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Boundary central charge from bulk odd viscosity: Chiral superfluids
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We derive a low-energy effective field theory for chiral superfluids, which accounts for both spontaneous
symmetry breaking and fermionic ground-state topology. Using the theory, we show that the odd (or Hall)
viscosity tensor, at small wave vector, contains a dependence on the chiral central charge c of the boundary
degrees of freedom, as well as additional nonuniversal contributions. We identify related bulk observables which
allow for a bulk measurement of c. In Galilean invariant superfluids, only the particle current and density
responses to strain and electromagnetic fields are required. To complement our results, the effective theory is
benchmarked against a perturbative computation within a canonical microscopic model.
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I. INTRODUCTION

The odd (or Hall) viscosity ηo is a nondissipative, time-
reversal odd, stress response to strain rate [1–5], which can ap-
pear even in superfluids (SFs) and incompressible (or gapped)
fluids, where the more familiar dissipative viscosity vanishes.
Observable signatures of ηo are actively studied in a variety of
systems [6], and recently led to its measurement in a colloidal
fluid [7] and in graphene [8].

In isotropic 2 + 1-dimensional fluids, the odd viscosity
tensor at zero wave vector (q = 0) reduces to a single com-
ponent. In analogy with the celebrated quantization of the odd
(or Hall) conductivity in the quantum Hall (QH) effect [9],
this component obeys a quantization condition

η(1)
o = −(h̄/2)sn0, s ∈ Q, (1)

in incompressible quantum fluids [1,10,11]. Here n0 is the
ground-state density, and s is a rational topological invariant
labeling the many-body ground state, which corresponds to
the average angular momentum per particle (in units of h̄,
henceforth set to 1).

Remarkably, Eq. (1) also holds in certain compressible
quantum fluids, which are the subject of this paper. These
are chiral superfluids (CSFs), where the ground state is a
condensate of Cooper pairs of fermions, which are spinning
around their center of mass with an angular momentum � ∈
Z [12–14]; see Fig. 1(a). Thin films of 3He-A are experi-
mentally accessible p-wave (� = ±1) CSFs [15], and there
are proposals for the realization of various CSFs in cold
atoms [16]. Closely related chiral superconductors [17] have
recently been realized [18], and some of the most debated
fractional QH states [19] are believed to be CSFs of composite
fermions [12,20]. Computing η(1)

o in an �-wave CSF, one
finds Eq. (1) with the intuitive s = �/2 [10,11,21–23]. Thus, a

*golanomri@gmail.com

measurement of η(1)
o at q = 0 can be used to obtain the angular

momentum of the Cooper pair, but carries no additional
information.

An �-wave pairing involves the spontaneous symmetry
breaking (SSB) of time reversal T and parity (spatial reflec-
tion) P down to PT , and of the symmetry groups generated
by particle number N and angular momentum L down to a
diagonal subgroup,

U (1)N × SO(2)L → U (1)L−(�/2)N , (2)

which implies a single Goldstone field, charged under the
broken generator N + (�/2)L, as well as massive Higgs
fields [24,25]. For CSFs, it is this SSB pattern, rather than

FIG. 1. (a) A CSF is composed of fermions ψ which carry no
geometric spin, sψ = 0, and form Cooper pairs with a relative angular
momentum � ∈ Z (red arrows). The geometric spin sθ = �/2 of the
Cooper pair gives rise to the q = 0 odd viscosity (1), with s = sθ .
The CSF supports boundary degrees of freedom (dashed orange)
with a chiral central charge c ∈ (�/2)Z, which cannot be extracted
from the odd viscosity ηo(q) alone Eq. (18). (b) In an auxiliary
CSF, the fermion ψ̃ is assigned a geometric spin s̃ψ = −�/2 (blue
arrows). The geometric spin of the Cooper pair therefore vanishes,
s̃θ = �/2 + s̃ψ = 0, as in an s-wave superfluid, but the central charge
is unchanged, c̃ = c. As a result, the small q behavior of the odd
viscosity η̃o depends only on c Eq. (19). The improved odd viscosity
of the CSF is defined as the odd viscosity of the auxiliary CSF, and
is given explicitly by Eq. (22).
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ground-state topology, which implies the quantization s =
�/2 [21,26].

Nevertheless, a CSF with fixed � does have a nontriv-
ial ground-state topology—single fermion excitations are
gapped, and the fermionic ground state can be assigned a topo-
logical invariant. This is the boundary chiral central charge
c ∈ (�/2)Z (per spin component) [12,13], which counts the
net chirality of 1 + 1 dimensional Majorana spinors present
on the boundary between the CSF and vacuum. For example,
a p-wave CSF composed of spin-less fermions has a mini-
mal nonvanishing c = ±1/2, while a d-wave (� = ±2) CSF,
which requires spin-full fermions, has a minimal nonvanish-
ing c = ±2, or c = ±1 per spin component.

The invariant c determines the boundary gravitational
anomaly [27], and the boundary thermal Hall conductance
[12,28,29], which has been measured in recent experiments
on QH and spin systems [30]. Based on the fundamental
principle of anomaly inflow [31–34] it is expected that c can
be measured in the bulk of a CSF, but whether this is indeed
the case, and if so, what should actually be measured, has so
far remained unclear. Providing an answer to this question is
the main goal of the present paper.

Analysis of the problem has previously been carried out
only within the relativistic limit of the p-wave CSF, where
the nonrelativistic kinetic energy of the fermions is neglected
[12,25,32,35–37]. Within this limit one finds a bulk gravita-
tional Chern-Simons (gCS) term, which implies a c-dependent
correction to η(1)

o of (1) at small nonzero wave vector [37–39],

δη(1)
o (q) = − c

24

1

4π
q2. (3)

One is therefore led to suspect that c can be obtained from the
q2 correction to ηo, but the fate of this correction beyond the
relativistic limit remains unclear.

In particular, the relativistic limit misses most of the
physics of the Goldstone field [25]. Analysis of the Goldstone
physics in CSFs was undertaken in Refs. [40,41]. More re-
cently, Refs. [21,23] considered CSFs in curved (or strained)
space, following the pioneering work [42] on s-wave (� =
0) SFs. These works demonstrated that the Goldstone field,
owing to its charge L + (�/2)N , produces the q = 0 odd
viscosity Eq. (1), and it is therefore natural to expect that
a q2 correction similar to Eq. (3) will also be produced.
Nevertheless, Refs. [21,23] did not consider the derivative
expansion to the high order at which q2 corrections to ηo

would appear, nor did they detect any bulk signature of c at
lower orders.

In this paper we obtain a low-energy effective field theory
that captures both SSB and fermionic ground-state topol-
ogy, which extends and unifies the aforementioned results
of [21,23,42] and [12,25,32,35–37]. Using the theory we
compute the q2 correction to ηo, and provide several routes
towards the bulk measurement of the boundary central charge
in CSFs.

We note that there is an ongoing discussion in the literature
regarding a possible bulk thermal Hall conductivity propor-
tional to c, including some contradicting results [43,44]. This
provides further motivation to study the appearance of c in the
bulk odd viscosity.

II. BUILDING BLOCKS OF THE EFFECTIVE
FIELD THEORY

To probe a CSF, we minimally couple it to two background
fields—a time-dependent spatial metric Gi j , which we use to
apply strain ui j = (Gi j − δi j )/2 and strain rate ∂t ui j , and a
U (1)N -gauge field Aμ = (At , Ai ), where we absorb a chem-
ical potential At = −μ + · · · . The microscopic action S is
then invariant under U (1)N gauge transformations, implying
the number conservation ∂μ(

√
GJμ) = 0, where

√
GJμ =

−δS/δAμ. It is also clear that S is invariant under spatial
diffeomorphisms generated by δxi = ξ i(x), if Gi j transforms
as a tensor and Aμ as a 1-form. Less obvious is the fact
that a Galilean invariant fluid is additionally symmetric under
δxi = ξ i(t, x), provided one adds to the transformation rule of
Ai a nonstandard mass-dependent piece [21,42,45–50],

δAi = −ξ k∂kAi − Ak∂iξ
k + mGi j∂tξ

j . (4)

We refer to δxi = ξ i(x, t ) as local Galilean symmetry (LGS),
as it can be viewed as a local version of the Galilean transfor-
mation δxi = vit . The LGS implies the momentum conserva-
tion law

1√
G

∂t (
√

GmJi ) + ∇ jT
ji = nEi + εi jJ jB, (5)

where
√

GT i j = 2δS/δGi j is the stress tensor and the right
hand side is the Lorentz force. This fixes the momentum
density Pi = mJi—a familiar Galilean relation.

Since CSFs spontaneously break the rotation symmetry in
flat space, to describe them in curved, or strained, space, it
is necessary to introduce a background vielbein. This is a
field EA

j valued in GL(2), such that Gi j = EA
i δABEB

j , where
A, B ∈ {1, 2}. For a given metric G the vielbein E is not
unique—there an internal O(2)P,L = Z2,P � SO(2)L ambigu-
ity, or symmetry, acting by EA

j �→ OA
BEB

j , O ∈ O(2)P,L. The
generators L, P correspond to internal spatial rotations and
reflections, and are analogs of angular momentum and spatial
reflection (parity) on the tangent space. The inverse vielbein
E j

B is defined by EA
j E j

B = δA
B .

The charge N + (�/2)L of the Goldstone field θ implies the
covariant derivative

∇μθ = ∂μθ − Aμ − sθωμ, (6)

with a geometric spin sθ = �/2. Here ωμ is the nonrelativistic
spin connection, an SO(2)L gauge field which is EA

j compati-
ble; see Appendix A. So far we assumed that the microscopic
fermion ψ does not carry a geometric spin, sψ = 0, which
defines the physical system of interest. It will be useful,
however, to generalize to sψ ∈ (1/2)Z, where the covariant
derivative of the fermion is

∇μψ = (∂μ + iAμ + isψωμ)ψ. (7)

A nonzero sψ modifies the geometric spin of θ to sθ = sψ +
�/2, and the unbroken generator in Eq. (2) to L − sθN . In
the special case sψ = −�/2 the Cooper pair is geometrically
spin-less and L is unbroken, as in an s-wave SF; see Fig. 1(b).
This sθ = 0 CSF is, however, distinct from a conventional
s-wave SF, because P and T are still broken down to PT , and
we therefore refer to it as a geometric s-wave (gs-wave) CSF,
to distinguish the two. In particular, a central charge c �= 0,
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which is P, T -odd, is not forbidden, and is in fact independent
of sψ . This makes the gs-wave CSF particularly useful for our
purposes.

