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We show that the gauge-invariant kinetic equation of superconductivity provides an efficient approach to study
the electromagnetic response of the gapless Nambu-Goldstone and gapful Higgs modes on an equal footing.
We prove that the Fock energy in the kinetic equation is equivalent to the generalized Ward’s identity. Hence,
the gauge invariance directly leads to the charge conservation. Both linear and second-order optical responses
are analytically investigated. The linear response of the Higgs mode vanishes in the long-wave limit, whereas the
linear response of the Nambu-Goldstone mode interacts with the long-range Coulomb interaction, causing the
original gapless energy spectrum effectively lifted up to the plasma frequency as a result of the Anderson-Higgs
mechanism, consistent with previous work. The second-order response exhibits interesting physics. On the one
hand, a finite second-order optical response of the Higgs mode is obtained in the long-wave limit. We reveal
that this response, which has been experimentally observed, is attributed solely to the drive effect rather than the
widely considered Anderson-pump effect. On the other hand, the second-order optical response of the Nambu-
Goldstone mode, free from the influence of the long-range Coulomb interaction and hence the Anderson-Higgs
mechanism, is predicted. We find that both Anderson-pump and drive effects play important role in this response.
A tentative scheme to detect this second-order response is proposed.
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I. INTRODUCTION

The collective excitation in the superconducting states has
been the focus of study in the field of superconductivity for
the past few decades. Two types of collective modes emerge
with the generation of the superconducting order parameter
�: the gapless phase mode [1–14] and gapful amplitude mode
[14–19], which correspond to the fluctuation of phase and
amplitude of the order parameter, respectively. Specifically,
through the generalized Ward’s identity, Nambu first revealed
the existence of a collective gapless excitation in the super-
conducting states [1]. It was understood later that this gapless
excitation is described as a collective phase mode of the
order parameter [2] and corresponds to the gapless Goldstone
bosons in field theory by the spontaneous breaking of the
continuous U (1) symmetry [3,4]. After that, the phase mode
was further proved by obtaining the effective Lagrangian of
the order parameter via the path integral method [7,10] and is
now referred to as the Nambu-Goldstone (NG) mode [8–14].
The counterpart of the phase mode is the amplitude mode
[14,15,17–19], which is referred to as the Higgs mode due to
the similarity of the Higgs bosons in the field theory [20–22].
In particular, a gapful energy spectrum ωH = 2|�| of the
Higgs mode in superconductors is predicted in the long-wave
limit [14,15,17,19].

Since the elucidation of the existence of the collective
modes in superconductors, many theoretical efforts have been
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devoted to their electromagnetic response. Nevertheless, the
theoretical studies of the electromagnetic responses of the NG
mode and Higgs mode in the literature so far are separated
by either fixing the amplitude or overlooking the phase of the
order parameter. Moreover, due to the spontaneous breaking
of the U (1) symmetry by the generation of the order parame-
ter, it is established [1,5,11–13] that the gauge transformation
in the superconducting states contains the superconducting
phase θ of the order parameter, in addition to the standard
electromagnetic potential Aμ = (φ, A). Nambu pointed out
[1,5,11] via the generalized Ward’s identity that the gauge
invariance in the superconducting states is equivalent to the
charge conservation. Since the charge conservation is directly
related to the electromagnetic properties, the gauge invariance
is necessary for the physical description. Nevertheless, a com-
plete gauge-invariant theory for the electromagnetic response
of both collective modes is still in progress.

Specifically, with the fixed amplitude of the order pa-
rameter, via Gorkov’s equation [23], it was first revealed by
Ambegaokar and Kadanoff [2] that the NG mode responds to
the electromagnetic field in the linear regime. Nevertheless,
this linear response of the NG mode interacts with the long-
range Coulomb interaction [2], causing the original gapless
energy spectrum to be increased to the high-energy plasma
frequency as a result of the Anderson-Higgs mechanism [24].
However, for the gauge-invariant approach in Ambegaokar
and Kadanoff’s work [2], in order to obtain the NG mode,
an additional condition of the charge conservation is required
[25]. This seems superfluous since, as mentioned above, the
presence of the gauge invariance directly implies the charge
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conservation [1,5,11]. After that, the Anderson-Higgs mech-
anism of the NG mode in the linear response is further dis-
cussed within the diagrammatic formalism [1,5,6,11,14,15].
However, due to the difficulty in treating the nonlinear ef-
fect in the diagrammatic formalism or Gorkov’s equation,
the nonlinear response of the NG mode is absent in the
literature.

The electromagnetic response of the Higgs mode has
recently been focused in the second-order regime. This is
inspired by the recent experiments [26–30], from which it is
realized that the intense THz field can excite the oscillation
of the superfluid density in the second-order response. This
oscillation so far is attributed to the excitation of the Higgs
mode based on the observed resonance when the optical
frequency is tuned at the superconducting gap [27–29]. A
theoretical description for this response has been based on the
Bloch [26–36] or Liouville [37–40] equation derived in the
Anderson pseudospin picture [41]. The second-order term A2

naturally emerges in these descriptions [26–40], causing the
pump of the quasiparticle correlation (pump effect) and hence
the fluctuation of the order parameter �. Then it is claimed
that the Higgs mode is excited. Recently this description has
been challenged [42–46]. First, the symmetry analysis [42]
from the Anderson pseudospin picture implies that with the
particle-hole symmetry, the excited fluctuation of the order
parameter by the pump effect is the oscillation of its phase.
This suggests that the pump effect excites the NG mode
rather than the Higgs mode. Second, the Bloch [26–36] or
Liouville [37–40] equation fails in the linear response to
describe the optical conductivity since no drive effect (i.e.,
linear term) is included [45,46]. Thus, these descriptions are
insufficient to elucidate the complete physics. Most impor-
tantly, with the vector potential alone, the gauge invariance is
unsatisfied in the Bloch or Liouville equation in the literature
[43–46].

Very recently, we extended the nonequilibrium τ0-Green-
function approach (τi are the Pauli matrices in the particle-
hole space), which has been very successful in studying the
dynamics of the semiconductor optics [47] and spintronics
[48], into the dynamics of superconductivity. The equal-time
scheme in this approach, corresponding to the instantaneous
optical transition [47] in optics and the nonretarded spin
precession [48] in spintronics, can naturally be applied into
the conventional s-wave superconducting states because of
the BCS equal-time pairing [49]. To retain the gauge invari-
ance, the gauge-invariant τ0-Green function was constructed
through the Wilson line [50]. Then a gauge-invariant kinetic
equation (GIKE) was developed for the electromagnetic re-
sponse of the superconductivity. As a result of the gauge
invariance, both the Anderson-pump and drive effects men-
tioned above are kept. By following the previous approaches
[16–19,26–40], i.e., overlooking the NG mode (increased to
the plasma frequency by the long-range Coulomb interaction),
it was shown by the GIKE [43–46] that instead of the well-
studied Anderson-pump effect in the literature [26–40], the
second-order contribution of the drive effect dominates the
second-order response of the Higgs mode. Moreover, in a
recent paper [46], we showed that both superfluid and normal-
fluid dynamics are involved in the GIKE, beyond the Boltz-
mann equation of superconductors in the literature [51–53]

which includes only the quasiparticle excitations. Particularly,
the equal-time scheme in the GIKE makes it very easy to
handle the temporal evolution and microscopic scattering in
the superconducting states, in contrast to the conventional
Eilenberger transport equation in superconductors which is
derived from the τ3-Green function and restricted by the
normalization condition [54–57]. Consequently, in addition
to the well-known clean-limit results such as the Ginzburg-
Landau equation near Tc and the Meissner supercurrent in
the magnetic response, from the GIKE, rich physics by the
microscopic scattering has been revealed [46]. Specifically it
was found that there exists a friction between the normal-fluid
and superfluid currents, and due to this friction, part of the
superfluid becomes viscous. Therefore, a three-fluid model
with the normal fluid and nonviscous and viscous superfluids
was proposed.

In this work, we show that the GIKE developed before
[43–46] also provides an efficient approach to study the
electromagnetic response of the collective modes in the super-
conducting states. We first demonstrate that the generalized
Ward’s identity by Nambu [1,5] is equivalent to the Fock
energy in the GIKE. With the complete Fock term, the gauge
invariance in the GIKE directly leads to the charge conserva-
tion, in contrast to the previous Ambegaokar and Kadanoff’s
approach [2] where an additional condition of the charge
conservation is required to obtain the NG mode. In addition to
the Fock term in our previous GIKE [46], the Hartree one (i.e.,
the vacuum polarization) is also added in the present work.
Then the optical responses of the collective mode in both lin-
ear and second-order regimes are analytically investigated. In
particular, differing from previous studies in the literature with
either the fixed amplitude [2,7–10,12] or overlooked phase
[16–19,26–40,43–46] of the order parameter, in the present
work, the gapless NG and gapful Higgs modes are calculated
on an equal footing. Consequently, the contributions from the
phase and amplitude modes to the fluctuation of the order
parameter, which are ambiguous in the Anderson pseudospin
picture as mentioned above, can be directly distinguished in
our GIKE approach.

In the linear regime, the response of the NG mode from our
GIKE agrees with previous results in the literature [2,5,6,12–
15]. The linear response of the NG mode interacts with the
long-range Coulomb interaction, causing the original gapless
energy spectrum inside the superconducting gap effectively
increased to the high-energy plasma frequency far above
the gap as a result of Anderson-Higgs mechanism [24].
Consequently, no effective linear response of the NG mode
occurs. The origin of the plasma frequency is addressed.
The second-order optical response of the NG mode, which
is hard to deal with in previous approaches [2,5–7,10,12–
15], exhibits interesting physics in contrast to the linear one.
Specifically, in the second-order regime, we find that the NG
mode also responds to the electromagnetic field. Both the
Anderson-pump effect and the second-order contribution of
the drive effect play important role. In particular, in striking
contrast to the linear response above, it is very interesting
to find that the second-order response of the NG mode de-
couples with the long-range Coulomb interaction as a con-
sequence of the charge conservation, free from the influence
of the Anderson-Higgs mechanism, and hence maintains the
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original gapless energy spectrum inside the superconducting
gap. Nevertheless, this second-order response of the NG
mode, showing a spatially uniform but temporally oscillating
phase by the optical excitation, does not incur any conse-
quence in the thermodynamic, electric, or magnetic properties
and hence is very hard to measure within the current experi-
mental technique. For the experimental detection, a tentative
scheme based on the Josephson junction is proposed.

