placed on top of bulk superconductors
and a ferromagnetic insulator, such that the induced exchange field
is large compared with the Fermi energy of the nanowire.

which does not depend on hx or hz. In the case of αpF 
 hz,
we get the Josephson current using the same method

I = −πDσN f 2
0

2eL3
sin

(
φ + 2hyαpF L

SF vF

)

× (C′L2 + 2
√

C′L + 2)e−√
C′L (43)

for T ≈ 0, and C′ is given by C′ = Y
τD + 4h2

xα
2 p2

F

S2
F v2

F
. At high

temperatures, we have

I ≈ −2πσN f 2
0

e
sin

(
φ + 2hyαpF L

SF vF

)
T

√
2πT

D
e−√

2πT/2DL.

(44)

In the case of αpF ≈ hz, the Josephson current vanishes as
there is almost no proximity effect.

Let us briefly discuss the prospects of realizing our pre-
dictions experimentally in the presence of both spin-orbit
coupling and exchange field, but in the two regimes where
one is stronger than the other. In the case of αpF � hz, we
propose that one can use the surface of a doped 3D topological
insulator (TI) such as Bi2Se3 [54–56] as the electron layer
with bulk superconductors and a ferromagnetic insulator on
top of it [Fig. 4(a)]. This system has a similar Fermi surface
as that in Fig. 2(b), so that the proximity effect is described
by Eq. (23). The case αpF 
 hz can be realized by using
[57,58] multichannel semiconductor nanowires such as InAs
as the electron layer put on top of superconductors and a
ferromagnetic insulator [Fig. 4(b)]. Although we do theo-
retical calculations in two dimensions, our results are valid
for quasi-one-dimensional systems as the proximity effect is
homogeneous in the y direction.

VII. CONCLUSION AND DISCUSSION

In conclusion, we consider the superconducting proximity
effect in a 2D electron layer with large SOC and exchange
field and assume that only one band is occupied. We derive
a generalized quasiclassical theory for this system by pro-

FIG. 5. Comparison of proximity effects in different parameter
regimes. The blue (dark) areas correspond to the regimes in which
there is no LRPE and the green (light) areas correspond to the
regimes where there is LRPE. (1) αpF , hz 
 1/τ studied in Refs.
[19,20], there is LRPE as long as αpF is finite. (2) αpF � 1/τ and
hz = 0 studied in Ref. [25], there is always LRPE. (3) αpF 
 1/τ

and hz � 1/τ studied in Ref. [35], there is LRPE as long as αpF is
finite. (4) αpF , hz � 1/τ studied in the present work, LRPE exists in
the αpF � hz and αpF 
 hz limits.

jecting the Green function onto the POB. We show that the
LRPE exists in αpF � hz and hz � αpF limits while when
αpF ≈ hz there is no LRPE. Our work fills the theoretical
research gap of studying proximity effect in systems with both
large SOC and exchange fields. Our work is compared with
previous works on proximity effect in other parameter regimes
in Fig. 5. Although we study a specific model with large SOC
and exchange field, our results also apply to the surface of a
three-dimensional topological insulator in the presence of an
exchange field, and a quantum anomalous Hall insulator be-
cause all these models have a similar spin texture of the Fermi
surface. Our method is straightforward to generalize to any
system with only one large nondegenerate Fermi surface or
systems with multiple Fermi surfaces but very small interband
scattering such as doped Weyl semimetals.
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APPENDIX A: CALCULATION OF g0 IN
THE CASE OF αpF ≈ hz

In this Appendix, we calculate g0 in the cases of αpF ≈ hz.
In general g0 can be written as

g0 =
∑

g0,i(φ)τ̃i. (A1)

In the diffusive limit, the pairing amplitude is independent of
φ, such that

g0,i = |g0,i|ei f (φ), (A2)

where f (φ) is an arbitrary function. Using the condi-
tion g0,i(φ) = g0,i(φ + 2π ), we find that f (φ) can only be
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f (φ) = iNφ with N ∈ Z . Therefore, we have

g0,i =
∑

i

|g0,i|eiNφτ̃i. (A3)

Written in the |ψ−〉 space, the operators τi are Pauli matrices. On the other hand, their representation in the spin⊗particle-hole
basis is