We note that ωμ transforms as a 1-form under LGS only
if B/2m is added to ωt [21,23], which we do implicitly
throughout the paper. For ψ , this is equivalent to adding a
g-factor gψ = 2sψ [48].

III. EFFECTIVE FIELD THEORY

Based on the above characterization of CSFs, the low-
energy, long-wavelength behavior of the system can be cap-
tured by an effective action Seff[θ ; A, G], obtained by integrat-
ing out all massive degrees of freedom—the single fermion
excitations and the Higgs fields. In this section we describe a
general expression for Seff, compatible with the symmetries,
SSB pattern, and ground-state topology of CSFs.

The effective action can be written order by order in a
derivative expansion, with the power counting scheme [21,42]

∂μ = O(p), Aμ, Gi j = O(1), θ = O(p−1). (8)

The spin connection is a functional of Gi j that involves a
single derivative [see Eq. (A2)], so ωμ = O(p). Denoting by
Ln the term in the Lagrangian which is O(pn) and invariant
under all symmetries, we have Seff = ∑∞

n=0

∫
d2xdt

√
GLn.

The desired q2 corrections to ηo are O(p3), which poses the
main technical difficulty.

The leading-order Lagrangian

L0 = P(X ), X = ∇tθ − 1

2m
Gi j∇iθ∇ jθ, (9)

was studied in Ref. [21] and contains the earlier results of
Ref. [40]. Here X is the unique O(1) scalar, which reduces to
the chemical potential μ in the ground state(s) ∂μθ = 0, and
P is an arbitrary function of X that physically corresponds
to the ground-state pressure P0 = P(μ). The function P also
determines the ground-state density n0 = P′(μ), and the lead-
ing dispersion of the Goldstone mode ω2 = c2

s q2, where c2
s =

∂n0 P0/m = P′/P′′m is the speed of sound, squared. For � �= 0,
the spin connection appears in each ∇θ Eq. (6), and so L0

includes O(p) contributions, which produce the leading odd
viscosity and conductivity, discussed below. There are no
additional terms at O(p), so that L1 = 0 [21].

At O(p2) one has

L2 = F1(X )R + F2(X )
[
mKi

i − ∇2θ
]2

+ F3(X )
[
2m

(
∇iK

j
j − ∇ jKji

)
∇iθ

]
+ · · · , (10)

where Ki j = ∂t Gi j/2 and R are the extrinsic curvature and
Ricci scalar of the spatial slice at time t [51], the Fs are
arbitrary functions of X , and dots indicate additional terms
which do not contribute to ηo up to O(p2); see Appendix C 2
for the full expression. The Lagrangian L2 was obtained in
Ref. [42] for s-wave SFs. For � �= 0 the spin connection in ∇θ

produces O(p3) contributions to L2, and, in turn, nonuniversal
q2 corrections to ηo.

The term L3 is the last ingredient required for reliable
results at O(p3). Most importantly, it includes the (nonrela-

tivistic) gCS term [31,33,37,52–56]

L3 ⊃ LgCS = − c

48π
ωdω, (11)

where the c-dependence is required to match the boundary
gravitational anomaly [25,31,33], and ωdω = εμνρωμ∂νωρ .
Unlike the lower-order terms, LgCS is independent of θ , and
encodes only the response of the gapped fermions to the
background fields. In Appendices B 5 and C 4 we argue that
additional terms in L3 do not produce q2 corrections to ηo.

There are three topological terms that can be added to Seff

[37–39,46,57–63]. These are the U (1) Chern-Simons (CS)
and first and second Wen-Zee (WZ1, WZ2) terms, which can
be added to L1, L2, L3, respectively [64],

ν

4π
(AdA − 2sωdA + s2ωdω). (12)

As our notation suggests, WZ2 and gCS are identical for
the purpose of local bulk responses, of interest here, but
the two are globally distinct [37,56,63]. Based on symmetry,
and ignoring boundary physics, the independent coefficients
ν, νs, νs2 obey certain quantization conditions [54] but are
otherwise unconstrained. The absence of a boundary U (1)N -
anomaly then fixes ν = 0 [25], but leaves νs, νs2 undeter-
mined [37,56,63]. One can argue that a Chern-Simons term
can only appear for the unbroken generator L − sθN , so
that ν = 0 implies νs = νs2 = 0. Moreover, in the following
section we will see that a perturbative computation within a
canonical model for � = ±1 shows that νs = νs2 = 0, which
applies to any deformation of the model (which preserves the
symmetries, SSB pattern, and single fermion gap), due to the
quantization of νs, νs2. Accordingly, we set νs = νs2 = 0 in
the following.

IV. BENCHMARKING THE EFFECTIVE THEORY
AGAINST A MICROSCOPIC MODEL

In this section we take a complementary approach and
compute Seff perturbatively, starting from a canonical micro-
scopic model for a spinless p-wave CSF. The perturbative
computation verifies the general expression in a particular
example, and determines the coefficients of topological terms
which are not completely fixed by symmetry. It also gives one
a sense of the behavior of the coefficients of nontopological
terms as a function of microscopic parameters. Here we will
outline the computation and describe its results, deferring
many technical details to Appendix E.

The microscopic model is given by

Sm =
∫

d2xdt
√

G

[
i

2
ψ†←→∇t ψ − 1

2m
Gi j∇iψ

†∇ jψ

+
(

1

2
� jψ†∇ jψ

† + h.c

)
− 1

2λ
Gi j�

i∗� j

]
, (13)

where ∇μψ = (∂μ + iAμ)ψ , so sψ = 0. Apart from the stan-
dard nonrelativistic kinetic term, the action includes the
simplest attractive two-body interaction [65,66], mediated by
the complex vector �i, the order parameter, with coupling
constant λ > 0.
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For a given � j , the fermion ψ is gapped, unless the chem-
ical potential μ or chirality � = sgn[Im(�x�y∗)] are tuned to
0, and forms a fermionic topological phase characterized by
the boundary chiral central charge [12,13,67]

c = −(�/2)�(μ) ∈ {0,±1/2}. (14)

An effective action Seff,m[�; A, G] for � j in the back-
ground Aμ, Gi j is then obtained by integrating over the
fermion. The subscript “m” indicates that this is obtained
from the particular microscopic model Sm. Since Eq. (13) is
quadratic in ψ,ψ†, obtaining Seff,m is formally straightfor-
ward, and leads to a functional Pfaffian.

To zeroth order in derivatives, the action Seff,m is given
by a potential for �i, which is minimized by the px ± ipy

configurations. In flat space these are given by the familiar
� j∂ j = �0e−2iθ (∂x ± i∂y). Here �0 is a fixed function of m, μ

and λ, determined by the minimization, while the phase θ

and chirality � = ±1 are undetermined. To write down the
px ± ipy configurations in curved space it is necessary to use
a background vielbein [12,21,23,66,68],

� j = �0e−2iθ
(
E j

1 ± iE j
2

)
. (15)

Fluctuations of � away from these configurations corre-
spond to massive Higgs modes, which should in principle be
integrated out to obtain a low-energy action Seff,m[θ ; A, G]
that can be compared with the general Seff of the previous
section. We will simply ignore these fluctuations, and obtain
Seff,m[θ ; A, G] by plugging Eq. (15) into Seff,m[�; A, G]. This
will suffice as a derivation of Seff from a microscopic model. A
proper treatment of the massive Higgs modes will only further
renormalize the coefficients we find, apart from the central
charge c.

To practically compare the actions Seff and Seff,m we ex-
pand them in fields, to second order around θ = 0, Aν =
−μδt

ν, Gi j = δi j , and in derivatives, to third order; see
Appendices C and E. Equating these two double expansions
leads to an overdetermined system of equations for the phe-
nomenological parameters in Seff in terms of the microscopic
parameters in Sm, with a unique solution. In particular, we find
the dimensionless parameters

P′′

m
= 1

2π

{
1

1
1+2κ

, F ′
1 = 1

96π

{
1

3
1+2κ

,

mF2 = − 1

128π

{
1 + 2κ

1
1+2κ

, mF3 = 1

48π

{
1 + κ

1
1+2κ

,

c =
{−�/2

0 , (16)

where κ = |μ|/m�2
0 > 0, and the upper and lower values

refer to μ > 0 and μ < 0, respectively. We note that for
μ > 0 there is a single particle Fermi surface with energy
εF = μ and wave vector kF = √

2mμ, which for small λ

will acquire an energy gap ε� = �0kF 
 εF . In this weak-
coupling regime, it is natural to parametrize the coefficients in
Eq. (16) using the small parameter ε�/εF = √

2/κ .
The coefficient P′′ determines the leading odd (or Hall)

conductivity and has been computed previously in the litera-
ture [40,41], while F1, F2 and F3, to the best of our knowledge,
have not been computed previously, even for an s-wave SF.

Crucially, Eq. (16) shows that the coefficient c of the
bulk gCS term Eq. (11) matches the known boundary central
charge Eq. (14). It follows that there is no WZ2 term in
Seff,m, so νs2 = 0, in accordance with the previous section. We
additionally confirm that ν = νs = 0. The direct confirmation
of the gCS term and its coefficient within a nonrelativis-
tic microscopic model has been anticipated for some time
[12,25,32,35,36], and is the main result of the perturbative
computation.

A few additional comments regarding Eq. (16) are in
order:

(1) The seeming quantization of P′′/m and F ′
1 for μ > 0 is

a nongeneric result, as was shown explicitly for P′′/m [41].
(2) The free fermion limit κ → ∞, or �0 → 0, of certain

coefficients in Eq. (16) diverges for μ > 0 but not for μ < 0.
This signals the breakdown of the gradient expansion for a
gapless Fermi surface, but not for gapped free fermions.

(3) The opposite limit, κ → 0, or m → ∞, is the relativis-
tic limit mentioned above, in which the fermionic part of the
model reduces to a 2 + 1-dimensional Majorana spinor with
mass μ and speed of light �0, coupled to Riemann-Cartan
geometry described by �i, Aμ, and in which Seff,m was already
computed [25,69]. Accordingly, the limit κ → 0 of Eq. (16)
indeed reproduces the results of Refs. [25,69] in a suitable
sense; see Appendix E.