As for the Higgs mode, we find that the Higgs mode also
responds to the electromagnetic field in the linear regime, but
this response vanishes in the long-wave limit. Therefore, in the
optical experiments, the Higgs mode does not manifest itself
in the linear regime. A finite optical response of the Higgs
mode in the long-wave limit is obtained in the second-order
regime. By further comparing the Anderson-pump and drive
effects, we show that the widely considered pump effect in the
literature [26–40,43–46] makes no contribution at all. Only
the second-order contribution of the drive effect contributes
to the second-order response of the Higgs mode and exhibits
a resonance at 2ω = 2�, consistent with the experimental
findings [27–29]. Consequently, the experimentally observed
second-order response of the Higgs mode is attributed solely
to the drive effect rather than the pump effect widely spec-
ulated in the literature [26–40,43–46]. The pump effect con-
tributes only to the second-order response of the NG mode as
mentioned above.

This paper is organized as follows. We first present the
Hamiltonian and introduce the GIKE of superconductivity in
Secs. II A and II B, respectively. Then, we show in Sec. II C
that the generalized Ward’s identity by Nambu is equivalent
to the Fock energy in the GIKE. The demonstration of the
charge conservation from the GIKE is addressed there. We
perform the analytical analysis for the optical response of the
Higgs and NG modes in the linear and second-order regimes
in Sec. III. We summarize in Sec. IV.

II. MODEL

In this section, we first present the Hamiltonian of the
conventional superconducting states and the corresponding
gauge structure revealed by Nambu [1,11]. Then we introduce
the GIKE of the superconductivity and prove the charge
conservation from the GIKE.

A. Hamiltonian

In the presence of the electromagnetic field, the
Bogoliubov–de Gennes (BdG) Hamiltonian of the conven-
tional superconducting states is written as

H =
∫

dr
2

ψ†(x){[ξp−eA(x)τ3 + eφ(x)]τ3 + 	̂(x)}ψ (x), (1)

with the Fock energy in the BCS pairing scheme:

	̂(x) =
(

μ0 + μF (x) |�(x)|eiθ (x)

|�(x)|e−iθ (x) μ0 − μF (x)

)
. (2)

Here ψ (x) = [ψ↑(x), ψ†
↓(x)]

T
is the field operator in the

Nambu space; ξp = p2/(2m) − μ with m and μ being the
effective mass and chemical potential; p = −ih̄∇; μF stands

for the Fock field; |�| and θ represent the amplitude and phase
of the order parameter, respectively.

Due to the spontaneous breaking of the U (1) symmetry by
the generation of the superconducting order parameter �, the
gauge transformation in superconductors reads [1,5,11–13]

eAμ → eAμ − ∂μχ (x), (3)

θ (x) → θ (x) + 2χ (x), (4)

with the four-vector ∂μ = (∂t ,−∇).

B. Gauge-invariant microscopic kinetic theory

By adding the Hartree term (i.e., the vacuum polarization)
into our previous GIKE, [46] the new GIKE reads

∂T ρc
k + i

[
(ξk + eφ + μH )τ3 + 	̂F (R), ρc

k

] + i

[
e2A2

2m
τ3, ρ

c
k

]

+ 1

2

{
eEτ3 − (∇R − 2ieAτ3)�̂(R), ∂kρ

c
k

}
− i

8

[
(∇R − 2ieAτ3)(∇R − 2ieAτ3)�̂(R), ∂k∂kρ

c
k

]
− i

[
1

8m
τ3,∇2

Rρc
k

]
+ 1

2

{
k
m

τ3,∇Rρc
k

}

− e

[
2A · ∇R + ∇R · A

4m
τ3, τ3ρ

c
k

]
= ∂tρ

c
k

∣∣
sc. (5)

Here [·] and { · } represent the commutator and anticommuta-
tor, respectively; R = (T, R) denotes the center-of-mass coor-
dinate; ρc

k stands for the density matrix in the Nambu space;

on the right-hand side of Eq. (5), the scattering term ∂tρ
c
k|sc

is added for completeness, whose explicit expression can be
found in Ref. [46]; μH denotes the added gauge-invariant
Hartree field, written as

μH (R) =
∑

R′
VR−R′n(R′), (6)

which is equivalent to the Poisson equation. n(R) is the
electron density. VR−R′ denotes the Coulomb potential whose
Fourier component Vq = e2/(q2ε0). ε0 represents the dielec-
tric constant.

The Fock energy in the pairing scheme is written as

	̂F (R) = g
∑

k

′
τ3ρ

c
kτ3 =

(
μF (R) + μ0 |�(R)|eiθ (R)

|�(R)|e−iθ (R) −μF (R) + μ0

)
,

(7)
where g denotes the effective electron-electron attractive
potential in the BCS theory [49].

∑′
k here and hereafter

represents the summation is restricted in the spherical shell
(|ξk| < ωD) defined by the BCS theory [49]. ωD is the Debye
frequency.

The effective electric field E in Eq. (5), as a gauge-invariant
measurable quantity, is given by

eE = −∇R(eφ + μH + μF ) − ∂T eA. (8)

We emphasize that with the gauge structure [Eqs. (3) and
(4)] revealed by Nambu [1], Eq. (5) is gauge invariant. In
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Eq. (5), the third term provides the Anderson-pump effect.
The fourth and fifth terms give the drive effect. Both effects
are kept here due to the gauge invariance [43]. It is noted
that the fifth term contains a second-order electromagnetic
field.

Fock energy in GIKE

In this part, we show that the Fock energy in our GIKE
approach is equivalent to the generalized Ward’s identity by
Nambu [1,5]. Specifically, as shown in Fig. 1, the dressed

vertex function �μ reads [1,5]

�μ(p + q, p) = γμ(p + q, p) − ig
∑

k

′ ∫ dk0

2π
[τ3G(k + q)

×�μ(k + q, k)G(k)τ3], (9)

in which γμ represents the bare vertex function, i.e., four-
vector current γμ = [τ3, (p + q/2)/m]; G(p) denotes τ0-
Green function; k, p, and q are four-vector momenta.

Substituting Eq. (9) into the generalized Ward’s identity∑
μ qμ�μ(p + q, p) = τ3G−1(p) − G−1(p + q)τ3, one has

τ3G−1(p) − G−1(p + q)τ3 =
∑

μ

qμ�μ(p + q, p) =
∑

μ

qμγμ − ig
∑

k

′ ∫ dk0

2π

[
τ3G(k + q)

∑
μ

qμ�μ(k + q, k)G(k)τ3]

= −q0τ3 + (2p + q) · q
2m

− ig
∑

k

′ ∫ dk0

2π
[τ3G(k + q) − G(k)τ3

]

= τ3

[
p0 − ξpτ3 + ig

∑
k

′ ∫ dk0

2π
τ3G(k)τ3

]
−

[
p0 + q0 − ξp+qτ3 + ig

∑
k

′ ∫ dk0

2π
τ3G(k)τ3

]
τ3. (10)

Therefore, the Green function reads

G−1(p) = p0 − ξpτ3 + ig
∑

k

′ ∫ dk0

2π
τ3G(k)τ3, (11)

in which the third term on the right-hand side is the Fock
energy. In a reverse method of the above derivation, one
can also prove the generalized Ward’s identity by including
the Fock energy in the Green function. Within the equal-
time scheme, the density matrix in the GIKE reads ρc

k =
−i

∫
dk0/(2π )[τ3G(k)τ3]. Hence, the Fock term in GIKE

[Eq. (7)] is exactly the same as that in Eq. (11) above. There-
fore, the Fock energy in our GIKE approach is equivalent to
the generalized Ward’s identity by Nambu [1,5].

C. Charge conservation

In this part, facilitating with the complete Fock term, we
prove the charge conservation from the GIKE. Specifically, we
first transform Eq. (5) via a unitary transformation ρk(R) =
e−iτ3θ (R)/2ρc

k(R)eiτ3θ (R)/2 and obtain

∂T ρk+i[(ξk +μeff )τ3+|�|τ1, ρk]−
[

i

8m
τ3,∇2

Rρk

]

+
{

k
2m

τ3,∇Rρk

}
+ 1

2
{eEτ3−(∇R+ipsτ3)|�|τ1, ∂kρk}

− i

8
[(∇R+ipsτ3)(∇R+ipsτ3)|�|τ1, ∂k∂kρk]

−
[

2ps · ∇R+∇R · ps

8m
τ3, τ3ρk

]
=∂tρk|sc, (12)

with the gauge-invariant measurable superconducting mo-
mentum ps and effective field μeff written as

ps = ∇Rθ − 2eA, (13)

μeff = ∂T θ

2
+ eφ + μH + μF + p2

s

8m
. (14)

It is noted that the last term on the right-hand side of
Eq. (14) is exactly the Anderson-pump effect. By expanding
the density matrix as ρk = ∑4

i=0 ρkiτi, each component of
the Fock energy [Eq. (7)] after the unitary transformation
(	̂F = g

∑′
k τ3ρkτ3 = μ0τ0 + μF τ3 + |�|τ1) reads

g
∑

k

′
ρk3 = μF , (15)

g
∑

k

′
ρk1 = −|�|, (16)

g
∑

k

′
ρk2 = 0. (17)

It is noted that Eq. (16) gives the gap equation, from which
one can self-consistently obtain the Higgs mode. We show in
the following section that from Eq. (17), the NG mode, which
has been overlooked in our previous work [43–46], can be
self-consistently determined.

FIG. 1. Diagrammatic formalism for the vertex function �μ. On
the right-hand side of the equation, the first diagram corresponds to
the bare vertex function (i.e., four-vector current); the second one
denotes the vertex correction from the pairing potential.
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The gauge-invariant charge density en and current j read
[46]

en = e
∑

k

[
1 + Tr

(
ρc

kτ3
)] = e

∑
k

(1 + 2ρk3), (18)

j =
∑

k

Tr

(
ek
m

ρc
k

)
= 2

∑
k

(
ek
m

ρk0

)
. (19)

Then, from the τ3 component of the GIKE [Eq. (12)],

∂T ρk3 + k · ∇Rρk0

m
−2|�|ρk2

= −(eE · ∂k )ρ k0 − 1

4
{∂k∂k : [ρk2(∇R∇R

− psps)|�| − ρk1{∇R, ps}|�|]}, (20)

and considering the fact that the right-hand side of Eq. (20)
vanishes after the summation of k, one has

∂T

(∑
k

ρk3

)
+ ∇R ·

(∑
k

k
m

ρk0

)
= 2|�|

∑
k

′
ρk2, (21)

in which we have used the fact that the gap vanishes out-
side the spherical shell in BCS theory [23,49],

∑
k |�|ρk2 =∑′

k|�|ρk2. Consequently, since the right-hand side of Eq. (21)
is zero because of Eq. (17), by looking into the charge density
[Eq. (18)] and current [Eq. (19)] expressions, one immediately
obtains the charge conservation:

∂T en + ∇R · j = 0. (22)

Therefore, in the GIKE approach, the charge conservation
is naturally satisfied with the complete Fock term [Eqs. (16)
and (17)], in contrast to Ambegaokar and Kadanoff’s ap-
proach [2] where an additional condition of the charge con-
servation is required to obtain NG mode. This is because that
the Fock energy in the GIKE is equivalent to the generalized
Ward’s identity by Nambu [1,5], as proved in Sec. II B 1, and
hence, the gauge invariance in the GIKE directly leads to the
charge conservation.

