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Superconducting order parameter of Sr2RuO4: A microscopic perspective
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The character of the superconducting phase of Sr2RuO4 is the topic of a longstanding discussion. The
classification of the symmetry allowed order parameters has relied on the tetragonal symmetry of the lattice
and on cylindrical Fermi surfaces, usually taken to be featureless, not including the nontrivial symmetry aspects
related to their orbital content. Here we show how the careful account of the orbital degree of freedom and a
three-dimensional description lead to a much richer classification of order parameters. We analyze the stability
and degeneracy of these new order parameters from the perspective of the concept of superconducting fitness
and propose new order parameter candidates which can systematically account for the observed phenomenology
in this material.
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I. INTRODUCTION

Sr2RuO4 is among the materials with the highest quality
single crystals [1,2] and with the best characterized normal
state Fermi surfaces [3–6]. Yet, the nature of the super-
conducting state in this material remains controversial for
more than 20 years [7]. Experimental evidence from different
probes gives us conflicting information if we try to understand
the phenomenology of this material from the perspective of
an order parameter on a single cylindrical Fermi surface.
The solution to this conundrum might rely on the fact that
Sr2RuO4 is a complex material, since the faithful description
of its normal state electronic structure requires at least the
three Ru 4d orbitals in the t2g manifold. In contrast to the
microscopic description in the orbital basis, superconductivity
is usually understood as an instability out of a Fermi surface.
When studying superconductivity in Sr2RuO4 it is usual to
erase the microscopic complexity needed for the realistic
representation of its three Fermi surfaces and to start treating
these as featureless entities [8–11].

Several experiments have indicated that the order pa-
rameter is in the spin-triplet sector, in particular Knight
shift [12,13] and neutron scattering measurements [14], which
observed no change in the spin susceptibility across the su-
perconducting critical temperature Tc for any magnetic field
direction. Another important piece of evidence is the observa-
tion of the onset of time-reversal symmetry breaking (TRSB)
at Tc from muon spin rotation [15,16] and polar Kerr effect
measurements [17]. These two facts together point towards
a chiral order parameter with a d vector d(k) = (0, 0, kx ±
iky) [1,18–20], the only unitary odd-parity triplet order pa-
rameter in a tetragonal material to break time-reversal symme-
try. Contradictions emerge once we consider complementary
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experimental results. For example, specific heat [21–25] and
ultrasound [26] measurements suggest the presence of hori-
zontal line nodes in the superconducting gap, and new thermal
conductivity measurements [27] give evidence for vertical line
nodes. In addition, recent experiments are now challenging
what were thought to be well established results. In particular,
novel Knight shift measurements indicate a drop in the spin
susceptibility for in-plane magnetic fields, challenging the
proposal of an order parameter with a d vector along the
z direction [28]. Also, the latest uniaxial strain experiments
performed at the micron scale observe no obvious splitting of
the critical temperature as a function of strain, expected if the
order parameter has two components [29]. These recent re-
sults motivate us to look more carefully into the possible order
parameters for Sr2RuO4 from a microscopic perspective.

This paper is organized as follows: In Sec. II we introduce
the most general model for the normal state of Sr2RuO4 based
on the presence of time-reversal symmetry, the point group
symmetry D4h (which includes inversion symmetry) and the
nature of the underlying orbital degrees of freedom (DOF) in
the t2g manifold. In Sec. III we reclassify the order param-
eters, considering explicitly the orbital dependence, discuss
their properties, and probe these against the most recent
experimental results. In Sec. IV we focus on intraorbital
order parameters and apply the concept of superconducting
fitness, which allows for a qualitatively understanding of the
stability of each order parameter. From this analysis, we also
discuss the presence of symmetry protected and accidental or
quasidegeneracies and the consequences for experiments un-
der strain. We conclude with Sec. V, summarizing our results
and highlighting new directions for theoretical investigation
for a more complete understanding of Sr2RuO4.