V. INDUCED ACTION AND LINEAR RESPONSE

Having derived and benchmarked the effective theory, we
are now in a position to obtain linear response functions, in
particular the q2 corrections to the odd viscosity, and related
observables that allow for the bulk measurement of c.

By expanding Seff to second order in the fields θ, At −
μ, Ai, ui j , and performing Gaussian integration over θ ,
we obtain an induced action Sind[Aμ, ui j] that captures
the linear response of CSFs to the background fields;
see Appendix D for explicit expressions. Taking func-
tional derivatives, one obtains the expectation values Jμ =
G−1/2δSind/δAμ, T i j = G−1/2δSind/δui j of the current and
stress, and from them the conductivity σ i j = δJi/δEj , the
viscosity ηi j,kl = δT i j/δ∂t ukl , and the mixed response func-
tion κ i j,k = δT i j/δEk = δJk/δ∂t ui j . We will also need the
static susceptibilities χ

μ,ν
JJ , χ

i j,ν
T J , defined by restricting to time

independent Aμ, ui j , and computing δJμ/δAν and δJν/δui j ,
respectively.

Before computing ηo, it is useful to restrict its form
based on dimensionality and symmetries: space-time transla-
tions, spatial rotations, and PT . The analysis is performed in
Appendices B 1–B 4 and results in the expression

ηo(ω, q) = η(1)
o σ xz + η(2)

o

[(
q2

x − q2
y

)
σ 0x − 2qxqyσ

0z
]
, (17)

written in the basis σ ab = 2σ [a ⊗ σ b] of antisymmetrized
tensor products of the symmetric Pauli matrices [2]. As
components of the strain tensor, the matrices σ x, σ z corre-
spond to shears, while the identity matrix σ 0 corresponds to
a dilatation. The details of the system are encoded in two
independent coefficients η(1)

o , η(2)
o ∈ C, which are functions of

ω, q2. At q = 0 the odd viscosity tensor reduces to a single
component, ηo(ω, 0) = η(1)

o (ω)σ xz, as is well known [1–5].
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The additional component η(2)
o has not been discussed much

in the literature [38,70], and also appears in the presence of
(pseudo)vector anisotropy [71,72], in which case q should be
replaced by a background (pseudo)vector b. Equation (17)
applies at finite temperature, out of equilibrium, and in the
presence of disorder that preserves the symmetries on average.
For clean systems at zero temperature, η(1)

o , η(2)
o are both real,

even functions of ω. In gapped systems η(1)
o , η(2)

o will usually
be regular at ω = 0 = q2, though exceptions to this rule have
recently been found [73].

For the CSF, we find the ω = 0 coefficients

η(1)
o (q2) = − 1

2
sθn0 −

(
c

24

1

4π
+ sθC(1)

)
q2 + O(q4),

η(2)
o (q2) = 1

2
sθn0q−2 +

(
c

24

1

4π
+ sθC(2)

)
+ O(q2), (18)

where C(1),C(2) ∈ R are generically nonzero, and are given
by particular linear combinations of the dimensionless coef-
ficients F ′

1 (μ), mF2(μ), and mF3(μ) defined in Eq. (10); see
Appendix D for more details.

The leading term in η(1)
o is the familiar Eq. (1), which

also appears in gapped states, while the nonanalytic leading
term in η(2)

o occurs because the superfluid is gapless, and does
not appear when q → 0 at ω �= 0 [21]. Both leading terms
obey the same quantization condition due to SSB, and are
independent of c. The subleading corrections to both η(1)

o , η(2)
o

contain the quantized gCS contributions proportional to c, but
also the nonuniversal coefficients C(1),C(2). Thus, c cannot be
extracted from a measurement of ηo alone.

Noting that the nonuniversal subleading corrections to ηo

originate from the geometric spin sθ = �/2 of the Goldstone
field, one is naturally led to consider the gs-wave CSF, where
sθ = 0 and the odd viscosity is, to leading order in q, purely
due to LgCS,

η̃(1)
o (q2) = − c

24

1

4π
q2 + O(q4),

η̃(2)
o (q2) = c

24

1

4π
+ O(q2). (19)

Here and below we use O and Õ, for the quantity O in the CSF
and in the corresponding gs-wave CSF, respectively. Equation
(19) follows from Eq. (18) by setting sθ = 0, but can be
understood directly from Seff. Indeed, for the gs-wave CSF,
Seff is identical to that of the conventional s-wave SF to O(p2)
but contains the additional LgCS at O(p3), which produces
Eq. (19).

Due to the LGS Eqs. (4) and (5), the viscosity Eq. (19)
implies also

χ̃
i j,k
T J,o = − i

m

c

48π
qi

⊥q j
⊥qk

⊥ + O(q4), (20)

where qi
⊥ = εi jq j , and the subscript “o” (“e”) refers to the

P, T -odd (even) part of an object. Thus, a steady P, T -odd
current J̃k

o = − 1
m

c
96π

∂k
⊥R + O(q4) flows perpendicularly to

gradients of curvature R = −2∂ i
⊥∂

j
⊥ui j . We conclude that, in

the gs-wave CSF, c can be extracted from a measurement of
η̃o, and in the Galilean invariant case, also from a measure-
ment of the current J̃ in response to strain.

Though the simple results above do not apply to the phys-
ical system of interest, the CSF, there is a relation between
the observables of the CSF and the corresponding gs-wave
CSF, which we can utilize. At the level of induced actions,
it is given by

S̃ind[Aμ, ui j] = Sind[Aμ − (�/2)ωμ, ui j], (21)

where ωμ is expressed through ui j as in Appendix A, and
by taking functional derivatives one obtains relations between
response functions [48]. In particular,

η̃i j,kl
o = ηi j,kl

o − �

4
n0(σ xz )i j,kl

+ i�

4

(
κ

i j,(k
e ql )

⊥ − κ
kl,(i
e q j)

⊥
) + �2

16
σoq(i

⊥ε
j)(kql )

⊥, (22)

where the response functions ηo, σo, κe depend on ω, q. In a
Galilean invariant system one further has

χ̃
i j,k
T J,o = χ

i j,k
T J,o − �

4m
χ

i j,t
T J,eiqk

⊥

+ �

2
iq(i

⊥χ
j),k

JJ,e + �2

8m
q(i

⊥χ
j),t

JJ,oqk
⊥, (23)

and we note the relations χ
i j,t
T J,e = κ

i j,k
e iqk, χ

j,t
JJ,o =

σoq j
⊥, χ

j,k
JJ,e = ρeq j

⊥qk
⊥, between the above susceptibilities,

the response functions κe, σo, and the London diamagnetic
response ρe.

VI. DISCUSSION

Equations (19) and (22) are the main results of this paper.
They rely on the SSB pattern Eq. (2) but not on Galilean
symmetry. Equation (22) expresses η̃o as a bulk observable
of CSFs, which we refer to as the improved odd viscosity.
According to Eq. (19), the leading term in the expansion
of η̃o(0, q) around q = 0 is fixed by c. Since this leading
term occurs at second order in q, to extract c one needs to
measure σo, χe, and ηo, at zeroth, first, and second order,
respectively. In a Galilean invariant system, Eqs. (19) and
(22) imply Eqs. (20) and (23), respectively, which, in turn,
show that c can be extracted in an experiment where U (1)N
fields and strain are applied, and the resulting number current
and density are measured. In particular, a measurement of the
stress tensor is not required. Since U (1)N fields can be applied
in Galilean invariant fluids by tilting and rotating the sample,
we believe that a bulk measurement of the boundary central
charge, through Eqs. (20) and (23), is within reach of existing
experimental techniques.

Finally, we comment on the implications of our results
to QH physics. The problem of obtaining c from a bulk ob-
servable has been previously studied in QH states, described
by Eqs. (11) and (12) [37–39,46,56–63]. It was found that
c can only be extracted if vars = s2 − s2 = 0, in which case
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the response to strain, at fixed Aμ − sωμ, depends purely
on c [37,56]. This is a useful theoretical characterization,
which seems challenging experimentally in light of the need to
maintain the fine tuned relation Aμ = sωμ while the strain ui j ,
and therefore ωμ, vary in time and space. The improved odd
viscosity (22), constructed here, applies also to vars = 0 QH
states, with � replaced by −2s, and defines a bulk observable
which is determined by c, and whose measurement does not
require such fine tuning.
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APPENDIX A: GEOMETRIC QUANTITIES AND THEIR
PERTURBATIVE EXPANSION

We write Ei
A = δi

A + Hi
A for the inverse vielbein, and ex-

pand the relevant geometric quantities in H . For the inverse
metric Gi j = Ei

AδABE j
B and volume element

√
G = |E | =

|det(Ei
A)| we find

Gi j = δi j + 2H (i j) + Hi
AHA j

= δi j + δGi j,
√

G = 1 − HA
A + 1

2 HA
A HB

B + 1
2 HB

A HA
B + O(H3),

log
√

G = − HA
A + 1

2 HB
A HA

B + O(H3), (A1)

where, in expanded expressions, all index manipulations are
trivial, and in particular, there is no difference between co-
ordinate indices i, j and SO(2)L indices A, B. Note that the
strain used in the main text is given by ui j = (Gi j − δi j )/2 =
−H(i j) + O(H2). We use the notation εμνρ for the totally
antisymmetric (pseudo) tensor, normalized such that εxyt =
1/

√
G, as well as εi j = εi jt .