III. ANALYTIC ANALYSIS

In this section, we perform the analytical analysis for the
optical response of the collective Higgs and NG modes in
the linear and second-order regimes. By assuming the ex-
ternal electromagnetic potential φ = φ0(R)eiωt−iq·R and A =
A0eiωt−iq·R, the density matrix ρk and charge density en read

ρk = ρ0
k + ρω

k eiωt−iq·R + ρ2ω
k e2iωt−2iq·R, (23)

en = en0 + enωeiωt−iq·R + en2ωe2iωt−2iq·R, (24)

whereas the phase θ and amplitude |�| of the order parameter
are written as

θ = θωeiωt−iq·R + θ2ωe2iωt−2iq·R, (25)

|�| = �0 + δ|�|ωeiωt−iq·R + δ|�|2ωe2iωt−2iq·R. (26)

Here ρ0
k , en0, and �0 are the density matrix, charge density,

and order parameter in equilibrium state, respectively; ρ
ω(2ω)
k ,

enω(2ω), θω(2ω), and δ|�|ω(2ω) denote the linear (second-order)

responses of the density matrix, charge density, Higgs mode,
and NG mode, respectively. Additionally, in the present work,
we consider only the spatially uniform fields for the optical re-
sponse (i.e., the case that A0 and ∇Rφ0 are spatially uniform).

The density matrix in equilibrium state is given by [43,46]

ρ0
k = 1

2
− fk

2

(
ξk

Ek
τ3 + �0

Ek
τ1

)
(27)

with fk = 1 − 2nF (Ek ) and Ek =
√

ξ 2
k + �2

0. Here nF (x) is
the Fermi-distribution function. From Eq. (16), �0 is deter-
mined by

�0 = −g
∑

k

′
ρ0

k1 = g
∑

k

′
(

�0

2Ek
fk

)
, (28)

which is exactly the gap equation in the BCS theory [49]. en0

from Eq. (18) is written as

en0 = e
∑

k

(
1 + 2ρ0

k3

) =
∑

k

[
2ev2

k + 2e
ξk

Ek
nF (Ek )

]
, (29)

consisting of the charge densities of the condensate [58–61]
2ev2

k = e(1 − ξk

Ek
) and Bogoliubov quasiparticles [58–63]

2e ξk

Ek
nF (Ek ).

Then we show that the GIKE [Eq. (12)] provides an
efficient approach to study the electromagnetic responses of
the collective NG and Higgs modes.

A. Linear response

We first focus on the linear response in this part. From
Eqs. (13) and (14), the linear responses of the superconducting
momentum pω

s and effective field μω
eff are given by

pω
s = −iqθω − 2eA0, (30)

μω
eff = iωθω

2
+ eφ0 + μω

H + μω
F , (31)

with the linear responses of the Hartree field μω
H [Eq. (6)] and

Fock one μω
F [Eq. (15)] written as

μω
H = Vqnω = 2Vq

∑
k

ρω
k3, (32)

μω
F = g

∑
k

ρω
k3. (33)

We then investigate the linear responses of the NG mode θω

and Higgs mode δ|�|ω.

1. NG mode

We address the NG mode in this part. In the long-wave
limit, we keep only the lowest two orders of q. In this
situation, the linear response of the density matrix ρω

k can be
solved from the GIKE. Substituting the linear solution of ρω

k2
into Eq. (17), one has (refer to Appendix A)

iωμω
eff + iωμω

eff
q2v2

F

3ω2
gω + iq · pω

s

2

v2
F

3
sω = iωδ|�|ωbω, (34)
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with the dimensionless factors

sω =
∑′

k

[
1

4E2
k −ω2

(
2 − E2

k ∂2
ξk

)(
�0
2Ek

fk
)]

∑′
k

(
1

4E2
k −ω2

�0
Ek

fk
) , (35)

gω =
∑′

k

[
�0

4E2
k −ω2 ∂ξk

(
ξk

Ek
fk

)]
∑′

k

(
1

4E2
k −ω2

�0
Ek

fk
) , (36)

bω =
∑′

k

(
1

4E2
k −ω2

ξk

Ek
fk

)
∑′

k

(
1

4E2
k −ω2

�0
Ek

fk
) = 0. (37)

Here we have taken care of the particle-hole symmetry to
remove terms with the odd order of ξk in the summation of
k. Consequently, since bω = 0 [Eq. (37)], it is obvious that
the linear response of the NG mode decouples with that of
the Higgs mode (δ|�|ω) due to the particle-hole symmetry,
consistent with the symmetry analysis [42]. Moreover, one
notices that the last two terms on the left-hand side of Eq. (34)
come from the linear contribution of the drive effect.

Further substituting pω
s [Eq. (30)] and μω

eff [Eq. (31)] into
Eq. (34), one obtains the linear-response equation of the NG
mode: [

ω2 − q2v2
F

3
(sω − gω )

]
θω

2

= iωeφ0 − v2
F

3
sωiq · eA0 − q2v2

F

3
gω

eφ0

iω

+ iω
(
μω

H + μω
F

)(
1 + q2v2

F

3ω2
gω

)
. (38)

We first discuss the situation without the Hartree and Fock
terms. In the low-frequency regime with ω � 2�0, one finds
sω ≈ 1 and gω ≈ 2/3 (refer to Appendix A). Hence, the linear-
response equation of the NG mode [Eq. (38)] becomes[

ω2 −
(qvF

3

)2
]
θω

2
= iωeφ0

[
1 + 2

(qvF

3ω

)2
]

− v2
F

3
iq · eA0.

(39)
Consequently, it is found that the collective NG mode ex-

hibits the gapless linear energy spectrum (i.e., ωNG = qvF /3)
inside the superconducting gap, consistent with previous work
[1,2,5–7,11–15] and Goldstone theorem with the spontaneous
continuous U (1)-symmetry breaking [3,4]. Additionally, the
NG mode responds to the longitudinal electromagnetic field
[right-hand side of Eq. (39)] in the linear regime, also in
agreement with previous work [2,5,12,13].

2. Role of Hartree and Fock fields

We next consider the role of the Hartree and Fock fields in
the linear response of the NG mode. Specifically, considering
Vq 	 g in the long-wave limit, the Fock field can be neglected.
Substituting the solution of ρω

k3 into Eq. (32), the Hartree field
reads (refer to Appendix B):

μω
H = Vqq · Eω

imω2

∑
k

′ k2
F

3m

[
∂Ek fk − �2

0

Ek
∂Ek

(
fk

Ek

)]
. (40)

It is noted that the first term in the summation of k denotes the
contribution from the Bogoliubov quasiparticles. The second

one exactly corresponds to the Meissner-superfluid density

ρs = ∑′
k

k2
F

3m [�2
0

Ek
∂Ek (− fk

Ek
)], related to the Meissner supercur-

rent, as revealed in our previous work [46].
At low temperature, the Bogoliubov quasiparticles vanish,

i.e., nF (Ek ) ≈ 0, leaving solely the Meissner-superfluid den-

sity. Then one has μω
H = − iq·eEω

q2

ω2
p

ω2 with ωp =
√

ρse2

3ε0m being
the plasma frequency. Further substituting Eω [Eq. (8)] into
μω

H , the Hartree field is given by

μω
H = − iq·eEω

0

q2

ω2
p/ω

2

1 − ω2
p/ω

2
, (41)

with eE0 = iqφ0 − ∇Rφ0 − iωA0 being the external electric
field.

Finally, considering the contribution of the Hartree field
[Eq. (41)], the linear-response equation [Eq. (38)] of the NG
mode becomes[

ω2 −
(qvF

3

)2
]
θω

2
= iωeφ0 − ω2

piq·eA0/q2

1 − ω2
p/ω

2
+ O(q). (42)

Therefore, as seen from the right-hand side of Eq. (42), as
a consequence of the Hartree field (i.e., the vacuum po-
larization), the longitudinal field experiences the Coulomb
screening. In this situation, multiplying by 1 − ω2

p/ω
2 on both

sides of Eq. (42), in the long-wave limit, one has

(
ω2 − ω2

p

)θω

2
= iωeφ0 − ω2

p

iq·eA0

q2
, (43)

exactly the same as in previous work [2]. Consequently, as
seen from Eq. (43), the linear response of the NG mode
interacts with the long-range Coulomb interaction, causing
the original gapless spectrum of the NG mode effectively
raised to the high-energy plasma frequency as a result of the
Anderson-Higgs mechanism [2,5,6,14,15,24].

With the high-energy plasma frequency (i.e., ω � ωp), one
finds θω/2 = iq·eA0/q2. As pointed out in previous work
[2,5], this finite θω from the unphysical longitudinal vector
potential does not provide any measurable effect, especially
considering the fact that the longitudinal vector potential does
not even exist in either the optical response or static magnetic
response. Moreover, this finite θω cancels the unphysical
longitudinal vector potential in pω

s [Eq. (30)]:

pω
s

2
= q(q·eA0)

q2
− eA0 + O

(
ω2

ω2
p

)
. (44)

As a result, the gauge-invariant superconducting momentum
pω

s , which appears in the Ginzburg-Landau equation [23,46],
Meissner supercurrent [23,46], and Anderson-pump effect
[26–40,43–46], involves only the physical transverse vector
potential.

Interestingly, at low temperature, it is observed above that

the emerged plasma frequency ωp =
√

ρse2

ε0m originates from

the Meissner-superfluid density ρs = ∑′
k

k2
F

3m
�2

0

E3
k

, rather than

the condensate en0 = ∑
k 2ev2

k . This is consistent with our
previous conclusion [46] that only the Meissner-superfluid
density, which is related to the charge fluctuation on top of the
condensate, is involved in the electromagnetic response in the
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superconducting states, whereas the ground state condensate
simply provides a rigid background.