II. THE NORMAL STATE HAMILTONIAN

Sr2RuO4 has the tetragonal space group I4/mmm, or
#139 [1]. This group consists of operations in the point group
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TABLE I. Parity of hab(k) functions according to time-reversal
symmetry. N indicates the number of pairs (a, b) for each parity.

hab(k) (a, b) N

Even ({0, 1, 2, 3, 7, 8}, 2) and ({4, 5, 6}, {0, 1, 3}) 15

Odd ({4, 5, 6}, 2) and ({0, 1, 2, 3, 7, 8}, {0, 1, 3}) 21

D4h and intra-unit-cell shifts by half a lattice parameter in all
directions. Focusing on the point group, here we refer to D4

since in this case the tables below have a more compact form
(the product with inversion essentially splits the representa-
tions in even and odd). It is well known that the important
DOF for the description of Sr2RuO4 are the electrons in the
t2g orbital manifold in the Ru ions, namely dyz, dxz, and dxy.
Choosing the basis �

†
k = (c†

yz↑, c†
yz↓, c†

xz↑, c†
xz↓, c†

xy↑, c†
xy↓)k,

one can construct the most general three-orbital single-
particle Hamiltonian describing the normal state as:

H0(k) = �
†
kH0(k)�k, (1)

with

H0(k) =
∑
a,b

hab(k)[λa ⊗ σb], (2)

where hab(k) are 36 real functions of momenta k, λa=1,...,8

are the Gell-Mann matrices and λ0 =
√

2
3 I3, with I3 the three-

dimensional identity matrix, standing for the orbital DOF,
and σb=1,2,3 are Pauli matrices, with σ0 the two-dimensional
identity matrix, standing for the spin DOF. The explicit form
of the Gell-Mann and Pauli matrices used in this work are
given in Appendix A.

Requiring the Hamiltonian to be invariant under inversion
and time reversal, we find restrictions on the allowed pairs of
indices (a, b). Inversion, P =

√
3
2λ0 ⊗ σ0, acts trivially on the

spin and orbital DOF:

PH0(k)P−1 = H0(k) (3)

implying that the functions hab(k) = hab(−k) must all be even
in momentum. Time reversal, � = K

√
3
2λ0 ⊗ (iσ2), with K

standing for complex conjugation, acts on the spin DOF:

�H0(k)�−1 = H0(k), (4)

implying hab(k) = ±h∗
ab(−k), with the plus (minus) sign for

imaginary (real) products [λa ⊗ σb]. The explicit pairs of
indices (a, b) are summarized in Table I. Given that the
functions hab(k) are real and must be even in k, only a subset
of 15 pairs (a, b) is in fact allowed in the Hamiltonian.

The Hamiltonian should also be invariant under the point
group operations associated with D4. Selecting as generators
C4 (rotation along the z axis by π/2), C′

2 (rotation along
the x axis by π ), and C′′

2 (rotation along the diagonal x = y
by π ), the basis matrices [λa ⊗ σb] transform as specific irre-
ducible representations of the point group. The invariance of
the Hamiltonian H0(k) under the point group requires that the
basis functions hab(k) transform under the same irreducible
representation as the associated basis matrices. The explicit
form of the point group operators are given in Appendix B,

TABLE II. List of the 15 symmetry allowed terms in the normal
state Hamiltonian H0(k) given by Eq. (2). For each (a, b), the basis
function hab(k) should transform according to a specific irreducible
representation (Irrep), and can be associated with different physical
processes (Type). Here k-SOC stands for even-momentum spin-
orbit coupling. The last column highlights which symmetry allowed
terms are present only in three-dimensional models. For the two-
dimensional Irreps E (α), α = i, ii, iii, the entries are organized such
that the first (a, b) term transforms as x and the second as y.

Irrep (a, b) Type Only in 3D

A1 (0,0) intraorbital hopping
(8,0) intraorbital hopping
(4,3) atomic SOC

(5, 2) − (6, 1) atomic-SOC
A2 (5, 1) + (6, 2) k-SOC �
B1 (7,0) intraorbital hopping

(5, 2) + (6, 1) k-SOC �
B2 (1,0) interorbital hopping

(5, 1) − (6, 2) k-SOC �
E (i) (3,0) interorbital hopping �

−(2, 0) interorbital hopping �
E (ii) (4,2) k-SOC �

−(4, 1) k-SOC �
E (iii) (5,3) k-SOC �

(6,3) k-SOC �

and the result of the symmetry analysis for the normal state
Hamiltonian is summarized in Table II.