The nonrelativistic spin connection used in the main text is
the SO(2)L connection

ωt = 1

2
εABEAi∂t E

i
B

= − 1

2
∂t (ε

ABHAB) − 1

2
εABHiA∂t H

i
B + O(H3),

ω j = 1

2
(εABEAi∂ jE

i
B − 1

E
εkl∂kGl j )

= − 1

2
∂ j (ε

ABHAB) − ∂ l
⊥H(l j) − 1

2
εABHiA∂ jH

i
B + O(H3),

(A2)

where ∂ l
⊥ = εlk∂k , which is obtained naturally within Newton-

Cartan geometry [23,56]. This connection is torsion-full, but
has a vanishing “reduced torsion” [44]. In the main text, a
term B/2m was implicitly added to ωt , but here we will add
it explicitly when writing expressions for Seff and Sind. Such a
term appears in the presence of an additional background field
Ei

0 which couples to momentum density Pi [23,44], and can be
identified with Gi jA j/m in a Galilean invariant system, where
Pi = mGi jJ j . The Ricci scalar is given by

R = 2εi j∂iω j

= 2∂ i
⊥∂

j
⊥Hi j + O(H2)

= − 2(∂ i∂ j − ∂2δi j )Hi j + O(H2). (A3)

APPENDIX B: ODD VISCOSITY AT NONZERO WAVE
VECTOR: GENERALITIES

1. Definition and T symmetry

We define the viscosity tensor as the linear response of
stress to strain rate

T i j (t, x) =
∫

dtd2x′ηi j,kl (t, x, t ′, x′)∂t ′Hkl (t
′, x′), (B1)

where

η[i j],kl = 0 = ηi j,[kl]. (B2)

In a translationally invariant system we can pass to Fourier
components T i j (ω, q) = iωηi j,kl (ω, q)Hkl (ω, q). By defini-
tion, ηi j,kl (t, x, t ′, x′) is real, and therefore

ηi j,kl (ω, q) = ηi j,kl (−ω,−q)∗. (B3)

Under time reversal T ,

ηi j,kl (ω, q) �→ η
i j,kl
T (ω, q) = ηkl,i j (ω,−q). (B4)

The even and odd viscosities are then defined by ηe,o =
(η ± ηT )/2, and satisfy (ηe,o)T = ±ηe,o. More explicitly,

ηi j,kl
e (ω, q) = +ηkl,i j

e (ω,−q),

ηi j,kl
o (ω, q) = −ηkl,i j

o (ω,−q). (B5)

We will see below that in isotropic (or SO(2) invariant)
systems η is even in q, so that

ηi j,kl
e (ω, q) = +ηkl,i j

e (ω, q), (B6)

ηi j,kl
o (ω, q) = −ηkl,i j

o (ω, q), (B7)

which is identical to the definition of ηe,o at q = 0 [1–5].

2. SO(2) and P symmetries

Complex tensors satisfying Eqs. (B2) and (B7), in two
spatial dimensions, form a vector space V ∼= C3 which can

104512-6



BOUNDARY CENTRAL CHARGE FROM BULK ODD … PHYSICAL REVIEW B 100, 104512 (2019)

be spanned by [2]

σ ab = 2σ [a ⊗ σ b], a, b = 0, x, z, (B8)

where σ x, σ z are the symmetric Pauli matrices, and σ 0 is
the identity matrix. Thus, every odd viscosity tensor can be
written as

ηo(ω, q) = ηxz(ω, q)σ xz + ηx0(ω, q)σ x0 + ηz0(ω, q)σ z0,

(B9)

with complex coefficients ηab(ω, q). Under a rotation R =
eiα(iσ y ) ∈ SO(2) the metric perturbation and stress tensor
transform as

Hi j (ω, q) �→ Rk
i Rl

jHkl (ω, R−1 · q),

T i j (ω, q) �→ Ri
kR j

kT kl (ω, R−1 · q), (B10)

where (R · q)i = Ri
jq

j . The same transformation rules apply
for R ∈ O(2), which defines the parity transformation P, in
flat space. It follows that

ηi j,kl (ω, q) �→ Ri
i′R

j
j′R

k
k′Rl

l ′η
i′ j′,k′l ′ (ω, R−1 · q) (B11)

under O(2), which is compatible with Eq. (B2), and the
decomposition η = ηo + ηe. In particular, Eq. (B11) shows
that the viscosity tensor is P-even, or more accurately, a tensor
under P rather than a pseudo-tensor. In an SO(2)-invariant
system, the viscosity tensor will also be SO(2)-invariant

ηi j,kl (ω, q) = Ri
i′R

j
j′R

k
k′Rl

l ′η
i′ j′,k′l ′ (ω, R−1 · q), R ∈ SO(2).

(B12)

Note that this holds even when SO(2) symmetry is sponta-
neously broken, as in �-wave SFs. At q = 0, there is a unique
tensor satisfying Eq. (B12), namely,

(σ xz )i j,kl = − 1
2 (εikδ jl + ε jkδil + εilδ jk + ε jlδik ), (B13)

leaving a single odd viscosity coefficient ηxz(ω) = η(1)
o (ω)

[1–5].
A nonzero q, however, along with the tensors δi j and

εi j , can be used to construct additional SO(2)-invariant odd
viscosity tensors, beyond σ xz. From the data q, δi j, εi j , three
linearly independent, symmetric, rank-2 tensors can be con-
structed, which we take to be

(τ 0)i j = q2δi j,

(τ x )i j = − 2q(i
⊥q j)/q2,

(τ z )i j = 2qiq j/q2 − δi j, (B14)

where qi
⊥ = εi jq j . The notation above is due to the relation(
τ x

τ z

)
=

(
cos 2θ − sin 2θ

sin 2θ cos 2θ

)(
σ x

σ z

)

= 1

q2

(
q2

x − q2
y −2qxqy

2qxqy q2
x − q2

y

)(
σ x

σ z

)
, (B15)

where θ = arg(q), so that τ x, τ z are a rotated version of
σ x, σ z. Moreover, all three τ s are SO(2)-invariant, τ i j (q) =
Ri

i′R
j
j′τ

i′ j′ (R−1 · q), and can therefore be used to construct
three SO(2)-invariant odd viscosity tensors

τ ab = 2τ [a ⊗ τ b], a, b = 0, x, z, (B16)

which form a basis for V . Any odd viscosity tensor (at q �= 0)
can then be written as

ηo(ω, q) = η(1)
o (ω, q)τ xz + η(2)

o (ω, q)τ 0x + η(3)
o (ω, q)τ 0z.

(B17)

Furthermore, for an SO(2)-invariant ηo, the coefficients
η(1)

o , η(2)
o , η(3)

o depend on q through its norm, owing to the
SO(2)-invariance of τ ab. We therefore arrive at the general
form of an SO(2)-invariant odd viscosity tensor,

ηo(ω, q) = η(1)
o (ω, q2)τ xz + η(2)

o (ω, q2)τ 0x + η(3)
o (ω, q2)τ 0z.

(B18)

In particular, we see that ηo is even in q (and the same applies
also to the even viscosity ηe). To determine the small ω, q
behavior of the coefficients we change to the q-independent
basis of σ s,

ηo(ω, q) = η(1)
o (ω, q2)σ xz + [

η(2)
o (ω, q2)

(
q2

x − q2
y

)
+ η(3)

o (ω, q2)(2qxqy)
]
σ 0x + [

η(2)
o (ω, q2)(−2qxqy)

+ η(3)
o (ω, q2)

(
q2

x − q2
y

)]
σ 0z. (B19)

In gapped systems (such as QH states) ηo will be regular
around ω = 0 = q, and so will the coefficients η(1)

o , η(2)
o , η(3)

o .
In gapless systems (such as �-wave SFs) there will be a
singularity at ω = 0 = q, but the limit q → 0 at ω �= 0 will be
regular. In both cases, the limit q → 0 at ω �= 0 of Eq. (B19)
reduces to the known result ηo(ω, 0) = η(1)

o (ω, 0)σ xz [1–5].

3. PT symmetry

The combination PT of parity and time reversal is a
symmetry in any system in which T is broken (perhaps
spontaneously) due to some kind of angular momentum, as
in QH states, �-wave SFs, and active chiral fluids [6]. Here we
consider the implications of PT symmetry on Eq. (B19).

From the definition Eq. (B14) it is clear that τ 0 and τ z are
P-even, while τ x is P-odd. Therefore, τ xz, τ 0x are P-odd while
τ 0z is P-even (and all three are T -even). Since ηo is T -odd and
P-even, and using Eq. (B18), it follows that η(1)

o and η(2)
o are

P, T -odd, while η(3)
o is T -odd but P-even. In particular, η(3)

o
is PT -odd, and must vanish in PT -symmetric systems. The
odd viscosity tensor in SO(2) and PT symmetric systems is
therefore given by

ηo(ω, q) = η(1)
o (ω, q2)σ xz

+ η(2)
o (ω, q2)

[(
q2

x − q2
y

)
σ 0x − 2qxqyσ

0z
]
. (B20)

This form is confirmed by previous results for QH states [38],
and by the results presented in Sec.V for CSFs. The same form
is obtained at q = 0, but in the presence of vector, or pseudo-
vector, anisotropy b, in which case we find

ηo(ω) = η(1)
o (ω)σ xz

+ η(2)
o (ω)

[(
b2

x − b2
y

)
σ 0x − 2bxbyσ

0z
]
, (B21)

which explains the tensor structure found in Refs. [71,72].

4. Frequency dependence and reality conditions

In closed and clean systems, like the �-wave SFs discussed
in this paper, the viscosity can be obtained from an induced
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action

Sind ⊃ 1

2

∫
dtdt ′d2xd2x′Hi j (t, x)ηi j,kl

× (t − t ′, x − x′)∂t ′Hkl (t
′, x′)

= 1

2

∫
dω

2π

d2q
(2π )2

Hi j

× (−ω,−q)iωηi j,kl (ω, q)Hkl (ω, q). (B22)

As a result, η satisfies the additional property,

ηi j,kl (ω, q) = − ηkl,i j (−ω,−q), (B23)

which, along with Eqs. (B7) and (B6) and the fact that η is
even in q, implies that ηo (ηe) is even (odd) in ω,

ηi j,kl
e (ω, q) = − ηi j,kl

e (−ω, q),

ηi j,kl
o (ω, q) = + ηi j,kl

o (−ω, q). (B24)

This result, along with Eq. (B3) and the fact that η is even in
q, implies that ηo (ηe) is real (imaginary),

ηi j,kl
e (ω, q) ∈ iR,

ηi j,kl
o (ω, q) ∈ R. (B25)

These general properties are satisfied by the odd viscosity
tensor computed in this paper. These are also compatible with
the examples worked out in Ref. [3], as well with viscosity-
conductivity relations that hold in Galilean invariant systems
(in conjugation with known properties of the conductivity)
[3,21,45].