3. Higgs mode

We next study the linear response of the Higgs mode.
Substituting the second-order solution of ρω

k1 into the gap
equation [Eq. (16)], one directly obtains (refer to Appendix A)

iωδ|�|ω
[

1

g
−

∑
k

′
(

2ξ 2
k

4E2
k − ω2

fk

Ek

)]

=− i
(
q · pω

s

)
cω

6m
+ iq

m
· eEω

iω

∑
k

′
[

4ξ 2
k

4E2
k − ω2

2

3
∂ξk

(
ξkρ

0
k1

)]
,

(45)

where the particle-hole symmetry has been taken care of to
remove terms with odd order of ξk in the summation of k. cω

is a dimensionless factor (refer to Appendix A).
The first term on the right-hand side of Eq. (45) vanishes

since pω
s involves only the physical transverse vector potential

[Eq. (44)]. By using Eq. (28) to replace g, the linear response
of the Higgs mode is obtained:

iωδ|�|ω
[

1 −
(

ω

2�0

)2
]

= uω

iq·eEω

imω
, (46)

with uω = ∑′
k[

4ξ 2
k ∂ξk (ξkρ

0
k1 )

4E2
k −ω2 ]/

∑′
k( 3�2

0

4E2
k −ω2

fk

Ek
).

Consequently, from Eq. (46), it is seen that the Higgs
mode exhibits the gapful energy spectrum (i.e., ωH = 2�0),
consistent with previous studies [14,15]. Moreover, the Higgs
mode also responds to the electromagnetic field in the linear
regime [right-hand side of Eq. (46)]. Nevertheless, this linear
response vanishes in the long-wave limit, making it hard to be
detected in the optical experiment.

B. Second-order response

From the above analytic investigations, one directly con-
cludes that neither the collective phase (NG) mode nor the
amplitude (Higgs) mode is detectable in the linear regime for
the optical experiment. In contrast, we show in this section
that the second-order response of the collective modes in
superconductors exhibits different physics.

Specifically, the second-order responses of the supercon-
ducting momentum p2ω

s and effective field μ2ω
eff from Eqs. (13)

and (14) are given by

p2ω
s = −2iqθ2ω, (47)

μ2ω
eff = iωθ2ω + μ2ω

H + μ2ω
F +

(
pω

s

)2

8m
. (48)

The last term on the right-hand side of Eq. (48) is exactly the
Anderson-pump effect, as mentioned in Sec. II C.

The second-order responses of the Hartree field μ2ω
H

[Eq. (6)] and Fock one μ2ω
F [Eq. (15)] are written as

μ2ω
H = V2qn2ω = 2V2q

∑
k

ρ2ω
k3 , (49)

μ2ω
F = g

∑
k

ρ2ω
k3 . (50)

Then we investigate the second-order responses of the NG
mode θ2ω and Higgs mode δ|�|2ω.

1. NG mode

We address the NG mode in this part. The second-order
response of the density matrix ρ2ω

k can also be obtained from
the GIKE in the long-wave limit. Substituting the solution of
ρ2ω

k2 into Eq. (17), one has (refer to Appendix C)

2iωμ2ω
eff

(
1 + q2v2

F

3ω2
g2ω

)
+ iq · p2ω

s

v2
F

3
s2ω

= 2iω

m

[
g2ω

3

(
eEω

iω
− pω

s

)
· eEω

iω
+ lω

2

(
eEω

iω
− pω

s

2

)2]
,

(51)

with dimensionless prefactor

lω =
∑′

k

[
�0

E2
k −ω2

(
2ξk∂

2
ξk

+ ∂ξk

)(
ξk

Ek
fk

)]
3
∑′

k

(
1

E2
k −ω2

�0
Ek

fk
) . (52)

Furthermore, with the solution of ρ2ω
k3 , we find that

the second-order response of the charge density en2ω =
e
∑

k 2ρ2ω
k3 is zero (refer to Appendix C), leading to the

vanishing second-order Hartree field μ2ω
H [Eq. (49)] and Fock

one μ2ω
F [Eq. (50)].

Consequently, substituting p2ω
s [Eq. (47)] and μ2ω

eff
[Eq. (48)] into Eq. (51), the second-order response equation
of the NG mode reads[

ω2 − q2v2
F

3
(s2ω − g2ω )

]
θ2ω

= iω

m

[(
pω

s

)2

8
− g2ω

3

(
eEω

iω
− pω

s

)
· eEω

iω

− lω
2

(
eEω

iω
− pω

s

2

)2]
, (53)

which exhibits different physics from the linear response.
Particularly, in the low-frequency regime (ω � �0), one

finds that s2ω ≈ 1/3, g2ω ≈ 2/3, (refer to Appendix A) and
lω ≈ −2/45 (refer to Appendix C), and, hence, Eq. (53)
becomes(

ω2 − q2v2
F

9

)
θ2ω ≈ iω

m

(
pω

s

)2

8
+

(
pω

s − eEω

iω

)
·eEω

5m
. (54)

On the right-hand side of Eq. (54), the first term exactly comes
from the Anderson pump effect, whereas the last two ones are
attributed to the second-order contribution of the drive effect.
Both effects play important role in the second-order response
of the NG mode. Moreover, it is noted that on the right-hand
side of in Eq. (53), pω

s involves only the physical transverse
vector potential [Eq. (44)]. As for the electric field Eω =
Eω,‖ + Eω,⊥, by the linear response of the Hartree field μω

H
(i.e., the vacuum polarization), the longitudinal electric field
Eω,‖ is suppressed by the strong Coulomb screening, whereas
the transverse one Eω,⊥ is not affected (refer to Appendix B).
Therefore, the second-order response of the NG mode at low
frequency (ω � ωp) is determined by the transverse field.
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Consequently, from Eq. (54), it is very interesting to find
that due to the vanishing Hartree field, the second-order re-
sponse of the NG mode maintains the original gapless energy
spectrum (ωNG = qvF /3) inside the superconducting gap, free
from the influence of the Anderson-Higgs mechanism, in
striking contrast to the linear response above. This can be
understood as follows. In the presence of the inversion sym-
metry, no second-order current j2ω is induced, and hence, be-
cause of the charge conservation [Eq. (22)], no charge density
fluctuation en2ω is excited, effectively ruling out the Hartree
field μ2ω

H = Vqn2ω (i.e., the long-range Coulomb interaction)
in the second-order response. In addition, differing from
the linear response excited by the longitudinal field solely,
the second-order response of the NG mode is determined
by the transverse field as mentioned above, free from the
influence of the Coulomb screening.

We point out that because of the gauge-invariant electric
field and superconducting moment on the right-hand side of
Eq. (54), the second-order response of the NG mode θ2ω is a
measurable quantity, differing from the linear response above.
This term, which is hard to deal with in previous approaches
[2,5–7,10,12–15], has long been overlooked in the literature.

2. Higgs mode

Substituting the solution of ρ2ω
k1 into Eq. (16), in the long-

wave limit, one has (refer to Appendix C)

δ|�|2ω

g
=

∑
k

′ ξk
[
δ|�|2ω + ( pω

s
2 − eEω

iω

)2 �0v
2
F ∂2

ξk
6

]
ρ0

k3

ω2 − E2
k

. (55)

By using Eq. (28) and Eq. (44) to replace g and pω
s , the second-

order response equation of the Higgs mode in the long-wave
limit reads

δ|�|2ω

[
1 −

(
2ω

2�0

)2
]

= v2
F

6

(
eA⊥

0 + eEω

iω

)2 dω

�0
, (56)

with dω = ∑′
k[ ξk�0

E2
k −ω2 ∂

2
ξk

( ξk

Ek
fk )]/

∑′
k( fk

Ek

�0

E2
k −ω2 ).

Therefore, a finite response of the Higgs mode in the
long-wave limit is found in the second-order regime, differing
from the vanishing linear response above. Furthermore, this
second-order response of the Higgs mode shows a reso-
nance at 2ω = 2�0, consistent with the experimental findings
[27–29]. In particular, we point out that the right-hand side of
Eq. (56) exactly comes from the second-order contribution of
drive effect, whereas the widely considered pump effect in the
literature [26–40,43–46] makes no contribution at all.

Actually, it is noted that in previous theoretical stud-
ies [16–19,26–40,43–46], the obtained fluctuation of the or-
der parameter δ�2ω is directly considered as the amplitude
(Higgs) mode δ|�|2ω since it is believed that the phase (NG)
mode is raised to the high-energy plasma frequency. Then it is
considered that the Anderson-pump effect, which can excite
the fluctuation of the order parameter δ�2ω, contributes to
the amplitude mode. Nevertheless, this becomes ambiguous
when the very recent symmetry analysis by Tsuchiya et al.
[42] implies that the pump effect excites the oscillation of the
superconducting phase rather than the amplitude. Even though
not clearly stated, the obtained pseudospin susceptibilities

N S

L

x

z

y

J

S

R

L R

FIG. 2. Schematic to detect the second-order response of the
phase mode. Two continuous-wave optical fields with frequencies
ωL and ωR = ωL/2 are applied to the superconductors on the two
sides of junction, leading to the excited phase θL (θR) of the left
(right) superconductor. Then, by the phase difference θd = θL − θR,
the Josephson current J = Jc sin θd is generated.

χyz �= 0 and χxz = 0 [Eq. (25) in Ref. [42]] in their work
clearly suggest that the induced pseudofield Hz by the pump
effect in the Anderson pseudospin picture [26–36] can gener-
ate only the fluctuation of the phase-related Sy, rather than the
amplitude-related Sx. To resolve this puzzle, the contributions
from the amplitude and phase modes to δ�2ω in previous work
[16–19,26–40,43–46] must be carefully examined.

In contrast, the GIKE provides an efficient approach to
calculate the phase and amplitude modes on an equal footing.
The results from the GIKE above suggest that the fluctuation
of the order parameter in the second-order response actu-
ally consists of contributions from both amplitude (Higgs)
and phase (NG) modes, i.e., δ�2ω = δ|�|2ω + iθ2ω�0. From
the above analytic analysis, we conclude that the observed
second-order response of the amplitude mode δ|�|2ω in recent
optical experiments [26–30] is attributed solely to the drive ef-
fect rather than the widely considered Anderson-pump effect
[26–40,43–46].

In fact, the pump effect contributes only to the second-
order response of the NG mode θ2ω, in which the drive effect
also plays an important role, as mentioned in Sec. III B 1. Con-
sequently, all previous studies of the Anderson-pump effect
in the literature [16–19,26–40,43–46] actually calculate only
one part of the second-order response of the NG mode θ2ω

rather than the Higgs mode, supporting the latest symmetry
analysis by Tsuchiya et al. [42] from the Anderson pseudospin
picture. Particularly, we have shown in Sec. III B 1 that the
second-order response of the NG mode decouples with the
long-range Coulomb interaction, free from the influence of
the Anderson-Higgs mechanism and hence maintaining the
original gapless energy spectrum and then is measurable. A
tentative scheme to detect this second-order response of the
NG mode is proposed in the following section.

