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Ground state of the three-dimensional BCS d-wave superconductor
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We determine the mean-field ground state of the three-dimensional rotationally symmetric d-wave (� = 2)
superconductor at weak coupling. It is a noninert state, invariant under the symmetry C2 only, which breaks time-
reversal symmetry almost maximally, and features a high but again less-than-maximal average magnetization.
The state obtained by minimization of the expanded sixth-order Ginzburg–Landau free energy is found to be
an excellent approximation to the true ground state. The coupling to a parasitic s-wave component has only a
minuscule quantitative and no qualitative effect on the ground state.
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I. INTRODUCTION

The problem of Cooper pairing with higher angular mo-
mentum and the concomitant superconducting state arises
often in many-body physics, with the p-wave state (� = 1)
in 3He probably being the best known example [1]. When
pairing occurs in the spin-singlet channel and the usually
dominant s-wave state (� = 0) is suppressed due to electron-
electron interactions, pairing in the d-wave (� = 2) channel
ensues. The multicomponent complex order parameter that
describes situations with � > 0 typically leads to the problem
of finding the optimal configuration which minimizes the
free energy within a large manifold of possible realizations.
The expectation is, however, that the state that minimizes
the energy still displays some residual symmetry [2]. Since
the set of continuous and discrete subgroups of the original
symmetry group SO(3) in three dimensions is limited, this
guiding principle greatly simplifies the search for the ground
state. Identifying the ordered ground state in the case of
multiple complex field components is also relevant for spinor
Bose–Einstein condensates, where the degrees of freedom are
bosonic atoms [3].

A recent candidate for an � = 2 superconductor is the
half-Heusler compound YPtBi, where the temperature de-
pendence of the penetration depth indicates unconventional
pairing, and the Fermi level is close to the quadratic band
touching point [4,5]. If the Fermi level would be precisely
at such a “Luttinger point” of the band structure [6–10],
then the superconducting d-wave state predicted from weak-
coupling theory would preserve time-reversal symmetry, and
the ground state would be the uniaxial nematic state with
line nodes in the spectrum [11]. Away from such a point,
as it is typically the case in real materials with nonzero
carrier density, the Ginzburg–Landau free energy derived at
weak coupling suggests that the d-wave ground state breaks
time-reversal symmetry maximally, but at least at the quartic
level leaves the question of the actual ground state open [4].
This is due to the accidental vanishing of one of the three
symmetry-allowed quartic terms that would otherwise break
the degeneracy between the time-reversal-symmetry-breaking

states [12]. In this situation, at least within the confines
of the weak-coupling and Bardeen–Cooper–Schrieffer (BCS)
mean-field theory, one is forced to consider the next-order,
sextic terms in the Ginzburg–Landau expansion in terms of
the d-wave order parameters, and search for the minimum
of the free energy within a rather large manifold of states
[11]. Further pairing mechanisms for YPtBi that may arise
from the Fermi level being away from the band touching point
have been classified and compared in Refs. [13–22]. (See also
Refs. [23,24] for earlier related work.)

In this paper we consider the general problem of sponta-
neous breaking of the rotational SO(3) and particle number
U(1) symmetries by an � = 2 superconducting state at weak
coupling and at a finite chemical potential, when it suffices
to consider the Hamiltonian projected onto the Kramers-
degenerate low-energy band at the Fermi level. Going beyond
the usual Ginzburg–Landau expansion, and minimizing with
respect to the norm of the Cooper pair wave function first, we
find that the BCS ground state at T = 0 ultimately maximizes
a specific integral over the Fermi surface of the Cooper pair
internal wave function. Utilizing Michel’s theorem [25] in
the search for the global minimum of the energy, we find
the ground state to be invariant under the smallest subgroup
of the rotational group, namely C2 � Z2. Minimizing within
the parameter space of C2-symmetric states we find that the
exact Cooper pair ground state (a) is nearly orthogonal to
its time-reversed copy, i.e., breaks time-reversal symmetry,
but not quite maximally, and (b) exhibits a large, but again
less than maximal expectation value of the orbital angular
momentum 〈L〉2, and therefore of the magnetization.