We note that some care is required when interpreting
Eqs. (B24) and (B25) around singularities of η. For example,
the first equation in Eq. (B24) naively implies that ηe(0, q) =
0, which in particular implies that the bulk and shear viscosi-
ties ηe(0, 0) = ζσ 0 ⊗ σ 0 + ηs(σ x ⊗ σ z + σ z ⊗ σ x ) vanish in
the closed, clean case. This, however, is not quite correct, due
to a possible singularity of ηe at ω = 0, as well as the usual
infinitesimal imaginary part of ω required to obtain the re-
tarded response. For example, for free fermions, Ref. [3] finds
ηs(ω, 0) ∼ i

ω+iε = πδ(ω) + iPV 1
ω

(where PV is the principle
value), which has an infinite real part at ω = 0, in analogy
with the Drude behavior of the conductivity.

5. Odd viscosity from Gaussian integration: A technical result

We now restrict attention to CSFs. The effective La-
grangian, perturbatively expanded to second order, and in the
absence of the U (1) background, takes the form

Leff = 1
2θG−1θ + Vθ + C, (B26)

where the Green’s function G is independent of H , the vertex
V is linear in H , and the contact term C is quadratic in H .
Performing Gaussian integration over θ yields the induced
Lagrangian

Lind = − 1
2VGV + C, (B27)

and comparing with Eq. (B22) one can read off ηo. In
Appendix C we write explicit expressions for a Galilean
invariant Leff, which we then expand to obtain explicit expres-
sions for G−1,V, C. Appendix D then describes the resulting
Lind. Here we take a complementary approach and obtain
the general form of ηo from Eq. (B27), using the formalism
developed above, based only on SO(2) and PT symmetries.

The motivation for the analysis in this Appendix is the
following. The power counting Eq. (8) is designed such that
the O(pn) Lagrangian Ln ⊂ Leff produces O(pn) contributions
to Lind. Therefore, naively, one expects the O(q2) odd viscos-
ity to depend on L0,L2, and L3 (since L1 = 0). Using the
notation ηo = ηV + ηC for the parts of ηo due to −VGV/2 and
C, respectively, the result of this Appendix is that ηV , to O(q2),
is actually independent of L3.

We now describe the details. For ηC , we cannot do better
than the general discussion thus far—it is given by Eq. (B19),
with η(3)

o = 0, and both η(1)
o , η(2)

o are real and regular at
ω = 0 = q, since Leff, and C in particular, are obtained by
integrating out gapped degrees of freedom (the Higgs modes
and the fermion ψ). For ηV , however, we can do better. We
first write more explicitly

θG−1θ = 1
2θ (−ω,−q)G−1(ω, q)θ (ω, q),

Vθ = θ (−ω,−q)V i j (ω, q)Hi j (ω, q). (B28)

Based on SO(2) and PT symmetries, the objects G−1,V i j take
the forms

G−1(ω, q) = D(ω2, q2),

V i j (ω, q) = iωa(ω2, q2)(ρ0)i j + iωb(ω2, q2)(ρz )i j

+ sθc(ω2, q2)(ρx )i j, (B29)

where

(ρ0)i j = δi j,

(ρx )i j = q(i
⊥q j),

(ρz )i j = qiq j, (B30)

are, in this context, more convenient than the τ s Eq. (B14),
and a, b, c, D are general functions of their arguments which
are P, T -even, real, and regular at ω = 0 = q, as follows from
the same properties of Leff. In particular, we will use the
following expansions

a(0, q2) = a0 + a1q2 + O(q4),

b(0, q2) = b0 + O(q2),

c(0, q2) = c0 + c1q2 + O(q4),

D(0, q2) = D1q2 + D2q4 + O(q6), (B31)

where D0 = 0 because θ enters Leff only through its deriva-
tives. The odd viscosity ηV is then given by

ηV (ω, q) = − 1

2iω

V (−ω,−q) ⊗ V (ω, q) − V (ω, q) ⊗ V (−ω,−q)

D(ω, q)
= 2sθc(ω2, q2)

D(ω2, q2)
[a(ω2, q2)ρ0x + b(ω2, q2)ρzx], (B32)
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which is of the form Eq. (B19), with η(3)
o = 0 and

η
(1)
V (ω, q2) = − sθc(ω2, q2)

2D(ω2, q2)
b(ω2, q2)q4,

η
(2)
V (ω, q2) = sθc(ω2, q2)

D(ω2, q2)
[a(ω2, q2) + b(ω2, q2)q2]. (B33)

Setting ω = 0 and expanding in q, we find

η
(1)
V (0, q2) = − sθc0b0

2D1
q2 + O(q4),

η
(2)
V (0, q2) = sθ

D1

[
a0c0q−2 +

(
a0c1 + a1c0

+ b0c0 − a0c0
D2

D1

)]
+ O(q2). (B34)

Having identified the coefficients a0, a1, b0, c0, c1, D1, D2 that
determine ηV to O(q2), we now determine the order in the
derivative expansion of Leff in which these enter. Explicitly,
the above coefficients are defined by

Leff ⊃ 1
2θ (−ω,−q)(D1q2 + D2q4)θ (ω, q)

+ θ (−ω,−q)
[
iω(a0 + a1q2)δi j + iωb0qiq j

+ sθ (c0 + c1q2)qiq j
⊥
]
Hi j (ω, q). (B35)

We see that c1 enters Leff at O(p3), while all other coefficients
enter at a lower order, and come from L0,L2. In particular,
η

(1)
V in Eq. (B34) is independent of L3. Even though c1 is the

coefficient of an O(p3) term, it is actually due to L2. Using
Eq. (A2) we identify c0θq2qiq j

⊥Hi j = −sθc1∂
iθ∂2ωi, which

must be a part of
c1

2
(∂iθ − Ai − sθωi )∂

2(∂iθ − Ai − sθωi ). (B36)

This is an O(p2) term, and in fact comes from L(2)
2 ⊂ L2, see

Eq. (C7). Thus, both η
(1)
V , η

(2)
V in Eq. (B34) are completely

independent of L3.

APPENDIX C: EFFECTIVE ACTION AND ITS
PERTURBATIVE EXPANSION

1. Zeroth order

It is useful to write the zeroth order scalar X as

X =
(
∂tθ − At − sθ

2m
B
)

− 1

2m
Gi j (∂iθ − Ai )(∂ jθ − A j ),

(C1)

where

Aμ = Aμ + sθωμ. (C2)

We will also use B = B + sθ

2 R, Ei = Ei + sθEω,i for the mag-
netic and electric fields obtained from Aμ, where Eω,i =
∂tωi − ∂iωt . Expanding L0 = P(X ) to second order in the
fields, one finds (up to total derivatives)

√
GL0 = 1

2

n0

m
θ
[
∂2 − c−2

s ∂2
t

]
θ +

[
−n0

m

(
∂iAi − c−2

s ∂t

(
At + sθ

2m
B
))

− n0∂t

√
G

]
θ

+
[
−n0

√
GAt − 1

2

n0

m

(
A2 − c−2

s

(
At + sθ

2m
B
)2

)
+ P0

√
G

]
= 1

2
θG−1θ + Vθ + C, (C3)

where ∂2 = ∂ i∂i,A2 = AiAi, and we defined the inverse Green’s function G−1, vertex V , and contact terms C, respectively.
These are used in Appendix D below to obtain Sind.

In Eq. (C3), the geometric objects
√

G and ωμ should be interpreted as expanded to the required order according to Eqs. (A1)
and (A2). In particular, the term −n0

√
GAt includes −sθn0

√
Gωt , which produces the leading contribution to η(1)

o . To see this,
we expand√

Gωt = − 1
2∂t (ε

ABHAB) + 1
2∂t (ε

ABHAB)Hi
i − 1

2εABHiA∂t H
i
B + O(H3) = − 1

2∂t (ε
ABHAB) − 1

2εABHAi∂t H
i
B + O(H3), (C4)

which is identical to the expansion Eq. (A1) of ωt , apart from HiA ↔ HAi. Ignoring total derivatives, this reduces to
√

GL0 ⊃ −sθn0

√
Gωt = − 1

2 sθn0
[
∂t (ε

ABHAB)Hi
i − εABδi jH(Ai)∂t H(B j)

] + O(H3) = 1
2 sθn0ε

ABHAi∂t H
i
B + O(H3). (C5)

Comparing with Eqs. (B13) and (B22), the second term in the second line corresponds to η(1)
o = −sθn0/2. The first term in the

second line depends on the anti-symmetric part of H , and shows that the full expression, Eq. (C5), actually corresponds to a
torsional Hall (or odd) viscosity [69,74] ζH = −sθn0, which can be read off from the third line. The appearance of the torsional
Hall viscosity at the level of Seff (but not at the level of Sind, see Appendix D) can be understood from the mapping of [25] of the
p-wave SF to a Majorana spinor in Riemann-Cartan space-time.

2. Second order

The full expression for L2 is given by L2 = ∑6
i=1 L

(i)
2 , where [42]

L(1)
2 = F1(X )R, L(2)

2 = F2(X )
(
mKi

i − ∇2θ
)2

,

L(3)
2 = F3(X )

{
−m2(Gi j∂t Ki j − Ki jKi j ) − m∇iE

i + 1

4
F i jFi j

+ 2m

[
∂iK

j
j − ∇ j

(
Kji + 1

2m
Fji

)]
∇iθ + Ri j∇iθ∇ jθ

}
,
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L(4)
2 = F4(X )Gi j∂iX∂ jX, L(5)

2 = F5(X )

[(
∂t − 1

m
∇iθ∂i

)
X

]2

,

L(6)
2 = F6(X )

(
mKi

i − ∇2θ
)[(

∂t − 1

m
∇iθ∂i

)
X

]
. (C6)

The terms L(5)
2 and L(6)

2 were not written explicitly in [42]
because, on shell (on the equation of motion for θ ), they are
proportional to L(4)

2 up to O(p4) corrections, and can therefore
be eliminated by a redefinition of F4. However, for the purpose
of comparing the general Seff with the microscopic expression,
Eq. (E20), it is convenient to work off shell and keep all terms
explicit.