Note that the form we find through this symmetry analysis
is in accordance with the well established Hamiltonian for
Sr2RuO4 [30,31], in which the terms (0,0), (7,0), and (8,0) are
associated with intraorbital hopping in the A1, B1, and A1 rep-
resentations, respectively; (1,0) is associated with interorbital
hopping in B2, allowed only between xz and yz orbitals; (4,3)
and (5, 2) − (6, 1) in A1 are associated with atomic spin-orbit
coupling (SOC). Other allowed terms are: {(3, 0), (−2, 0)} in
E , related to out-of-plane interorbital hopping between xz or
yz and xy orbitals; {(4, 2),−(4, 1)} and {(5, 3), (6, 3)} also
in E , as well (5, 2) + (6, 1) and (5, 1) ± (6, 2) in B1, A2 and
B2, respectively, all related to even k-dependent SOC, which
are usually not taken into account within two-dimensional
models.

III. THE ORDER PARAMETERS IN THE ORBITAL BASIS

In multiorbital superconducting systems, the effective
Bogoliubov-de Gennes Hamiltonian can be written as:

HBdG =
∑

k

�
†
k

(
H0(k) 	(k)
	†(k) −H∗

0 (−k)

)
�k, (5)

in terms of the multiorbital Nambu spinors:

�
†
k = (

�
†
k,�

T
−k

)
, (6)

with �
†
k and H0(k) defined above for the case of Sr2RuO4.

Here 	(k) is the gap matrix which can describe both spin
singlet and triplet pairing in multiorbital space.

Similarly to the parametrization of the normal state
Hamiltonian, we start parametrizing the gap matrix with 36
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TABLE III. Symmetry of the order parameter with matrix basis
[λa ⊗ σb(iσ2)], represented by [a, b] (first column) and function
dab(k) in different Irreps (first line of last five columns), for intraor-
bital pairing a = {0, 7, 8}. The second column gives the representa-
tion of the matrix basis, the third column the spin character singlet
(S) or triplet (T), and the fourth column the parity of the function
dab(k).

functions dab(k):

	(k) =
∑
a,b

dab(k)[λa ⊗ σb(iσ2)]. (7)

In analogy to the d vector parametrizing the triplet order pa-
rameter for a single band superconductor, here we introduce a
d-tensor notation, dab(k). In order to satisfy the antisymmetry
of the pair wave function, the order parameter should follow

	(k) = −	T (−k), (8)

such that we can separate the functions dab(k) in even or odd
parity if the tensor product [λa ⊗ σb(iσ2)] is antisymmetric or
symmetric, respectively. Interestingly the pairs of [a, b] asso-
ciated with even or odd dab(k) functions are the same as the
ones identified for the normal state Hamiltonian parameters
hab(k) summarized in Table I. This can be understood by the
fact that the basis matrices chosen here are all Hermitian,
such that the transpose is equivalent to the complex conjugate,
making the correspondence to time-reversal symmetry. Note
that, in order to distinguish the parametrization of the gap ma-
trix from the parametrization of the normal state Hamiltonian,
we use different brackets [a, b] for the gap function indexes.

We can further classify the order parameters considering
the point group transformations, which rotate the order param-
eter as U	(k)(U −1)∗ [31,32]. We start the analysis looking at
how the product [λa ⊗ σb(iσ2)] transforms under the gener-
ators of the point group, which allows us to associate these
matrices with distinct irreducible representations (Irreps)
of D4. The properties of all basis matrices are listed in detail
in Appendix C. Here we focus on intraorbital pairing, a =
{0, 7, 8}, and summarize the properties of the basis matrices
in the first four columns of Table III.

We can now introduce the nontrivial momentum depen-
dence of dab(k) (see form factors in Fig. 1). In order to
determine the Irrep of the complete order parameter, we need
to take the product of the Irrep of dab(k) with the Irrep of
[λa ⊗ σb(iσ2)]. The resulting Irrep can be inferred from the
character table of the point group (see Appendix B), and the
results are summarized in the last five columns of Table III for
the intraorbital components of the order parameter.

E

A1

A2

B1

B2

Even Odd

FIG. 1. Form factors associated with the (lowest power) even and
odd basis functions of each of the irreducible representations of the
D4 point group. The different colors indicate positive and negative
values.

A. Properties of the order parameters

We now go over Table III, analyzing in detail the symmetry
properties of the order parameters in different sectors (indi-
cated by different colors), and summarize the key experimen-
tal signatures in Table IV. In the next section we discuss which
of these sectors consistently account for the features observed
in the most recent experiments.