Checking against the usual Ginzburg-Landau expansion at
finite temperature we find that an excellent approximation to
the exact ground state is selected by the sextic term in the
free energy [11]. Essentially the same superconducting state
is therefore preferred at all temperatures below the critical
temperature. We also show why including the symmetry-
allowed coupling to the parasitic s-wave component [21] in
principle modifies the ground state quantitatively, but only
minutely so and not at all qualitatively. The specific fea-
tures of the low-temperature superconducting state such as
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magnetization and time-reversal-symmetry-breaking can be
accessed in experiment, for instance, through magneto-
electric effects [26], surface excitation spectra [27], or optical
conductivity [28].

Our analysis is organized as follows. We first introduce
the SO(3)-invariant BCS model for a parabolic band with
pairing occurring in the d-wave channel, together with several
representations for the five-component complex order param-
eter. We then derive an exact functional in the weak-coupling
limit that determines the ground state of the model at zero
temperature and establish the solution to the corresponding
optimization problem with the help of classes of states that
transform under the subgroups of SO(3). We compare the
ground state to the result of optimizing the Ginzburg–Landau
free energy expanded to sixth order at low temperatures.
Eventually we compute the quantitative effect of a parasitic
s-wave component on the ground state.

II. l = 2 PAIRING AND THE ORDER PARAMETER

Let us begin with the Lagrangian in standard three-
dimensional BCS form with the pairing interaction between
the time-reversed states in the spin-singlet channel given by

L(τ ) =
∑
σ=±

∑
k

�∗
σ (τ, k)(∂τ + ξk )�σ (τ, k)

−
∑
k,p

′ g(k, p)�∗
+(τ, k)�∗

−(τ,−k)

× �−(τ, p)�+(τ,−p), (1)

where ξk = k2/(2m) − μ. The pairing interaction is assumed
to be attractive in the d-wave channel,

g(k, p) = gP2(k̂ · p̂), (2)

with P2(x) = 1
2 (3x2 − 1) the second Legendre polynomial

and g > 0. The prime on the second sum in Eq. (1) as
usual implies that only the momenta within a cutoff � �
kF = √

2mμ around the Fermi surface are to be included.
�σ (τ, k) are the usual Grassmann variables. The Lagrangian
L(τ ) represents the simplest rotationally-invariant BCS model
for � = 2 pairing. Complementary, it describes spin-orbit
coupled materials with a four-band quadratic band touching
point close to the Fermi level, described by the Luttinger
Hamiltonian, with complex tensor order pairing between the
electrons of total angular momentum 3/2 [11], projected
onto the two Kramers-degenerate bands that cross the finite
chemical potential [4,17,20].

Using the addition theorem for spherical harmonics [29],
Hubbard–Stratonovich decoupling of the interaction term, and
applying the mean-field approximation to integrate out the
fermions in the background of a constant order parameter
[30], the mean-field superconducting state is given by the
minimum of the effective action

S[ 		] = | 		|2
g

− T
∑
ωn,k

′ ln
(
ω2

n + ξ 2
k + |	ada(k̂)|2). (3)

Here 		 = (	1,	2,	3,	4,	5) comprises five complex or-
der parameters that transform under the � = 2 representation
of SO(3), ωn = (2n + 1)πT are the Matsubara frequencies,

and the five functions da(k̂) are real spherical harmonics given
by

d1 =
√

15
(
k2

x − k2
y

)
2k2

, d2 =
√

5
(
2k2

z − k2
x − k2

y

)
2k2

, (4)

d3 =
√

15kzkx

k2
, d4 =

√
15kykz

k2
, d5 =

√
15kxky

k2
. (5)

We normalize the functions so that the angular average over
the sphere defined from |k̂|2 = 1 yields

∫
d�
4π

dadb = δab. We
implicitly sum over repeated indices, and in our units h̄ =
kB = 1. The quasiparticle dispersion for excitations close to
the Fermi level that results from Eq. (3) is given by

E (k) =
√

ξ 2
k + |	ada(k̂)|2. (6)

Typically, the action S[ 		] is expanded in a Taylor series in
powers of 	a, which, when truncated at certain order, leads
to the usual symmetry-dictated Ginzburg–Landau expression.
At T = 0, however, one can actually dispose of the expansion.
To this end, we first introduce some helpful notation for the
representation of the order parameter.