Specializing to 2 + 1 dimensions and expanding to second
order in fields, one finds

√
GL(1)

2 = F ′
1 (μ)R

(
∂tθ − At − sθ

2m
B
)
,

√
GL(2)

2 = F2(μ)
[ − m2Hi

i ∂
2
t H j

j + 2m∂t H
k
k ∂ j (∂ jθ − A j )

− (∂iθ − Ai )∂
i∂ j (∂iθ − Ai )

]
,

√
GL(3)

2 = F3(μ)

(
m2H (i j)∂2

t H(i j) + 1

2
B2

− 2mεi jωi∂t (∂ jθ − A j ) − BB
)

+ F ′
3 (μ)

(
∂tθ − At − sθ

2m
B
)(

m2∂2
t H i

i − m∂iE
i
)
,

√
GL(4)

2 = −F4(μ)
(
∂tθ − At − sθ

2m
B
)
∂2

(
∂tθ−At− sθ

2m
B
)
,

√
GL(5)

2 = −F5(μ)
(
∂tθ − At − sθ

2m
B
)
∂2

t

(
∂tθ−At− sθ

2m
B
)
,

√
GL(6)

2 = −F6(μ)
[
m∂t H

i
i + ∂ j (∂ jθ − A j )

]
∂t

×
(
∂tθ − At − sθ

2m
B
)
, (C7)

from which one can easily extract the second order cor-
rections to G−1,V, C, of Eq. (C3). Note that L(3)

2 includes
a term ∝ εi jωi∂tA j = εi jωi∂t (Aj + sθω j ). Comparing with
Eq. (C8) below, it is clear that distinguishing L(3)

2 from LgCS

is nontrivial. This is, in fact, the same problem of extracting
the central charge from the Hall viscosity addressed in the
main text, but at the level of Seff (where θ is viewed as a
background field) rather than Sind (where θ has been integrated
out). Accordingly, the central charge can be computed by
applying Eq. (22) to the response functions obtained from
Seff. Additionally, relying on LGS, one can extract F3 as the
coefficient of H (i j)∂2

t H(i j). Both approaches produce the same
central charge Eq. (14) in the perturbative computation of
Appendix E 5.

3. Gravitational Chern-Simons term

The gCS Lagrangian is given explicitly by

LgCS = − c

48π

[(
ωt + B

2m

)
R − εi jωi∂tω j

]

= − c

48π

[
ωdω + 1

2m
BR

]
. (C8)

Its expansion to second order in fields, using Eqs. (A1) and
(A2), is

√
GLgCS = − c

48π

[
εABH(Ai)∂

i
⊥∂

j
⊥∂t H(B j)

− 1

m
Ai∂

i
⊥∂

j
⊥∂k

⊥H( jk)

]
. (C9)

As opposed to
√

Gωt in Eq. (C4), the gCS term is (locally)
SO(2)L gauge invariant, and accordingly depends only on the
metric, or, within the perturbative expansion, on the symmet-
ric part H(i j). From this expansion one can read off the gCS
contributions to the odd viscosity ηo Eq. (19), and to the odd,
mixed, static susceptibility χT J,o Eq. (20).

4. Additional terms at third order

To obtain reliable results at O(p3) we, in principle, need the
full Lagrangian L3, which includes, but is not equal to, LgCS.
Nevertheless, we argue that L3 − LgCS does not contribute to
the quantity of interest in this paper—ηo to O(q2). We already
demonstrated in Appendix B 5 that the vertex part of the odd
viscosity ηV is independent of L3, and it remains to show that
the contact term part ηC is independent of L3 − LgCS. We do
not have a general proof, but we address this issue in two
ways:

(1) Within the microscopic model Eq. (13), the perturba-
tive computation of Appendix E 5 provides an explicit expres-
sion for ηC , which is completely saturated by the effective
action presented thus far. Thus, ηC is independent of L3 −
LgCS in the particular realization Eq. (13).

(2) The term L3 is P, T -odd, and therefore vanishes in
an s-wave SF. On the other hand, it suffices to consider the
gs-wave SF where sθ = 0 (but � �= 0), since for sθ �= 0 the
spin connection included in ∇μθ will only produce O(p4)
corrections. By contracting Galilean vectors, we were able to
construct four P, T -odd terms in L3 − LgCS for the gs-wave
SF,

L3 − LgCS ⊃ �
[
C1(X )ẼiE

i
ω + C2(X )εi j ẼiEω, j

+C3(X )∂iXE j
ω + C4(X )εi j∂iXEω, j

]
, (C10)
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where Ẽi is the electric field of the improved U (1) con-
nection Ãt = At + 1

2m ∇iθ∇iθ, Ãi = ∂iθ − sθωi [21]. Pertur-
batively expanding these, we do not find any O(q2) contri-
butions to ηC (or to ηV , in accordance with Appendix B 5).

APPENDIX D: INDUCED ACTION

The arguments presented in the main text suffice to es-
tablish the quantization of η̃o and χ̃T J,o directly from Seff—
an explicit expression for Sind is not required. Nevertheless,
it is instructive to compute certain contributions in Sind to
demonstrate these results explicitly and also to reproduce
simpler properties of �-wave SFs. Here we will compute the
contribution of L0 + L(1)

2 ⊂ Leff to the induced Lagrangian
Lind, and, along the way, demonstrate explicitly the relation
between vars = 0 QH states and CSFs alluded to in the
discussion Sec. VI.

The starting point is the induced action due to L0 = P(X ),
obtained from Eq. (C3). It is given by

Lind = −1

2
VGV + C

= P0

√
G − n0At

+1

2

n0

m

B2 − c−2
s E2 + sθ c−2

s
m E i∂iB − s2

θ c−2
s

4m2 (∂B)2

∂2 − c−2
s ∂2

t

− n0
m(∂t

√
G)2/2 + (

E i − sθ

2m ∂iB
)
∂i

√
G

∂2 − c−2
s ∂2

t
. (D1)

This expression contains, rather compactly, the entire lin-
ear response of the �-wave SF to O(p) in the derivative
expansion, as well as certain O(p2) contributions [21], and
should be interpreted as expanded to second order using
Eqs. (A1) and (A2). In using Eq. (A2), one can set H[AB] =
0, since Sind is SO(2)L invariant and the anti-symmetric
part H[AB] corresponds to the SO(2)L phase of the vielbein
Ei

A. Technically, H[AB] always appears in the combination
∂μ(θ + sθ ε

ABHAB/2) ⊂ ∇μθ , so that integrating out θ elim-
inates H[AB].

Note that, diagrammatically, Eq. (D1) corresponds to lin-
ear response at tree-level. Higher orders in θ will generate
diagrams with θ running in loops, which can be shown to
produce O(p3) corrections above the leading order to any
observable [42], and are therefore irrelevant for the purpose
of q2 corrections to ηo.

The O(p0) part of Eq. (D1) is obtained by setting sθ = 0,
as in an s-wave SF,

Lind,0 = P0

√
G − n0At + 1

2

n0

m

B2 − c−2
s E2

∂2 − c−2
s ∂2

t

− n0
m(∂t

√
G)2/2 + Ei∂i

√
G

∂2 − c−2
s ∂2

t
. (D2)

The first line contains the ground-state pressure and den-
sity P0, n0, as well as the London diamagnetic function
ρe = n0

m
1

q2−c−2
s ω2 and the ideal Drude longitudinal conductivity

σe = − n0
m

iωc−2
s

q2−c−2
s ω2 of the SF [21]. The second line contains the

mixed response and mixed static susceptibility

κ i j,k
e = −n0δ

i j iqk

q2 − c−2
s ω2

,

χ
i j,t
T J,e = n0δ

i j q2

q2 − c−2
s ω2

, (D3)

defined in Sec. V, as well as the inverse compressibility
K−1 = −n0m ω2

q2−c−2
s ω2 (which agrees with the thermodynamic

expression K−1 = n2
0

∂μ

∂n0
= n0mc2

s at q = 0). In particular, the
�-wave SF is indeed a superfluid—the even viscosity ηe van-
ishes to zeroth order in derivatives (see Ref. [3] for a subtlety
in separating K−1 from ηe).

The O(p) part of the Eq. (D1) is P, T -odd and vanishes
when sθ = 0. It is given by

Lind,1 = − sθn0ωt + 1

2

sθn0

m2c2
s

E i∂iB

∂2 − c−2
s ∂2

t

− sθn0

(
Ei

ω − 1
2m ∂iB

)
∂i

√
G

∂2 − c−2
s ∂2

t
. (D4)

The first and third lines produce the following odd viscosity
[21],

η(1)
o = −1

2
sθn0,

η(2)
o = 1

2
sθn0

1

q2 − c−2
s ω2

, (D5)

and setting ω = 0 one obtains the leading terms in Eq. (18).
By using the identity (up to a total derivative)

Ei∂iB = 1
2εμνρAμ∂ν∂

2Aρ, (D6)

the second line of Eq. (D4) can be written as a nonlocal CS
term,

Lind ⊃ 1
2σo(ω, q)εμνρAμipνAρ, (D7)

with the odd (or Hall) conductivity σo(ω, q) =
σ 0

o q2/(q2 − c−2
s ω2), σ 0

o = sθn0/2m2c2
s [21,40], with

σo(0, q) = σ 0
o unquantized, and σo(ω, 0) = 0, in accordance

with the boundary U (1)N -neutrality [25].
To demonstrate explicitly that c cannot be extracted from

the odd viscosity alone, it suffices to add the O(p2) term
L(1)

2 = F1(X )R ⊂ L2. The situation is particularly simple for
the special case F1(X ) = −s2

θP′(X )/4m. Then

P

(
X − s2

θ

4m
R

)
= P(X ) − s2

θ

4m
P′(X )R + O(p4)

= P(X ) + F1(X )R + O(p4), (D8)

which shows that F1(X )R can be absorbed into P(X ) by

a modification of X . The scalar X − s2
θ

4m R is useful be-
cause, unlike X , it depends on Aμ and ωμonly through the
combination Aμ = Aμ + sθωμ. This is evident in Eq. (C1),
where B rather than B = B + s

2 R appears. It is then clear

that, to O(p3), adding L(1)
2 = F1(X )R = − s2

θ

4m P′(X )R to
L0 = P(X ) amounts to changing B to B in the induced
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Lagrangian Eq. (D1),

Lind = P0

√
G − n0At

+ 1

2

n0

m

B2 − c−2
s E2 + sθ c−2

s
m E i∂iB − s2

θ c−2
s

4m2 (∂B)2

∂2 − c−2
s ∂2

t

− n0
m(∂t

√
G)2/2 + (

E i − sθ

2m ∂iB
)
∂i

√
G

∂2 − c−2
s ∂2

t
. (D9)

The only contribution to ηo, beyond Eq. (D5), comes from the
term proportional to E i∂iB. By using the identity Eq. (D6) for