τ̃1 =̂

⎛
⎜⎜⎝

0 0 −αpF (SF − hz )eiφ

0 0 (SF + hz )e−iφ −αpF

−αpF (SF + hz )eiφ 0 0
(SF − hz )e−iφ −αpF 0 0

⎞
⎟⎟⎠

/
2SF

τ̃2 =̂

⎛
⎜⎜⎝

0 0 iαpF −i(SF − hz )eiφ

0 0 −i(SF + hz )e−iφ iαpF

−iαpF i(SF + hz )eiφ 0 0
i(SF − hz )e−iφ −iαpF 0 0

⎞
⎟⎟⎠

/
2SF

τ̃3 =̂

⎛
⎜⎜⎝

SF + hz −αpF eiφ 0 0
−αpF e−iφ SF − hz 0 0

0 0 −SF + hz αpF eiφ

0 0 αpF e−iφ −SF − hz

⎞
⎟⎟⎠

/
2SF . (A4)

It can be seen that for |N | > 1, 〈eiNφτ̃i〉 = 0. This means
that g0,i only contains terms with N = −1, 0, 1. Checking all
the possibilities of N , we find that the only solution for g0

is g0,3 = gs,3, g0,1 = g0,2 = 0 where gs,3 is a φ independent
constant.

APPENDIX B: CALCULATION OF 〈g0〉 IN THE
CASES OF αpF � hz AND αpF � hz

In this Appendix, we calculate the angular average of
g0. First, we consider the case of αpF � hz. According to
Eq. (A4), we can get the angular average of g0,iτ̃i in the usual
spin⊗particle-hole basis,

〈g0,1τ̃1〉 =̂ g0,1

⎛
⎜⎝

0 0 −αpF 0
0 0 0 −αpF

−αpF 0 0 0
0 −αpF 0 0

⎞
⎟⎠

/
2SF

〈g0,2τ̃2〉 =̂ g0,2

⎛
⎜⎝

0 0 iαpF 0
0 0 0 iαpF

−iαpF 0 0 0
0 −iαpF 0 0

⎞
⎟⎠

/
2SF

〈gs,3τ̃3〉 =̂ gs,3

⎛
⎜⎝

SF − hz 0 0 0
0 SF + hz 0 0
0 0 −SF − hz 0
0 0 0 −SF + hz

⎞
⎟⎠
/

2SF .

(B1)

Projecting 〈g0,iτ̃i〉 back onto the ψ− basis, we obtain

〈gs,1τ̃1〉 =
(

1

2
− h2

z

2S2
F

)
gs,1τ̃1

〈gs,2τ̃2〉 =
(

1

2
− h2

z

2S2
F

)
gs,2τ̃2 (B2)

〈gs,3τ̃3〉 =
(

1

2
+ h2

z

2S2
F

)
gs,3τ̃3.

Therefore, we have

〈gs〉 = 1

2
g0 + X

2
τ̃3g0τ̃3 (B3)

with X = h2
z

S2
F

.

Next, we consider αpF 
 hz. In this case, 〈gs,iτ̃
′
i 〉 written

in the usual spin⊗particle-hole basis is given by

〈g0,1τ̃
′
1〉 =̂ g0,1

⎛
⎜⎝

0 0 0 0
0 0 SF + hz 0
0 0 0 0

SF + hz 0 0 0

⎞
⎟⎠

/
2SF

〈g0,2τ̃
′
2〉 =̂ g0,2

⎛
⎜⎝

0 0 0 0
0 0 −iSF − ihz 0
0 0 0 0

iSF + ihz 0 0 0

⎞
⎟⎠

/
2SF

〈gs,3τ̃
′
3〉 =̂ gs,3

⎛
⎜⎝

SF − hz 0 0 0
0 SF + hz 0 0
0 0 −SF − hz 0
0 0 0 −SF + hz

⎞
⎟⎠
/

2SF

(B4)

Projecting 〈g0,iτ̃
′
i 〉 back onto the ψ ′

− basis, we obtain

〈gs,1τ̃
′
1〉 = (SF + hz )2

4S2
F

gs,1τ̃
′
1

〈gs,2τ̃
′
2〉 = (SF + hz )2

4S2
F

gs,2τ̃
′
2 (B5)

〈gs,3τ̃
′
3〉 =

(
1

2
+ h2

z

2S2
F

)
gs,3τ̃

′
3.

Therefore, we have

〈gs〉 ≈ g0 + Y

2
τ̃ ′

3g0τ̃
′
3 (B6)

with Y = (SF −hz )2

4S2
F

.
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