3. Tentative scheme for detection

We propose a tentative scheme to detect the second-order
response θ2ω through the Josephson junction. Specifically, for
the optical experiment, in the long-wave limit, the second-
order response of the NG mode from Eq. (54) shows a
spatially uniform but temporally oscillating phase θ = zωe2iωt ,
with zω = |θ2ω(q = 0)| denoting the oscillating amplitude
of θ . Therefore, as schematically illustrated in Fig. 2, in a
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Josephson junction, by separately applying two phase-locked
continuous-wave optical fields with frequencies ωL and ωR

(ωL = 2ωR) to the superconductors on each side of junction,
an oscillating phase difference θd = θL − θR between the left
and right superconductors is induced, leading to the Josephson
current J = Jc sin θd [64]. Here Jc is the Josephson critical
current. Moreover, through the optical time delay to choose
π/2 phase difference, one has the phase excitations with θL =
zL
ωL

cos(2ωLt ) and θR = zR
ωR

sin(2ωRt ), and then a dc-current
component in J is derived (refer Appendix D):

Jdc =2Jc j1
(
zL
ωL

)
j2

(
zR
ωR

)
, (57)

with jn(x) being the nth Bessel function of the first kind.
Consequently, a dc current is induced. Therefore, this

dc Josephson current provides a tentative scheme for the
detection of the second-order response of the NG (phase)
mode, especially considering the fact that the generation of
the Josephson current directly implies the phase fluctuation.
Moreover, to avoid influence from the optical currents, one
can choose the directions of the propagation and polarization
of the applied optical fields to be perpendicular to that of the
junction, i.e., along z and y directions in Fig. 2, respectively.

IV. SUMMARY AND DISCUSSION

We have shown that the GIKE provides an efficient ap-
proach to study the electromagnetic response of the collective
modes in the superconducting states. We prove that the Fock
energy is equivalent to the generalized Ward’s identity by
Nambu [1,5]. Therefore, with the complete Fock term, the
gauge invariance in the GIKE directly leads to the charge
conservation, in contrast to Ambegaokar and Kadanoff’s ap-
proach [2] where an additional condition of the charge con-
servation is required to obtain the NG mode. Differing from
previous studies in the literature with either the fixed ampli-
tude [2,7–10,12] or overlooked phase [16–19,26–40,43–46] of
the order parameter, in the present work, the gapless NG and
gapful Higgs modes are calculated on an equal footing. By the
analytic investigation, rich optical properties of the collective
mode in both linear and second-order regimes are revealed.

In the linear regime, we find that the Higgs mode responds
to the electromagnetic field, but this linear response vanishes
in the long-wave limit. As for the NG mode, the results in
the linear response by the GIKE agree with previous ones in
the literature [2,5,6,12–15]. Specifically, the linear response
of the NG mode interacts with the long-range Coulomb
interaction, causing the original gapless spectrum inside the
superconducting gap effectively raised to the plasma fre-
quency far above the gap as a result of the Anderson-Higgs
mechanism [24]. Consequently, no effective linear response
of the NG mode occurs. In addition, we reveal that the
emerged plasma frequency at low temperature originates from
the Meissner-superfluid density rather than the condensate,
consistent with our previous conclusion [46] that only the
Meissner-superfluid density is involved in the electromagnetic
response in the superconducting states, whereas the ground
state condensate simply provides a rigid background. There-
fore, neither the collective Higgs mode nor the NG mode is
detectable in the linear regime for the optical experiment.

The second-order responses of both collective modes ex-
hibit interesting physics in contrast to the linear ones. Specif-
ically, in the second-order regime, a finite response of the
Higgs mode is obtained in the long-wave limit. By looking
into the source of the field, we find that the widely con-
sidered Anderson-pump effect makes no contribution at all.
Instead, only the drive effect contributes. In particular, this
finite second-order response of the Higgs mode from the
drive effect exhibits a resonance at 2ω = 2�0, consistent
with the experimental findings [27–29]. Consequently, the
experimentally observed second-order response of the Higgs
mode [26–30] is attributed solely to the drive effect rather
than the Anderson-pump effect widely speculated on in the
literature [26–40,43–46].

In fact, we find that the Anderson-pump effect contributes
only to the second-order response of the NG mode, in which
the drive effect also plays an important role. In addition, we
further point out that in striking contrast to the linear response,
the second-order response of the NG mode decouples with the
long-range Coulomb interaction, free from the influence of the
Anderson-Higgs mechanism, and hence maintains the original
gapless energy spectrum inside the superconducting gap. The
origin of this decoupling can be understood as follows. On
one hand, the optical response of the superconducting phase
θ = θωeiωt + θ2ωe2iωt is given by

θ = f1(q · E‖)eiωt

ω2 − q2v2
F /9

+ f2E2
⊥e2iωt

ω2 − q2v2
F /9

, (58)

where f1 and f2 are the linear and second-order excitation
coefficients, respectively. The linear response responds to
the longitudinal field solely which experiences the Coulomb
screening (i.e., E‖ = E0,‖

1−ω2
p/ω

2 ). Therefore, the first term in

Eq. (58) reads f1(q·E0,‖ )eiωt

(ω2−q2v2
F /9)(1−ω2

p/ω
2 )

≈ f1(q·E0,‖ )eiωt

ω2−ω2
p

, in which the

original gapless energy spectrum is effectively raised to the
plasma frequency, whereas we find that the second-order
response of the NG mode at low frequency (ω � ωp) is
determined by the transverse field, and, hence, the second
term in Eq. (58) is free from the influence of the Coulomb
screening. On the other hand, it is well known that there
is no second-order current j2ω in systems with inversion
symmetry. Consequently, from the charge conservation in the
second-order regime (2ωeδn2ω + 2q · j2ω = 0), the second-
order charge density fluctuation eδn2ω is forbidden, exactly
ruling out the influence of the Poisson equation (i.e., the long-
range Coulomb interaction). This decoupling of the second-
order response of the NG mode with the Coulomb interaction,
protected by the charge conservation, is a unique feature of the
optical properties. Nevertheless, this second-order response
has long been overlooked in the literature due to its difficult
calculation in previous theoretical approaches [2,5–7,10,12–
15]. Moreover, it is pointed out that the second-order response
of the NG mode, which shows a spatially uniform but tem-
porally oscillating phase, does not manifest itself or incur
any consequence in the thermodynamic, electric, or magnetic
properties and, hence, does not change the existing results in
the literature. Actually, a single oscillating superconducting
phase is very hard to measure within the present experimental
technique. To detect this second-order response of the NG
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mode, a tentative scheme based on the Josephson junction is
proposed.
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APPENDIX A: DERIVATION OF EQS. (34) AND (45)

In this section, we derive Eqs. (34) and (45). Considering
the long-wave limit, we only keep the lowest two orders of q
in our derivation. Then the linear order of the GIKE [Eq. (12)]
in the clean limit reads

iωρω
k + i

[
ξkτ3 + �0τ1, ρ

ω
k

] − 1

2

{
ik · q

m
τ3, ρ

ω
k

}

+i
[
δ|�|ωτ1+μω

effτ3, ρ
0
k

] − i

8

[
qpω

s �0τ3τ1, ∂k∂kρ
0
k

]
+ 1

2

{
eEωτ3+(iqδ|�|ωτ1−ipω

s τ3�0τ1), ∂kρ
0
k

}
− i

[
q · pω

s

8m
τ3, τ3ρ

0
k

]
= 0, (A1)

whose components are written as

iωρω
k0 = ik · q

m
ρω

k3 − ∂k · (
iqδ|�|ωρ0

k1 + eEωρ0
k3

)
, (A2)

iωρω
k3 − 2�0ρ

ω
k2 = ik · q

m
ρω

k0 + i�0

4
qpω

s : ∂k∂kρ
0
k1, (A3)

iωρω
k1 + 2ξkρ

ω
k2 = iq · pω

s

4m
ρ0

k1 − i�0

4
qpω

s : ∂k∂kρ
0
k3, (A4)

iωρω
k2 + 2�0ρ

ω
k3 − 2ξkρ

ω
k1 = (

ξkδ|�|ω − �0μ
ω
eff

) fk

Ek
. (A5)

Substituting ρω
k3 [Eq. (A3)] and ρω

k1 [Eq. (A4)] into
Eq. (A5), one has(

4E2
k − ω2

)
ρω

k2

= iω
(
ξkδ|�|ω − �0μ

ω
eff

) fk

Ek
+ iq · pω

s

2m

× ξkρ
0
k1 − i�2

0

2
qpω

s : ∂k∂kρ
0
k1 − iξk�0

2
qpω

s : ∂k∂kρ
0
k3

+ 2�0
ik · q

m

eEω · ∂k

iω
ρ0

k3 + O(q2), (A6)

in which Eq. (A2) is used for ρω
k0. Considering the fact

�0∂
2
k ρ0

k3 = ρ0
k1

m
+ ξk∂

2
k ρ0

k1 + 2
k

m
∂kρ

0
k1, (A7)

�0∂kρ
0
k3 = k

m
ρ0

k1 + ξk∂kρ
0
k1, (A8)

Eq. (A6) becomes

ρω
k2 = 1

4E2
k − ω2

{
iωδ|�|ω ξk

Ek
fk − iωμω

eff
�0

Ek
fk

−
[

iE2
k

2
(q · ek )

(
pω

s · ek
)(k2∂2

ξk

m2
+ ∂ξk

m

)
− 2

ik · q
m

× k
m

· eEω + (
eEω − iωpω

s /2
)
ξk∂ξk

iω

+ i(q · ek )
(
pω

s · ek
)

2m
ξk − iq · pω

s

2m
ξk

]
ρ0

k1

}
. (A9)

It is noted that from Eq. (8), one has eEω = iωpω
s /2 −

∇Rμω
eff + iqμω

eff . Consequently, with
∑′

k ρω
k2 = 0 [Eq. (17)],

by taking care of the particle-hole symmetry to remove terms
with the odd order of ξk in the summation of k, Eq. (34) is
obtained.

Particularly, at the low frequency, i.e., ω � �0, the dimen-
sionless factor sω in Eq. (34) becomes

sω ≈
∑

k

[
1

2E2
k

(
2 − E2

k ∂2
ξk

)
�0
Ek

fk
]

∑
k

(
1

E2
k

�0
Ek

fk
) =

∑
k

(
�0

E3
k

fk
)

∑
k

(
�0

E3
k

fk
) = 1.