Aμ, this term can be written as the sum of nonlocal CS, WZ1,
and WZ2 terms, which generalizes Eq. (D7) to

Lind ⊃ 1
2σo(ω, q)εμνρ (Aμ + sθωμ)ipν (Aρ + sθωρ ). (D10)

Most importantly, this includes a nonlocal version of WZ2,
which is indistinguishable from LgCS at ω = 0, where
σo(0, q) = σ 0

o is a constant. Noting that F ′
1 = −s2

θP′′/4m =
−(sθ /2)σ 0

o , and comparing to Eq. (C8), it follows that c
and F ′

1 will enter the ω = 0 odd viscosity only through the
combination c + 48πsθ F ′

1 . In more detail, the odd viscosity
tensor due to L0 + L(1)

2 + LgCS, is given by

η
(1)
H (ω, q2) = −1

2
sθn0 −

(
c

24

1

4π
+ sθ

2
F ′

1
q2

q2 − c−2
s ω2

)
q2 + O(q4),

η
(2)
H (ω, q2) = 1

2
sθn0

1

q2 − c−2
s ω2

+
(

c

24

1

4π
+ sθ

2
F ′

1
q2

q2 − c−2
s ω2

)
+ O(q2), (D11)

which, at ω = 0, is a special case of Eq. (12) of the main text.
Equation (D11) remains valid away from the special point F1 = −s2

θP′/4m, even though Eq. (D10) does not. Examining
the perturbatively expanded L0 Eq. (C3) and L(1)

2 Eq. (C7), we see that a general F1 amounts to replacing B in Eq. (D1) with

B + α sθ

2 R, where α = − 4mF ′
1

s2
θ P′′ �= 1 generically [as well as in the microscopic model Eq. (16)]. The general induced Lagrangian

due to L0 + L(1)
2 , valid to O(p3), is then given by

Lind = P0

√
G − n0At + 1

2

n0

m

B2 − c−2
s E2 + sθ c−2

s
m E i∂i

(
B + α sθ

2 R
) − s2

θ c−2
s

4m2 (∂B)2

∂2 − c−2
s ∂2

t

− n0
m(∂t

√
G)2/2 + [

E i − sθ

2m ∂i
(
B + α sθ

2 R
)]

∂i

√
G

∂2 − c−2
s ∂2

t
, (D12)

and, along with the LgCS, produces the odd viscosity
Eq. (D11). This expression does not depend on Aμ, ωμ only
through Aμ, but the terms contributing to Eq. (D11) still
vanish sθ = 0, which is why the improved odd viscosity due
to Eq. (D12) vanishes. In addition to L(1)

2 , the second order
terms L(2)

2 ,L(3)
2 Eq. (C6) also produce q2 corrections to the

odd viscosity, but not to the improved odd viscosity.
Though Eq. (D10) describes only a part of Lind, and is non-

generic, it does reveal the analogy between CSFs and vars = 0
QH states, described in the discussion Sec.VI in a very simple
setting. Indeed, comparing Eq. (D10) with Eq. (12) we see that
CSFs are analogous to vars = 0 QH states, with s = −sθ =
−�/2, but with a nonlocal, nonquantized, Hall conductivity,
in place of the filling factor ν/2π . Additionally, both QH
states and CSFs have the same gCS term Eq. (C8), with c the
boundary chiral central charge.

APPENDIX E: DETAILED ANALYSIS OF THE
MICROSCOPIC MODEL Eq. (13)

1. Symmetry

The action Sm is invariant under U (1)N gauge transforma-
tions,

ψ �→ e−iαψ, � j �→ e−2iα� j, Aμ �→ Aμ + ∂μα, (E1)

which implies the current conservation ∂μ(
√

GJμ) = 0, where√
GJμ = −δS/δAμ. It is also clear that Sm is invariant un-

der time-independent spatial diffeomorphisms, generated by
δxi = ξ i(x), if ψ transforms as a function, Aμ as a 1-form, � j

as a vector, and Gi j as a rank-2 tensor. As described in Sec. II,
due to its Galilean symmetry in flat space, Sm is also invariant
under time-dependent spatial diffeomorphisms δxi = ξ i(x, t ),
provided one modifies the transformation rule of Ai to Eq. (4).

2. Effective action and fermionic Green’s function

Starting with the microscopic action Eq. (13), the effec-
tive action for the order parameter � in the A, G back-
ground is obtained by integrating out the (generically) gapped
fermion ψ ,

eiSeff,m[�;A,G] =
∫

D(G1/4ψ )D(G1/4ψ†)eiSm[ψ ;�,A,G], (E2)

where G1/4 = (detGi j )
1/4 is the square root of the volume

element
√

G. The form of the measure is fixed by the fact that
the fundamental fermionic degree of freedom is the fermion-
density ψ̃ = G1/4ψ , which satisfies the usual canonical com-
mutation relation {ψ̃†(x), ψ̃ (y)} = δ(2)(x − y) as an operator
[25,38,75,76]. This is to be contrasted with {ψ†(x), ψ (y)} =
δ(2)(x − y)/

√
G(x) which ties the fermion to the background

metric.
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In terms of ψ̃ the action Eq. (13) takes the form

Sm =
∫

d2xdt

[
ψ̃† i

2
←→∇ t ψ̃ − 1

2m
Gi j∇iψ̃

†∇ jψ̃

+
(

1

2
�iψ̃†∇iψ̃

† + h.c

)
− U

]
, (E3)

where ∇μ = ∂μ + iAμ − 1
4∂μ log G is the covariant derivative

for densities, and U = 1
2λ

√
GGi j�

i∗� j . Passing to the BdG
form of the fermionic part of the action, in terms of the
Nambu spinor-density �̃† = (ψ̃†, ψ̃ ) (which is a Majorana
spinor-density [25]), one finds

Sm =
∫

d2xdt

{
1

2
�̃†γ 0

[
iγ 0∂t − At + 1

2m
∇iG

i j∇ j

+ i

2
γ Ã

(
ei

Ã∂i + ∂ie
i
Ã

)]
�̃ − U

}

=
∫

d2xdt

{
1

2
�̃†γ 0G−1�̃ − U

}
, (E4)

where derivatives act on all fields to the right; Ã = 1, 2 is an
index for U (1)N , viewed as a copy of SO(2); the γ matrices
are γ 0 = σ z, γ 1 = −iσ x, γ 2 = iσ y, satisfying {γ μ, γ ν} =
2ημν with ημν = diag[1,−1,−1], and tr(γ 0γ 1γ 2) = 2i; and

ei
Ã =

(
Re�x Re�y

Im�x Im�y

)
(E5)

is the emergent vielbein [25,35], to be distinguished from the
background vielbein Ei

A (with an SO(2)L index A = 1, 2) that
appeared in the main text and that will be used momentar-
ily. We also defined the inverse Green’s function G−1. The
effective action Eq. (E2) is then given by the logarithm of the
Pfaffian

Seff,m = − i log Pf(iγ 0G−1) −
∫

d2xdtU

= − i

2
log Det(iγ 0G−1) −

∫
d2xdtU . (E6)

3. Fermionic ground-state topology

For a given � j , the fermion ψ is gapped, unless the chem-
ical potential μ or chirality � = sgn[Im(�x∗�y)] are tuned
to 0, and forms a fermionic topological phase characterized
by the bulk Chern number. Assuming Aμ = 0 and space-time
independent �i, Gi j , it is given by [13]

C = 1

24π2
tr

∫
d3qεαβγ (G∂αG−1)(G∂βG−1)(G∂γG−1) ∈ Z,

(E7)

and determines the boundary chiral central charge c = C/2
[12,13,67,77]. Here the fermionic Green’s function G is
Fourier transformed to Euclidian 3-momentum q = (iq0, q)
[see Eq. (E17)]. For the particular model Eq. (13) one finds

c = −(�/4)[sgn(μ) + sgn(m)] ∈ {0,±1/2}, (E8)

see Refs. [12,13,25] for similar expressions. Note that the
central charge is well defined for both m > 0 and m < 0,
even though the single particle dispersion is not bounded
from below in the latter, and many physical quantities naively

diverge (we will see below that certain physical quantities
diverge also with m > 0). A negative mass can occur as an
effective mass in lattice models, in which case the lattice
spacing provides a natural cutoff [which must be smooth in
momentum space for Eq. (E7) to hold]. In any case, a negative
mass makes it possible to obtain both fundamental central
charges c = ±1/2, for fixed �, within the model Eq. (13). All
possible c ∈ (1/2)Z can then be obtained by stacking layers
of the model Eq. (13) with the same � but different m, μ. Thus,
the model Eq. (13) suffices to generate a representative for
all topological phases of the p-wave CSF. For concreteness,
below we will work only with m > 0, in which case c is given
by Eq. (14).

4. Symmetry breaking and bosonic ground state in the presence
of a background metric

For time independent fields A, G,� the effective action
reduces to

Seff,m[�; G] = −
∫

d2xdtε0[�; G], (E9)

where ε0 is the ground-state energy-density as a function of
the fields. In flat space Gi j = δi j , with At = −μ and Ai = 0,
and assuming � is constant, it is given by [13,25]

ε0 = 1

2

∫
d2q

(2π )2

(
ξq −

√
ξ 2

q + gi jqiq j
) + 1

2λ
δi jg

i j, (E10)

where

ξq = |q|2/2m − μ (E11)

is the single particle dispersion, and gi j = �(i� j)∗ = δÃB̃ei
Ã
e j

B̃
is the emergent metric—a dynamical metric to be distin-
guished from the background metric Gi j . The ground-state
configuration of gi j is determined by minimizing ε0, while
the overall phase θ of the order parameter and the chirality �,
of which gi j is independent, are left undetermined. Thus, gi j

corresponds to a massive Higgs field, while θ is a Goldstone
field. The energy-density Eq. (E10) is UV divergent, and
requires regularization. We do this in the simplest manner,
by introducing a momentum cutoff q2 < �2. Since the diver-
gence disappears for gi j = 0 (assuming m > 0), this can be
thought of as a small, but nonvanishing, range 1/� for the
interaction mediated by �. With a finite �, the energy density
is well defined and has a unique global minimum at gi j =
�2

0δ
i j , with �0 determined by the self-consistent equation

1

4

∫ � d2q

(2π )2

|q|2√
ξ 2

q + �2
0|q|2

= 1

λ
. (E12)

For μ > 0 the noninteracting system has a Fermi surface,
and a solution exists for all λ > 0, which is the statement of
the BCS instability. For μ < 0, the noninteracting system is
gapped, and a solution exists if the interaction is large enough
compared with the gap, λ�−4 � |μ|.