Every order parameter 		 can be understood as a state
| 		〉 = 	a|Ma〉 in a five-dimensional Hilbert space, where
the |Ma〉 constitute the � = 2 real basis, satisfying 〈k̂|Ma〉 =
da(k̂). Often it is useful to represent the state | 		〉 in the
eigenstates of the third component of the orbital angular
momentum, labeled |m〉 with m ∈ (−2,−1, 0, 1, 2), such that
〈k̂|m〉 = Y2m(θ, φ) are the usual spherical harmonics [29]. The
two representations are related through

|M1〉 = 1√
2

(| − 2〉 + |2〉), (7)

|M2〉 = |0〉, (8)

|M3〉 = 1√
2

(| − 1〉 − |1〉), (9)

|M4〉 = i√
2

(| − 1〉 + |1〉), (10)

|M5〉 = i√
2

(| − 2〉 − |2〉). (11)

The basis states |Ma〉 are constructed to be invariant under
time-reversal transformations and are in precise one-to-one
correspondence with the five real Gell-Mann matrices Ma,
which transform under SO(3), like the functions da, as com-
ponents of a second-rank irreducible tensor[10,11]. We have
da = (

√
15/2)(kiMa

i jk j )/k2.
We factorize 	a into the overall norm � and the internal

degrees of freedom za through

	a = �1/2za, (12)

with z∗
aza = 1. One can then interpret

|�〉 = za|Ma〉 (13)

as the normalized internal quantum state of the Cooper pair
and we have

〈k̂|�〉 = da(k̂)za. (14)
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The definition of the da functions then implies the normaliza-
tion

〈�|�〉 =
∫

d�

4π
|〈k̂|�〉|2 = 1. (15)

The average (orbital) magnetization of the state |�〉 can be
computed from the matrix A = zaMa via

〈�|L|�〉2 =
3∑

i=1

〈�|Li|�〉2 = 1

2
tr([A, A†]2). (16)

The amplitude of the average magnetization is bounded from
above by two in our units.

III. MINIMIZATION AT T = 0

A. Nonlinear eigenvalue problem

We now rewrite the mean-field effective action in Eq. (3)
at T = 0 as

S[ 		]

N = �

V
−

∫ ′ d2Q

2π

∫
d�

4π
ln(Q2 + �|〈k̂|�〉|2), (17)

where N is the density of states at the Fermi level, Q =
(ω, ξ ) with ω as the continuous frequency, and V = gN is
the dimensionless coupling. Minimizing with respect to the
norm � in the weak coupling regime V � 1 then yields the
equation

F [�0] = 1

V
−

∫
d�

4π
|〈k̂|�〉|2 ln

(
vF �

�0|〈k̂|�〉|2
)

= 0, (18)

with the solution

�0 = vF �eX−(1/V ). (19)

Here X is a functional of the normalized Cooper pair state
given by

X [�] = −
∫

d�

4π
|〈k̂|�〉|2 ln |〈k̂|�〉|2. (20)

It constitutes the central object of interest in this work. Sub-
tracting the value in the normal phase, the difference in the
action can be recast into

S[ 		]

N =
∫ �0[�]

0
d� F [�]. (21)

After the insertion of the solution for the norm �0 and some
simple algebra we eventually arrive at

S0[�]

N = −�0[�]. (22)

The action in the weak-coupling regime is therefore a simple
function of the normalized � = 2 Cooper pair state through
p(θ, φ) = |〈k̂|�〉|2 alone, and the ground state is evidently
the one that maximizes the quantity X and, together with it,
the norm �0.