(A10)

Similarly, gω in Eq. (34) at low frequency (ω � �0) and
low temperature [ fk = 1 − 2nF (Ek ) ≈ 1] reads

gω =
∑

k

[
�0

4E2
k
∂ξk

(
ξk

Ek
fk

)]
∑

k

(
1

4E2
k

�0
Ek

fk
) ≈

∑
k

(
�0

4E2
k

�2
0

E3
k

)
∑

k

(
1

4E2
k

�0
Ek

)

=
∫ ωD

−ωD

dx
(1+x2 )5/2∫ ωD

−ωD

dx
(1+x2 )3/2

≈
∫ ∞
−∞

dx
(1+x2 )5/2∫ ∞

−∞
dx

(1+x2 )3/2

= 2

3
. (A11)

After sum over k in the BCS spherical shell to Eq. (A4),
one has

−iω
∑

k

′
ρω

k1 =
∑

k

′
2ξkρ

ω
k2 −

∑
k

′ iq · pω
s

4m
ρ0

k1. (A12)

By further using the gap equation [Eq. (16)] and the solution
of ρω

k2 [Eq. (A9)], one obtains

iωδ|�|ω
g

=
∑

k

′ 2ξk

4E2
k − ω2

{
iω

(
δ|�|ωξk − μω

eff�0
) fk

Ek

−
[

iE2
k

2
(q · ek )

(
pω

s · ek
)(k2∂2

ξk

m2
+ ∂ξk

m

)
− iq · pω

s ξk

3m

−2
ik · q

m

k
m

·
(
eEω − iωpω

s /2
)
ξk∂ξk + eEω

iω

]
ρ0

k1

}

−
∑

k

′ iq · pω
s

4m
ρ0

k1. (A13)

Further, by using the particle-hole symmetry to remove terms
with the odd order of ξk in the summation of k, Eq. (45) is
obtained. cω in Eq. (45) is given by cω = zω − 3�0/(2g) with

zω =
∑

k

[
4ξ 2

k

(
E2

k ∂2
ξk

− 1 + 2ξk∂ξk

) + 2E2
k ξk∂ξk

]
ρ0

k1

4E2
k − ω2

.

(A14)

APPENDIX B: DERIVATION OF EQ. (40)

We derive the Hartree field [Eq. (40)] in this part. Gener-
ally, with the Hartree field (i.e., the vacuum polarization), the
plasma oscillation is involved, causing the Coulomb screening

104513-10
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to the longitudinal electromagnetic field. Nevertheless, the
transverse field is not affected.

By first substituting ρω
k3 [Eq. (A3)] and then substituting

ρω
k0 [Eq. (A2)], into Eq. (32), the Hartree field reads

μω
H = 2Vq

ω

∑
k

[
(k · q)

m
ρω

k0

]

=−2Vq

ω

∑
k

{
(k · q)

m

[
eEω · ∂kρ

0
k3

iω

]
+ O(q2)

}

= Vqv
2
F q · Eω

3iω2

[∑
k

∂Ek fk −
∑

k

�2
0

Ek
∂Ek

(
fk

Ek

)]
. (B1)

In the superconducting state with kBT � ωD (T denotes the
temperature), one has ∂Ek fk = −2∂Ek nF (Ek ) ≈ 0 when |ξk| >

ωD. Therefore, the first summation on the right-hand side of
Eq. (B1) can be restricted inside the spherical shell. Moreover,
the second one is also restricted inside the spherical shell,
considering the fact that the gap vanishes outside the spherical
shell in the BCS theory [23,49]. Then Eq. (40) is obtained.

With Eq. (40), the linear electric field Eω from Eq. (8)
becomes

Eω = Eω
0 + q

(
q · Eω

0

)
q2

ω2
p/ω

2

1 − ω2
p/ω

2
. (B2)

Therefore, it is noted that the longitudinal electric field expe-

riences the Coulomb screening, i.e., Eω,‖ = Eω,‖
0

1−ω2
p/ω

2 whereas

the transverse one does not (Eω,⊥ = Eω,⊥
0 ), as pointed out

above.

APPENDIX C: DERIVATION OF n2ω, EQS. (51) AND (55)

We derive Eqs. (51) and (55) in this part. Considering the
long-wave limit, we keep only the lowest two orders of q in
our derivation. Then the second order of the GIKE [Eq. (12)]
in the clean limit reads

2iωρ2ω
k + i

[
ξkτ3 + �0τ1, ρ

2ω
k

] − i

{
k · q

m
τ3, ρ

2ω
k

}

+ i
[
δ|�|2ωτ1 + μ2ω

effτ3, ρ
0
k

] − i

[
q · p2ω

s

4m
τ3, τ3ρ

0
k

]

+ 1

2

{
eE2ωτ3 + 2iqδ|�|2ωτ1 − ip2ω

s �0τ3τ1, ∂kρ
0
k

}
+ i

8

[
pω

s pω
s �0τ1 − 2qp2ω

s �0τ3τ1, ∂k∂kρ
0
k

]
+ 1

2

{
eEωτ3 − ipω

s �0τ3τ1, ∂kρ
ω
k

} + O(q2) = 0, (C1)

in which we have used the fact that δ|�|ω [Eq. (46)], μω
eff

[Eq. (34)], ρω
k2 [Eq. (A9)], and ρω

k1 [Eq. (A4)], ρω
k3 [Eq. (A3)]

are the quantities in the first order of q. Components of
Eq. (C1) can be written as

2iωρ2ω
k0 =2

ik·q
m

ρ2ω
k3 − ∂k ·(eEωρω

k3 + �0pω
s ρω

k2+eE2ωρ0
k3

+ 2iqρ0
k1δ|�|2ω

)
, (C2)

2iωρ2ω
k3 =2�0ρ

2ω
k2 + 2

ik · q
m

ρ2ω
k0 + i�0qp2ω

s :∂k∂kρ
0
k1

2
− (eEω ·∂k )ρω

k0, (C3)

2iωρ2ω
k1 = iq · p2ω

s ρ0
k1

2m
−2ξkρ

2ω
k2 − i�0qp2ω

s :∂k∂kρ
0
k3

2
, (C4)

2iωρ2ω
k2 =2ξkρ

2ω
k1 −2�0ρ

2ω
k3 +(

ξkδ|�|2ω−�0μ
2ω
eff

) fk

Ek

− �0
(
pω

s · ∂k
)
ρω

k0−
�0

4
pω

s pω
s :∂k∂kρ

0
k3. (C5)

Then, by first substituting Eq. (A2) and then substituting
Eqs. (C3) and (C4) into Eq. (C5), ρ2ω

k2 can be obtained:

ρ2ω
k2 = 1

4
(
E2

k − ω2
){

4iω
(
μ2ω

effρ
0
k1 − δ|�|2ωρ0

k3

) − 2iω�0

×
(
eEω − iωpω

s

) · ∂k

iω

eEω · ∂k

iω
ρ0

k3+
iq · p2ω

s ξkρ
0
k1

m

−�0

[
i(q · ek )

(
p2ω

s · ek
)(

�0∂
2
k ρ0

k1+ξk∂
2
k ρ0

k3

)+ ∂2
k ρ0

k3

2

×iω
(
pω

s · ek
)2−2i

k · q
m

eE2ω · ∂kρ
0
k3

iω

]}
+O(q2),

(C6)

in which Eq. (C2) is used for ρ2ω
k0 . With the help of Eqs. (A7)

and (A8), Eq. (C6) becomes

ρ2ω
k2 = 1

4
(
E2

k − ω2
){

4iω
(
μ2ω

effρ
0
k1 − δ|�|2ωρ0

k3

)

− 2iω�0

[(
eEω

iω
− pω

s

2

)
· ek

]2
(

k2∂2
ξk

m2
+ ∂ξk

m

)
ρ0

k3

− 2iω�0

(
eEω − iωpω

s

) · eθk

iω

eEω · eθk

iω

∂ξk ρ
0
k3

m

− 4

(
k · q

m

)2 μ2ω∂ξk

(
ξkρ

0
k1

)
iω

+ 2i
k · q

m

k · p2ω
s

m
ρ0

k1

− iE2
k (q · ek )

(
p2ω

s · ek
)(k2∂2

ξk

m2
+ ∂ξk

m

)
ρ0

k1

+ i

[
q · p2ω

s

m
− (q · ek )

(
p2ω

s · ek
)

m

]
ξkρ

0
k1

}
. (C7)

Then, with
∑′

k ρ2ω
k2 = 0 [Eq. (17)], via taking care of the

particle-hole symmetry to remove terms with the odd order of
ξk in the summation of k, Eq. (51) is obtained. In particular,
in Eq. (51), the dimensionless factor lω [Eq. (52)] at low
frequency and low temperature reads

lω ≈
∑

k

[
�0

E2
k

(
2ξk∂

2
ξk

+ ∂ξk

)(
ξk

Ek

)]
3
∑

k

(
1

E2
k

�0
Ek

) =
∑

k

(�3
0

E5
k

− 6 ξ 2
k �3

0

E6
k

)
3
∑

k
�0

E3
k

≈
∫ ωD

−ωD
dx

[
1

(1+x2 )5/2 − 6x2

(1+x2 )7/2

]
3
∫ ωD

−ωD

dx
(1+x2 )3/2

= − 2

45
. (C8)
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Following the derivation of the linear μω
H above, by substi-

tuting ρ2ω
k3 [Eq. (C3)] into the second-order Hartree and Fock

fields [Eqs. (49) and (50)], one has

μ2ω
H + μ2ω

F =
(
V2q + g

2

)
n2ω = 2V2q + g

ω

∑
k

[
(k · q)

m
ρ2ω

k0

]

= −2V2q + g

2iω

∑
k

{
(k · q)

m

[
eE2ω · ∂kρ

0
k3

ω

]

+ O(q2)

}
= 2V2q + g

2imω2

(q · E2ω )

2
(ρQ + ρs),

(C9)

with ρQ = k2
F

3m

∑
k ∂Ek fk . Further substituting the second-order

electric field eE2ω = 2iq(μ2ω
H + μ2ω

F ) [Eq. (8)] into Eq. (C9),
one obtains

μ2ω
H + μ2ω

F = (
μ2ω

H + μ2ω
F

)q2(2V2q + g)(ρQ + ρs)

2mω2
. (C10)

Therefore, one immediately finds the vanishing μ2ω
H , μ2ω

F ,
eE2ω, and n2ω.

After the summation of k in the BCS spherical shell to
Eq. (C4), one comes to

−2iω
∑

k

′
ρ2ω

k1 =
∑

k

′
2ξkρ

2ω
k2 −

∑
k

′ iq · p2ω
s

2m
ρ0

k1. (C11)

Considering the long-wave limit (q = 0), the second term on
the right-hand side of Eq. (C11) vanishes. Then, substituting
the solution of ρ2ω

k2 [Eq. (C7)] which is simplified at q = 0 into
Eq. (C11), one obtains

−
∑

k

′
ρ2ω

k1 =
∑

k

′ ξk

E2
k − ω2

{
μ2ω

effρ
0
k1 − δ|�|2ωρ0

k3

−
[(

eEω

iω
− pω

s

)
· ek

]2
�0

2

(
k2∂2

ξk

m2
+ ∂ξk

m

)
ρ0

k3

− �0

2

[(
eEω

iω
− pω

s

)
· eθk

](
eEω

iω
· eθk

)
∂ξk ρ

0
k3

m

}
.