Consider now the case of a general constant metric Gi j ,
and let us introduce a constant vielbein E such that Gi j =
EA

i δABEB
j . The inverse transpose E−T = (E−1)T is given in

coordinates by Ei
A. We also introduce the internal order pa-
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rameter �A = EA
i �i. The action Eq. (E3) then reduces to

Sm =
∫

d2xdt

[
ψ̃†i∂t ψ̃ − δAB

2m
Ei

A∂iψ̃
†E j

B∂ jψ̃

+
(

1

2
�AEi

Aψ̃†∂iψ̃
† + H.c.

)
− 1

2λ
δAB�A∗�B

]
.

(E13)

This is identical to the flat space case, with ∂i replaced by
Ei

A∂i. We also need to change the UV cutoff to δABEi
AqiE

j
Bq j =

Gi jqiq j < �2. This in natural since we interpret �2 as a range
of the interaction mediated by �, which should be defined
in terms of the geodesic distance rather than the Euclidian
distance. It follows that the flat space result Eq. (E10) is
modified to

ε0 = 1

2

∫
|E−T q|2

<�2

d2q

(2π )2

(
ξE−T q −

√
ξ 2

E−T q + gABEi
AE j

Bqiq j
)

+ 1

2λ
δABgAB

= 1

2

√
G

∫
q2<�2

d2k
(2π )2

(
ξk −

√
ξ 2

k + gABkAkB
)

+ 1

2λ
δABgAB, (E14)

where k = E−T q, or kA = Ei
Aqi, and gAB = �(A�B)∗ =

δÃB̃eA
Ã
eB

B̃
is the internal emergent metric. This is identical to

the Gi j = δi j result Eq. (E10), apart from the volume element√
G, and the fact that it is the internal metric gAB that appears,

rather than gi j . It is then clear that minimizing Eq. (E14) with
respect to gAB gives

gAB = �2
0δ

AB, orgi j = �2
0Gi j, (E15)

with the same �0 of Eq. (E12), which is G independent. Thus,
the emergent metric is proportional to the background metric
in the ground state. This solution corresponds to emergent
vielbeins eA

Ã
∈ O(2), or order parameters �A = �0e2iθ (1,±i),

which is the px ± ipy configuration, and implies the SSB
pattern

(Z2,T � U (1)N ) × (Z2,P � SO(2)L )

→
{
Z2,PT � U (1)L− �

2 N � ∈ 2Z + 1
Z2,PT � U (1)L− �

2 N × Z2,(−1)N � ∈ 2Z , (E16)

described less formally in the main text. Note that fermion
parity Z2,(−1)N is the Z2 subgroup of U (1)L− �

2 N for

odd �. For � j , we find the ground-state configuration
Eq. (15)—a result that was stated previously in the litera-
ture [12,21,23,66,68] and is derived here to zeroth order in
derivatives.

As described in Appendix E, we will ignore the mas-
sive Higgs fluctuations, and obtain Seff[θ ; A, G] by plugging
the ground-state configuration Eq. (15) into the functional
Pfaffian (E6).

5. Perturbative expansion

We now write Ei
A = δi

A + Hi
A and eA

Ã
= �0δ

A
Ã

[which cor-
responds to �A = �0(1, i)A] and expand Eq. (E4) to second

order in H, A. Due to SO(2)L gauge symmetry, the anti-
symmetric part of H can be interpreted as the Goldstone
field, θ = (sθ /2)εABHAB, as explained in Appendix D. The
px − ipy configuration �A = �0(1,−i)A can be incorporated
by changing the sign of one of the gamma matrices γ Ã.
The expansion in H, A produces a splitting of the propagator
into an unperturbed propagator and vertices, G−1 = G−1

0 + V ,
where V further splits as V = V1 + V2, where V1 (V2) is first
(second) order in the fields. The terms in V2 are often referred
to as contact terms. Using Eq. (A1) we find the explicit form
of G−1

0 ,V1,V2 in Fourier components,

G−1
0 (q) = − γ 0q0 − �0γ

jq j − ξq,

V1(q, p) = − At,p − �0γ
A
(
Hi

A

)
p
qi

− 1

m

[
qiq j − 1

4
(pi p j − δi j p2)

]
Hi j

p + γ 0 1

m
Aj

pq j,

V2(q, 0) = − 1

2m

(
Hi

AHA j
)

p=0qiq j − 1

8m

(
∂ jHA

A ∂ jH
B
B

)
p=0

− γ 0 2

m
(AiH

(i j) )p=0q j − 1

2m
(AjAj )p=0. (E17)

Here (· · · )p denotes the p Fourier component of the field
(· · · ), and we set p = 0 in V2 since only this component
will be relevant. The unperturbed Greens’s function is given
explicitly by

G0(q) = −q0γ
0 + �0qiγ

i − ξq

q2
0 − qiqi − ξ 2

q
. (E18)

The perturbative expansion of Seff is obtained from Eq. (E6)
by using log[Det(·)] = Tr[log (·)], and expanding the loga-
rithm in V ,

Seff,m = −iTr
{

log
[
iγ 0(G−1

0 + V
)]}

= − i

2
Tr

(
log iγ 0G−1

0

) − i

2
Tr(G0V )

+ i

4
Tr(G0V )2 + O(V3)

= − i

2
Tr(G0V1) − i

2
Tr(G0V2)

+ i

4
Tr(G0V1G0V1) + · · · , (E19)

where in the last line we kept explicit only terms at first and
second order in H, A (the term of zeroth order was described
in the previous section). Writing the functional traces as inte-
grals over Fourier components and traces over spinor indices,
we then find

Seff,m = − i

2
tr

∫
q
V1(q, 0)G0(q) − i

2
tr

∫
q
V2(q, 0)G0(q)

+ i

4
tr

∫
p,q

G0

(
q − 1

2
p

)
V1(q,−p)G0

×
(

q + 1

2
p

)
V1(q, p) + · · · , (E20)

where
∫

q = ∫ d2qdq0

(2π )3 . We are interested in Seff to third order
in derivatives, which amounts to expanding the above expres-
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sion to O(p3), and evaluating the resulting traces and inte-
grals. These computations are performed in the accompanying
Mathematica notebook [78].

The result, focusing on terms relevant for ηo, η̃o to O(q2),
is compatible with the general effective action of Sec. III
and Appendix C, as confirmed by comparing Eq. (E20) to
the perturbatively expanded Seff. This comparison provides
explicit expressions for all of the coefficients that appear in
Seff, as we now describe. The ground-state pressure P(μ)
diverges logarithmically, and is given by

P = 1

2

∫ � d2q

(2π )2

⎡
⎣ q2

2m
−

1
2�2

0q2 + q2

2m

( q2

2m − μ
)

√
�2

0q2 + ( q2

2m − μ
)2

⎤
⎦

= −m3�4
0

4π

(
1 − 2

μ

m�2
0

)
log � + O(�0). (E21)

Directly computing the ground-state density n0 and leading
odd viscosity η(1)

o one finds

n0 = 1

2

∫
d2q

(2π )2

⎡
⎣1 −

( q2

2m − μ
)

√
�2

0q2 + ( q2

2m − μ
)2

⎤
⎦

= m2�2
0

2π
log � + O(�0), (E22)

η(1)
o = − �

16

∫
d2q

(2π )2

�2
0q2

( q2

2m + μ
)

[( q2

2m − μ
)2 + q2�2

0

]3/2

= −�m2�2
0

8π
log � + O(�0), (E23)

so the relations n0 = P′(μ), and η(1)
o = −(�/4)n0, described

in the main text, are maintained to leading order in the cutoff.
As explained in Appendix E 4, the cutoff � corresponds

to a nonvanishing interaction range, which softens the contact
interaction in the model Eq. (13). With a space-independent
metric, a smooth cutoff can easily be implemented by
replacing

�AE j
Aψ̃

†
−qiq jψ̃

†
q �→ �AE j

Aψ̃
†
−q

(
iq je

−qk ql Gkl /�2)
ψ̃†

q , (E24)

for example, in the Fourier transformed Eq. (E13), and should
lead to the exact relations n0 = P′(μ), η(1)

o = −(�/4)n0. How-
ever, a computation of the q2 correction to ηo requires a space-
dependent metric, where a nonvanishing interaction range
involves the geodesic distance and complicates the vertex V in
Eq. (E17) considerably. Moreover, all other coefficients in Seff

converge, and we can therefore work with the simple contact
interaction, � = ∞.

The coefficients P′′, F ′
1 , F2, F3 were presented in Appendix

E. The remaining coefficients F4, F5, F6 are irrelevant for the
quantities discussed in the main text and are presented here
for completeness,

F4 = 1

24πμ

{
κ−2

2
1

1+2κ

, F5 = 1

24πμ�2
0

{
1

− 1
(1+2κ )2

,

F6 = − κ

24πμ

{
1
2

1
(1+2κ )2

. (E25)

As stated in Appendix E, there is a sense in which
the relativistic limit κ → 0, or m → ∞ reproduces the ef-
fective action of a massive Majorana spinor in Riemann-
Cartan space-time [25,69]. In particular, in the limit κ → 0
the dimensionless coefficients Eq. (16) are all quantized, as
follows from dimensional analysis. Apart from c, only the
coefficient F ′

1 is discontinuous at μ = 0 within this limit,
with a quantized discontinuity −(�/4)[F ′

1 (0+) − F ′
1 (0−)] =

(�/2)/96π that matches the coefficient β of the gravitational
pseudo Chern-Simons term of Ref. [25]. As anticipated in
Ref. [25], the coefficient c remains quantized away from the
relativistic limit, while F ′

1 does not. Taking the relativistic
limit of the dimensionful coefficients Eq. (E25), one finds
F6 = 0, while F4 = −�2

0F5 �= 0 describe a relativistic term
which is second order in torsion, and was not written explicitly
in Refs. [25,69].

Finally, we note that our perturbative computation of the
gCS term is analogous to the computations of Refs. [79–83]
for relativistic fermions and reduces to these as κ → 0.
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