Optimizing X under the normalization constraint in
Eq. (15) with the help of a Lagrange multiplier straightfor-
wardly leads to the condition that any extremal solution |�〉
of X satisfies

−
∫

d�

4π
ln |〈k̂|�〉|2 da(k̂)db(k̂)zb = X0za, (23)

where X0 is the value of X for this solution. This can be viewed
as a nonlinear eigenvalue problem for the coefficients za.
We are therefore after the solutions of the last equation,
and in particular after the highest possible value of X0. The
absolute maximum of X is reached for a rotationally invariant
s-wave superconducting state, which corresponds to X = 0.
Consequently, X < 0 for any � = 2 state.

B. Michel’s theorem and the search for the ground state

In search for the local extrema of the functional X we
consider Cooper pair states |�〉 that are invariant under each
allowed subgroup of SO(3) separately, and then maximize X
within each such class of states. Michel’s theorem [2,25] then
guarantees that each extremal state within these symmetric
classes will automatically satisfy Eq. (23).

With this principle in mind, consider first the smallest
and hence the least restrictive discrete subgroup of SO(3),
namely, the C2z group of rotations by an angle of zero and
π around, for example, the z axis. The two families of states
that are eigenvectors of the nontrivial C2z transformation, with
eigenvalues −1 and +1, are given by

|�1〉 = c+|1〉 + c−|−1〉 (24)

and

|�2〉 = a+|2〉 + eiδb|0〉 + a−|−2〉. (25)

The coefficients c±, a±, b can be chosen to be real, since their
phases could always be eliminated by a combined SO(3) and
U(1) transformation. The remaining parameter δ can be taken
in the range 0 < δ < π . Normalization then leaves us with
one and three real parameters to span the above two families
of states, respectively.

For general values of the coefficients, the state |�2〉 has
only C2z symmetry, but [31]: (a) when a± = 0, it reduces to
the uniaxial nematic state [11], invariant under the continuous
subgroup SO(2), (b) when b = a− = 0 it becomes the fer-
romagnetic state with maximal average magnetization, also
invariant under SO(2), (c) when b = 0, it is invariant under
the subgroup C4z, (d) when b = 0 and a+ = a− it is invariant
under the subgroup D4, (e) when a+ = a− it is invariant under
the subgroup D2, and (f) when a± = 1/2, b = 1/

√
2, and

δ = π/2 it becomes the cyclic state [32], invariant under the
tetrahedron group, T4.

The above list leaves a single remaining subgroup of SO(3)
under which an � = 2 state can be invariant, but which is
neither in the form of |�1〉 or |�2〉. This is C3z, in which case
the most general state modulo SO(3), U(1), and time-reversal
transformations can be written as [31]

|�3〉 = d+|2〉 + d−|−1〉, (26)

with real coefficients d±. This therefore defines the third and
the final (one-parameter) family of states. One may note that
for particular d+ = 1/

√
3 and d− = √

2/3 the state |�3〉 is
in fact the same cyclic state as |�2〉 in the case (f), only
nontrivially rotated.

Extremizing X first within the one-parameter family of
states |�1〉 yields a minimum of X0 = −0.574717 for c± =
1/

√
2, i. e. for |�〉 = −i|M4〉. In fact, one finds the same

value of X for any choice of |�〉 = |Ma〉, a = 1, 3, 4, 5,
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which are all real, biaxial nematic states, mutually related
by SO(3) rotations. The maximum within the |�1〉 family is
X0 = −0.267864 for c− = 0, i.e., for |�〉 = |1〉. Interestingly,
the same value is obtained for any L3 eigenstate |m �= 0〉,
although the states with different values of |m| are obviously
not related by an SO(3) rotation.