(C12)

By further using the gap equation [Eq. (16)] and taking care of
the particle-hole symmetry to remove terms with the odd order
of ξk in the summation of k, one directly obtains Eq. (55).

APPENDIX D: DERIVATION OF EQ. (57)

For excitation with θL = zL
ωL

cos(2ωLt ) and θR = zR
ωR

sin(2ωRt ) in Fig. 2, the dc-current component in the induced Josephson
current J = Jc sin(θL − θR) can be obtained through a time average:

Jdc = 1

T

∫ T

0
J = 1

T

∫ T

0
Jc

[
sin

(
zL
ωL

cos 2ωLt
)

cos
(
zR
ωR

sin 2ωRt
) − cos

(
zL
ωL

cos 2ωLt
)

sin
(
zR
ωR

sin 2ωRt
)]

= 1

T

∫ T

0
Jc

({
−2

∞∑
n=1

(−1)n j2n−1
(
zL
ωL

)
cos[(2n − 1)2ωLt]

}{
j0

(
zR
ωR

) + 2
∞∑

m=1

j2m
(
zR
ωR

)
cos[(2m)2ωRt]

}

−
{

j0
(
zL
ωL

) + 2
∞∑

m=1

(−1)m j2m
(
zL
ωL

)
cos[(2m)2ωLt]

}{
2

∞∑
n=1

j2n−1
(
zR
ωR

)
sin[(2n − 1)2ωRt]

})

= 2Jc

∞∑
n=1

∞∑
m=1

(−1)n+1
[

j2n−1
(
zL
ωL

)
j2m

(
zR
ωR

)
δ(2n−1)ωL,(2m)ωR

]
. (D1)

In particular, for the weak phase excitation (small zl and zR), only the lowest two orders of the Bessel function are important,
and then Eq. (57) is obtained.

[1] Y. Nambu, Phys. Rev. 117, 648 (1960).
[2] V. Ambegaokar and L. P. Kadanoff, Nuovo Cimento 22, 914

(1961).
[3] J. Goldstone, Nuovo Cimento 19, 154 (1961).
[4] J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127, 965

(1962).
[5] J. R. Schrieffer, Theory of Superconductivity (W. A. Benjamin,

New York, 1964).
[6] H. A. Fertig and S. Das Sarma, Phys. Rev. Lett. 65, 1482 (1990).
[7] I. J. R. Aitchison, P. Ao, D. J. Thouless, and X. M. Zhu, Phys.

Rev. B 51, 6531 (1995).
[8] K. Kadowaki, I. Kakeya, M. B. Gaifullin, T. Mochiku, S.

Takahashi, T. Koyama, and M. Tachiki, Phys. Rev. B 56, 5617
(1997).

[9] K. Kadowaki, I. Kakeya, and K. Kindo, Europhys. Lett. 42, 203
(1998).

[10] I. J. R. Aitchison, G. Metikas, and D. J. Lee, Phys. Rev. B 62,
6638 (2000).

[11] Y. Nambu, Rev. Mod. Phys. 81, 1015 (2009).
[12] C. Timm, Theory of Superconductivity (Institute of Theoretical

Physics, Dresden, 2012).
[13] B. V. Svistunov, E. S. Babaev, and N. V. Prokof’ev, Superfluid

States of Matter (CRC Press, Boca Raton, FL, 2015).
[14] T. Yanagisawa, Commun. Comput. Phys. 23, 459 (2017).
[15] P. B. Littlewood and C. M. Varma, Phys. Rev. Lett. 47, 811

(1981); Phys. Rev. B 26, 4883 (1982).
[16] A. Moor, P. A. Volkov, A. F. Volkov, and K. B. Efetov, Phys.

Rev. B 90, 024511 (2014).

104513-12

https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1103/PhysRev.117.648
https://doi.org/10.1007/BF02787879
https://doi.org/10.1007/BF02787879
https://doi.org/10.1007/BF02787879
https://doi.org/10.1007/BF02787879
https://doi.org/10.1007/BF02812722
https://doi.org/10.1007/BF02812722
https://doi.org/10.1007/BF02812722
https://doi.org/10.1007/BF02812722
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1103/PhysRev.127.965
https://doi.org/10.1103/PhysRevLett.65.1482
https://doi.org/10.1103/PhysRevLett.65.1482
https://doi.org/10.1103/PhysRevLett.65.1482
https://doi.org/10.1103/PhysRevLett.65.1482
https://doi.org/10.1103/PhysRevB.51.6531
https://doi.org/10.1103/PhysRevB.51.6531
https://doi.org/10.1103/PhysRevB.51.6531
https://doi.org/10.1103/PhysRevB.51.6531
https://doi.org/10.1103/PhysRevB.56.5617
https://doi.org/10.1103/PhysRevB.56.5617
https://doi.org/10.1103/PhysRevB.56.5617
https://doi.org/10.1103/PhysRevB.56.5617
https://doi.org/10.1209/epl/i1998-00231-y
https://doi.org/10.1209/epl/i1998-00231-y
https://doi.org/10.1209/epl/i1998-00231-y
https://doi.org/10.1209/epl/i1998-00231-y
https://doi.org/10.1103/PhysRevB.62.6638
https://doi.org/10.1103/PhysRevB.62.6638
https://doi.org/10.1103/PhysRevB.62.6638
https://doi.org/10.1103/PhysRevB.62.6638
https://doi.org/10.1103/RevModPhys.81.1015
https://doi.org/10.1103/RevModPhys.81.1015
https://doi.org/10.1103/RevModPhys.81.1015
https://doi.org/10.1103/RevModPhys.81.1015
https://doi.org/10.4208/cicp.OA-2017-0057
https://doi.org/10.4208/cicp.OA-2017-0057
https://doi.org/10.4208/cicp.OA-2017-0057
https://doi.org/10.4208/cicp.OA-2017-0057
https://doi.org/10.1103/PhysRevLett.47.811
https://doi.org/10.1103/PhysRevLett.47.811
https://doi.org/10.1103/PhysRevLett.47.811
https://doi.org/10.1103/PhysRevLett.47.811
https://doi.org/10.1103/PhysRevB.26.4883
https://doi.org/10.1103/PhysRevB.26.4883
https://doi.org/10.1103/PhysRevB.26.4883
https://doi.org/10.1103/PhysRevB.26.4883
https://doi.org/10.1103/PhysRevB.90.024511
https://doi.org/10.1103/PhysRevB.90.024511
https://doi.org/10.1103/PhysRevB.90.024511
https://doi.org/10.1103/PhysRevB.90.024511


GAUGE-INVARIANT MICROSCOPIC KINETIC THEORY OF … PHYSICAL REVIEW B 100, 104513 (2019)

[17] D. Pekker and C. Varma, Annu. Rev. Condens. Matter Phys. 6,
269 (2015).

[18] N. Tsuji, Y. Murakami, and H. Aoki, Phys. Rev. B 94, 224519
(2016).

[19] T. Cea, C. Castellani, and L. Benfatto, Phys. Rev. B 93,
180507(R) (2016).

[20] F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964).
[21] P. W. Higgs, Phys. Lett. 12, 132 (1964); Phys. Rev. Lett. 13, 508

(1964).
[22] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Phys. Rev.

Lett. 13, 585 (1964).
[23] A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinski, Meth-

ods of Quantum Field Theory in Statistical Physics (Prentice
Hall, Englewood Cliffs, NJ, 1963).

[24] P. W. Anderson, Phys. Rev. 130, 439 (1963).
[25] In fact, by looking into Ref. [2], the charge conservation [Eq.

(2.12)] is not justified in the superconducting state with the
spontaneous breaking of the U (1) symmetry but discussed
before the mean-field theory where the U (1) symmetry still
holds. In Ref. [2], to derive the NG mode [Eq. (3.35)] after
the mean-field theory, an additional condition of the charge
conservation is required besides the Gorkov’s equation.

[26] R. Matsunaga and R. Shimano, Phys. Rev. Lett. 109, 187002
(2012).

[27] R. Matsunaga, Y. I. Hamada, K. Makise, Y. Uzawa, H. Terai, Z.
Wang, and R. Shimano, Phys. Rev. Lett. 111, 057002 (2013).

[28] R. Matsunaga, N. Tsuji, H. Fujita, A. Sugioka, K. Makise, Y.
Uzawa, H. Terai, Z. Wang, H. Aoki, and R. Shimano, Science
345, 1145 (2014).

[29] R. Matsunaga, N. Tsuji, K. Makise, H. Terai, H. Aoki, and R.
Shimano, Phys. Rev. B 96, 020505(R) (2017).

[30] K. Katsumi, N. Tsuji, Y. I. Hamada, R. Matsunaga, J.
Schneeloch, R. D. Zhong, G. D. Gu, H. Aoki, Y. Gallais, and
R. Shimano, Phys. Rev. Lett. 120, 117001 (2018).

[31] R. A. Barankov, L. S. Levitov, and B. Z. Spivak, Phys. Rev.
Lett. 93, 160401 (2004).

[32] R. A. Barankov and L. S. Levitov, Phys. Rev. Lett. 96, 230403
(2006).

[33] N. Tsuji and H. Aoki, Phys. Rev. B 92, 064508 (2015).
[34] M. Dzero, M. Khodas, and A. Levchenko, Phys. Rev. B 91,

214505 (2015).
[35] M. Lu, H. W. Liu, P. Wang, and X. C. Xie, Phys. Rev. B 93,

064516 (2016).
[36] Y. Murotani, N. Tsuji, and H. Aoki, Phys. Rev. B 95, 104503

(2017).
[37] T. Papenkort, V. M. Axt, and T. Kuhn, Phys. Rev. B 76, 224522

(2007).

[38] T. Papenkort, T. Kuhn, and V. M. Axt, Phys. Rev. B 78, 132505
(2008).

[39] A. F. Kemper, M. A. Sentef, B. Moritz, J. K. Freericks, and T. P.
Devereaux, Phys. Rev. B 92, 224517 (2015).

[40] H. Krull, N. Bittner, G. S. Uhrig, D. Manske, and A. P.
Schnyder, Nat. Commun. 7, 11921 (2016).

[41] P. W. Anderson, Phys. Rev. 112, 1900 (1958).
[42] S. Tsuchiya, D. Yamamoto, R. Yoshii, and M. Nitta, Phys. Rev.