Within the |�3〉 family one finds that the maximum is
X0 = −0.222213, which is the above-mentioned cyclic state.
The question is then whether this is the actual global maxi-
mum, or there are states within the remaining larger family
of |�2〉 which have a higher X . Somewhat surprisingly, the
answer to the last question turns out to be positive, and we
find the global maximum of X to be reached for the particular
state within the |�2〉 family given by

|�opt〉 = 0.898816|2〉 + i0.432951|0〉 + 0.068431| − 2〉,
(27)

which satisfies the nonlinear eigenvalue Eq. (23), and has the
highest value of X0 = −0.206173 among all such solutions.

Besides having only the minimal residual C2 symmetry
this state altogether appears quite unexceptional. It breaks
time-reversal symmetry, but not maximally, since the overlap
between the state and its time-reversed copy is

〈�opt|T̂ |�opt〉 = −0.0644 (28)

and, although small, not quite zero. Its average orbital magne-
tization is

|〈�opt|L|�opt〉| = 1.60637, (29)

and, although high, below the maximal value of two.

IV. GINZBURG-LANDAU THEORY AT T �= 0

A. Sixth-order expansion

At T �= 0 the Ginzburg–Landau expansion of the action
becomes necessary, and it is instructive to compare the ground
state obtained in this manner with the exact result. Expanding
the logarithm in Eq. (3) in powers of 	a gives

S[ 		] = r| 		|2 + q1| 		|4 + q2| 		2|2 + s1| 		|6

+ s2| 		|2| 		2|2 + s3Y (y) + O(	8), (30)

where the coefficients r, q1 and q2 can be discerned easily.
One can check that q1 = 2q2 > 0, and the quartic term favors
the configurations with

		2 = �〈�|T̂ |�〉 = 0, (31)

i.e., with maximal breaking of time-reversal symmetry [11].
The third symmetry-allowed quartic term [11,12], which in
matrix notation A = zaMa introduced earlier would be pro-
portional to tr(A†AA†A) is, however, absent, and it is left to the
sextic terms to remove the degeneracy between the maximally
time-reversal-symmetry-breaking solutions of Eq. (31). The
only sextic term capable of doing so is the last one in Eq. (30),
which reads

Y (y) = |trA3|2 + y|tr(A2A†)|2. (32)

We find that s2 = 3s1/2 < 0, s3 < 0, and the relative coef-
ficient between the two terms in Y is y = 9. This particular
value results as a property of the integral over the products of

six functions da(k̂), in a similar way to the relative coefficient
of 2 between q1 and q2 in the quartic term. Its large numerical
value, however, turns out to be crucial in determining the
ground state, as we explain next.

For general y the configuration with 		2 = 0 that maxi-
mizes Y (y) may be cast into the (normalized) form

		 = 1√
2

(1, i sin α, 0, 0, i cos α), (33)

for which the pertinent sextic term Y (y) becomes

Y (y) = 8
3 (sin α)2[(sin α)4 + y(cos α)4]. (34)

For y < 6.46 the maximum of Y (y) is at α = π/2, which is
the cyclic state, whereas for y > 6.46 it shifts to the state with

(sin α)2 = 2y −
√

y2 − 3y

3(y + 1)
≈ 1

3

[
1 + 1

2y
+ O

(
1

y2

)]
. (35)

Since the actual value is y = 9, it is the latter state that wins
over the cyclic state. To compare it with the exact ground
state let us write the approximate Ginzburg–Landau state in
Eq. (33) in the angular momentum basis as

|GL〉 = 1 + cos α

2
|2〉 + i sin α√

2
|0〉 + 1 − cos α

2
| − 2〉. (36)

Taking then the solution of Eq. (35) with sin α =√
(6 − √

6)/10 and cos α =
√

1 − (sin α)2 yields X =
−0.207261 and a large overlap with the exact state:

〈�opt|GL〉 = 0.99948. (37)

The average magnetization of the Ginzburg–Landau state is
similarly close:

|〈GL|L|GL〉| = 2 cos α = 1.60617. (38)

Even taking only the first term in the expansion for large y in
Eq. (35) yields already a similar agreement. Taken together,
the Ginzburg–Landau state is an excellent approximation to
the exact ground state, and therefore in the weak-coupling
limit the system is essentially in one and the same supercon-
ducting state at all temperatures below the critical temper-
ature. One can also show that the last state in the Table 1
in Ref. [11] is the same as |GL〉, modulo U(1) and SO(3)
transformations.

We have also conducted a random sampling of the entire
� = 2 Hilbert space in search of a higher value of X and
found none. As an additional check of our procedure, one
can also compute the value of X over the � = 1 states. Since
factoring out U(1) and SO(3) in that case leaves only one real
parameter, it is easy to locate all the extremal values without
the use of Michel’s theorem. We find the single maximum of
X = −0.125 in the ferromagnetic state |1〉 and the minimum
of X = −0.431 in the uniaxial nematic state |0〉. Both have a
residual SO(2) symmetry and, therefore, the use of Michel’s
theorem in this case would find the same result.

B. Coupling to parasitic s-wave

Finally, we wish to point out that the coupling to the s-wave
component [21], although allowed, does not really change the
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ground state. For this include the terms that contain the s-wave
superconducting order parameter 	0 in the Ginzburg-Landau
expansion, so that the expanded action to the two lowest
orders is changed to

S′ = S + rs|	0|2 + u[	∗
0tr(A2A†) + c.c.]. (39)

The quadratic coefficient is assumed positive (rs > 0), so that
there is no s-wave order when 	a = 0. The coefficient u
vanishes by particle-hole symmetry in the four-band Luttinger
problem [11], but it is finite away from the particle-hole sym-
metric point, and should be naturally included when μ �= 0.
[21] Since rs > 0, one may simply perform the Gaussian
integration over the s-wave component, with the main effect
being a change in the sextic term for the remaining d-wave
component given by

Y (y) → Y

(
y + u2

rs

)
. (40)

The already large value of y is only increased by the coupling
to the s-wave component, which therefore does not alter the
ground state, except in a negligible quantitative way.

V. DISCUSSION

In conclusion, we have determined the exact mean-field
ground state of the BCS d-wave superconductor at T = 0, and
shown that it is quite robust to the effects of finite temperature
and mixing with an s-wave component. The state has the same
symmetry and is even quantitatively close to the one obtained
from the sixth order Ginzburg–Landau expansion that was
proposed in Refs. [11,21]. It breaks time-reversal symmetry,

reduces the rotational symmetry down to the C2, and has
a large magnetization. The quasiparticle spectrum [Eq. (6)]
consists of point nodes, and has been studied in Ref. [21].

Note that the ground state |�opt〉 is the only noninert
state among all the extremal points of the energy functional
we discussed. All other extremal states, namely the biax-
ial nematic |Mm �=2〉 (D4-symmetric), uniaxial nematic |M2〉
(SO(3)-symmetric), ferromagnetic states |m = 2〉 (SO(3)-
symmetric), and |m = 1〉 (SO(3)-symmetric), and the cyclic
state (T4-symmetric) are unique states with their respective
symmetries [33], i.e., they are “inert states.” As such they
are, by the Michel’s theorem, the saddle points of any SO(3)-
symmetric functional. |�opt〉, however, is obviously only one
among many states with the C2 symmetry, and had to be found
by maximization with respect to three real parameters. It is
therefore nongeneric, and tied to the BCS form of the energy,
i.e., to the specific form of the functional X [�].

Comparing the maximal value of X in the ground
state (−0.206173) with the next highest local maximum
(−0.222213) attained in the cyclic state, we see that they
differ by only a few percent. This means that the effects of
thermal and quantum fluctuations that lie beyond the mean-
field theory considered here may be significant in determining
the ground-state configuration [34]. This will be the topic of a
separate publication [35].
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