B 98, 094503 (2018).
[43] T. Yu and M. W. Wu, Phys. Rev. B 96, 155311 (2017).
[44] T. Yu and M. W. Wu, Phys. Rev. B 96, 155312 (2017).
[45] F. Yang, T. Yu, and M. W. Wu, Phys. Rev. B 97, 205301

(2018).
[46] F. Yang and M. W. Wu, Phys. Rev. B 98, 094507 (2018).
[47] H. Haug and A. P. Jauho, Quantum Kinetics in Transport and

Optics of Semiconductors (Springer, Berlin, 1996).
[48] M. W. Wu, J. H. Jiang, and M. Q. Weng, Phys. Rep. 493, 61

(2010).
[49] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106,

162 (1957).
[50] M. E. Peskin and D. V. Schroeder, An Introduction to Quantum

Field Theory (Addison-Wesley, New York, 1995).
[51] Non-Equilibrium Superconductivity, edited by D. N.

Langenderg and A. I. Larkin (North-Holland, Amsterdam,
1980).

[52] A. G. Aronov, M. Galperin, V. L. Gurevich, and V. I. Kozub,
Adv. Phys. 30, 539 (1981).

[53] N. Kopnin, Theory of Nonequilibrium Superconductivity
(Oxford University Press, New York, 2001).

[54] G. Eilenberger, Z. Phys. 214, 195 (1968).
[55] F. S. Bergeret, A. F. Volkov, and K. B. Efetov, Rev. Mod. Phys.

77, 1321 (2005).
[56] A. I. Buzdin, Rev. Mod. Phys. 77, 935 (2005).
[57] T. Kita, Statistical Mechanics of Superconductivity (Springer,

Berlin, 2015).
[58] Y. M. Galperin, V. L. Gurevich, V. I. Kozub, and A. L.

Shelankov, Phys. Rev. B 65, 064531 (2002).
[59] S. Takahashi and S. Maekawa, Phys. Rev. Lett. 88, 116601

(2002).
[60] S. Takahashi and S. Maekawa, J. Phys. Soc. Jpn. 77, 031009

(2008).
[61] S. Takahashi and S. Maekawa, Jpn. J. Appl. Phys. 51, 010110

(2012).
[62] H. L. Zhao and S. Hershfield, Phys. Rev. B 52, 3632 (1995).
[63] S. Li, A. V. Andreev, and B. Z. Spivak, Phys. Rev. B 92,

100506(R) (2015).
[64] B. D. Josephson, Rev. Mod. Phys. 46, 251 (1974).

104513-13

https://doi.org/10.1146/annurev-conmatphys-031214-014350
https://doi.org/10.1146/annurev-conmatphys-031214-014350
https://doi.org/10.1146/annurev-conmatphys-031214-014350
https://doi.org/10.1146/annurev-conmatphys-031214-014350
https://doi.org/10.1103/PhysRevB.94.224519
https://doi.org/10.1103/PhysRevB.94.224519
https://doi.org/10.1103/PhysRevB.94.224519
https://doi.org/10.1103/PhysRevB.94.224519
https://doi.org/10.1103/PhysRevB.93.180507
https://doi.org/10.1103/PhysRevB.93.180507
https://doi.org/10.1103/PhysRevB.93.180507
https://doi.org/10.1103/PhysRevB.93.180507
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1103/PhysRevLett.13.321
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1016/0031-9163(64)91136-9
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.508
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1103/PhysRevLett.13.585
https://doi.org/10.1103/PhysRev.130.439
https://doi.org/10.1103/PhysRev.130.439
https://doi.org/10.1103/PhysRev.130.439
https://doi.org/10.1103/PhysRev.130.439
https://doi.org/10.1103/PhysRevLett.109.187002
https://doi.org/10.1103/PhysRevLett.109.187002
https://doi.org/10.1103/PhysRevLett.109.187002
https://doi.org/10.1103/PhysRevLett.109.187002
https://doi.org/10.1103/PhysRevLett.111.057002
https://doi.org/10.1103/PhysRevLett.111.057002
https://doi.org/10.1103/PhysRevLett.111.057002
https://doi.org/10.1103/PhysRevLett.111.057002
https://doi.org/10.1126/science.1254697
https://doi.org/10.1126/science.1254697
https://doi.org/10.1126/science.1254697
https://doi.org/10.1126/science.1254697
https://doi.org/10.1103/PhysRevB.96.020505
https://doi.org/10.1103/PhysRevB.96.020505
https://doi.org/10.1103/PhysRevB.96.020505
https://doi.org/10.1103/PhysRevB.96.020505
https://doi.org/10.1103/PhysRevLett.120.117001
https://doi.org/10.1103/PhysRevLett.120.117001
https://doi.org/10.1103/PhysRevLett.120.117001
https://doi.org/10.1103/PhysRevLett.120.117001
https://doi.org/10.1103/PhysRevLett.93.160401
https://doi.org/10.1103/PhysRevLett.93.160401
https://doi.org/10.1103/PhysRevLett.93.160401
https://doi.org/10.1103/PhysRevLett.93.160401
https://doi.org/10.1103/PhysRevLett.96.230403
https://doi.org/10.1103/PhysRevLett.96.230403
https://doi.org/10.1103/PhysRevLett.96.230403
https://doi.org/10.1103/PhysRevLett.96.230403
https://doi.org/10.1103/PhysRevB.92.064508
https://doi.org/10.1103/PhysRevB.92.064508
https://doi.org/10.1103/PhysRevB.92.064508
https://doi.org/10.1103/PhysRevB.92.064508
https://doi.org/10.1103/PhysRevB.91.214505
https://doi.org/10.1103/PhysRevB.91.214505
https://doi.org/10.1103/PhysRevB.91.214505
https://doi.org/10.1103/PhysRevB.91.214505
https://doi.org/10.1103/PhysRevB.93.064516
https://doi.org/10.1103/PhysRevB.93.064516
https://doi.org/10.1103/PhysRevB.93.064516
https://doi.org/10.1103/PhysRevB.93.064516
https://doi.org/10.1103/PhysRevB.95.104503
https://doi.org/10.1103/PhysRevB.95.104503
https://doi.org/10.1103/PhysRevB.95.104503
https://doi.org/10.1103/PhysRevB.95.104503
https://doi.org/10.1103/PhysRevB.76.224522
https://doi.org/10.1103/PhysRevB.76.224522
https://doi.org/10.1103/PhysRevB.76.224522
https://doi.org/10.1103/PhysRevB.76.224522
https://doi.org/10.1103/PhysRevB.78.132505
https://doi.org/10.1103/PhysRevB.78.132505
https://doi.org/10.1103/PhysRevB.78.132505
https://doi.org/10.1103/PhysRevB.78.132505
https://doi.org/10.1103/PhysRevB.92.224517
https://doi.org/10.1103/PhysRevB.92.224517
https://doi.org/10.1103/PhysRevB.92.224517
https://doi.org/10.1103/PhysRevB.92.224517
https://doi.org/10.1038/ncomms11921
https://doi.org/10.1038/ncomms11921
https://doi.org/10.1038/ncomms11921
https://doi.org/10.1038/ncomms11921
https://doi.org/10.1103/PhysRev.112.1900
https://doi.org/10.1103/PhysRev.112.1900
https://doi.org/10.1103/PhysRev.112.1900
https://doi.org/10.1103/PhysRev.112.1900
https://doi.org/10.1103/PhysRevB.98.094503
https://doi.org/10.1103/PhysRevB.98.094503
https://doi.org/10.1103/PhysRevB.98.094503
https://doi.org/10.1103/PhysRevB.98.094503
https://doi.org/10.1103/PhysRevB.96.155311
https://doi.org/10.1103/PhysRevB.96.155311
https://doi.org/10.1103/PhysRevB.96.155311
https://doi.org/10.1103/PhysRevB.96.155311
https://doi.org/10.1103/PhysRevB.96.155312
https://doi.org/10.1103/PhysRevB.96.155312
https://doi.org/10.1103/PhysRevB.96.155312
https://doi.org/10.1103/PhysRevB.96.155312
https://doi.org/10.1103/PhysRevB.97.205301
https://doi.org/10.1103/PhysRevB.97.205301
https://doi.org/10.1103/PhysRevB.97.205301
https://doi.org/10.1103/PhysRevB.97.205301
https://doi.org/10.1103/PhysRevB.98.094507
https://doi.org/10.1103/PhysRevB.98.094507
https://doi.org/10.1103/PhysRevB.98.094507
https://doi.org/10.1103/PhysRevB.98.094507
https://doi.org/10.1016/j.physrep.2010.04.002
https://doi.org/10.1016/j.physrep.2010.04.002
https://doi.org/10.1016/j.physrep.2010.04.002
https://doi.org/10.1016/j.physrep.2010.04.002
https://doi.org/10.1103/PhysRev.106.162
https://doi.org/10.1103/PhysRev.106.162
https://doi.org/10.1103/PhysRev.106.162
https://doi.org/10.1103/PhysRev.106.162
https://doi.org/10.1080/00018738100101407
https://doi.org/10.1080/00018738100101407
https://doi.org/10.1080/00018738100101407
https://doi.org/10.1080/00018738100101407
https://doi.org/10.1007/BF01379803
https://doi.org/10.1007/BF01379803
https://doi.org/10.1007/BF01379803
https://doi.org/10.1007/BF01379803
https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1103/RevModPhys.77.935
https://doi.org/10.1103/RevModPhys.77.935
https://doi.org/10.1103/RevModPhys.77.935
https://doi.org/10.1103/RevModPhys.77.935
https://doi.org/10.1103/PhysRevB.65.064531
https://doi.org/10.1103/PhysRevB.65.064531
https://doi.org/10.1103/PhysRevB.65.064531
https://doi.org/10.1103/PhysRevB.65.064531
https://doi.org/10.1103/PhysRevLett.88.116601
https://doi.org/10.1103/PhysRevLett.88.116601
https://doi.org/10.1103/PhysRevLett.88.116601
https://doi.org/10.1103/PhysRevLett.88.116601
https://doi.org/10.1143/JPSJ.77.031009
https://doi.org/10.1143/JPSJ.77.031009
https://doi.org/10.1143/JPSJ.77.031009
https://doi.org/10.1143/JPSJ.77.031009
https://doi.org/10.7567/JJAP.51.010110
https://doi.org/10.7567/JJAP.51.010110
https://doi.org/10.7567/JJAP.51.010110
https://doi.org/10.7567/JJAP.51.010110
https://doi.org/10.1103/PhysRevB.52.3632
https://doi.org/10.1103/PhysRevB.52.3632
https://doi.org/10.1103/PhysRevB.52.3632
https://doi.org/10.1103/PhysRevB.52.3632
https://doi.org/10.1103/PhysRevB.92.100506
https://doi.org/10.1103/PhysRevB.92.100506
https://doi.org/10.1103/PhysRevB.92.100506
https://doi.org/10.1103/PhysRevB.92.100506
https://doi.org/10.1103/RevModPhys.46.251
https://doi.org/10.1103/RevModPhys.46.251
https://doi.org/10.1103/RevModPhys.46.251
https://doi.org/10.1103/RevModPhys.46.251