The order parameters in the yellow sector (i) are spin
singlets, have even dab(k) ∼ cte, do not carry symmetry pro-
tected nodes, and are associated with one-dimensional repre-
sentations. The superconducting states in the orange sector (ii)
are also spin singlets, but now dab(k) ∼ kxky(k2

x − k2
y ), (k2

x −
k2

y ) or kxky for even functions in the A2, B1, or B2 representa-
tions (according to the first line of Table III). All these order
parameters are associated with symmetry protected vertical
line nodes and once we take the product of the representations
of the matrix part [λa ⊗ σb(iσ2)] with the function dab(k), we
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TABLE IV. Summary of the key experimental signatures for
the different families of superconducting order parameters listed in
Table III. (i-ix) can be identified by the color scheme or by reading
the sectors highlighted by thick lines from left to right, top to bottom
in Table III. Here S stands for singlet and T for triplet (z and p
correspond to the d-vector direction along the z-axis or in plane),
h stands for horizontal, v for vertical and hv for simultaneous h and
v line nodes.

find order parameters belonging to one of the one-dimensional
representations A1, A2, B1, or B2. The order parameters in
the red sector (iii) are also singlets, but now the even basis
functions dab(k) ∼ {kxkz, kykz} belong to a two-dimensional
representation. Note that now we are guaranteed to have at
least horizontal line nodes (assuming that a chiral state would
be energetically more favorable, in which the two components
appear in a complex superposition eliminating the vertical line
nodes). The fact that the matrix part [λa ⊗ σb(iσ2)] is asso-
ciated with one-dimensional representations and the function
dab(k) is associated with the two-dimensional representation
makes the complete order parameters transform as the two-
dimensional representation E .

Moving on now to the triplet states, these are usually
parametrized in terms of a d vector, which gives the direction
perpendicular to the orientation of the Cooper pair spin. Here
the direction of the d vector in the standard notation is en-
coded in the label b in [a, b], as can be inferred from the matrix
form [λa ⊗ σb(iσ2)]. In the cyan sector (iv) we find triplet
states with the d vector along the z direction, corresponding to
in-plane equal spin pairing. In this configuration, an in-plane
magnetic field does not lead to paramagnetic depairing, in
contrast to a field along the z axis. In this sector, the odd
function dab(k) ∼ kxkykz(k2

x − k2
y ) encodes both horizontal

and vertical line nodes, and the order parameters fall in the
one-dimensional representations A2 or B2. In the blue sector
(v) we also find triplet states with a d vector along the z
direction, but now the odd form factor dab(k) ∼ kz, kzkxky or
kz(k2

x − k2
y ) in the A2, B1, or B2 representations, respectively,

with only horizontal or both horizontal and vertical symmetry
protected line nodes. The order parameters in this sector
fall in one of the one-dimensional representations A1, A2,
B1, or B2. The dark blue sector (vi) includes triplet order
parameters with a d vector along the z direction and comes

with odd basis functions dab(k) ∼ {kx, ky} associated with the
two-dimensional representation E . For this sector the presence
of nodes is not guaranteed since a chiral state is expected
to be energetically more favorable, and the complete order
parameter belongs to the two-dimensional representation E .

The last row in Table III includes triplet order parameters
with a d vector in plane. For this configuration, a magnetic
field along the z direction does not cause paramagnetic lim-
iting, while an in-plane field breaks the pairs. Note also
that now the matrix part of the order parameter forms itself
a two-dimensional representation, denoted by {[a, 1], [a, 2]}
in the table, indicating that the matrices [a, 1] and [a, 2]
transform as the basis of the two-dimensional representation
E under the point group operations. In the light green sector
(vii) these basis matrices are combined with an odd form
factor dab(k) ∼ kxkykz(k2

x − k2
y ) encoding both horizontal and

vertical line nodes. The product of the matrix component of
the order parameters belonging to the two-dimensional rep-
resentation E with a form factor dab(k) in a one-dimensional
representation leads to an order parameter belonging to the
two-dimensional representation E . The order parameters in
the green sector (viii) are also triplet states with an in-plane
d vector, but now the odd form factors dab(k) ∼ kz, kzkxky, or
kz(k2

x − k2
y ) in the A2, B1, or B2 representations, respectively,

have only horizontal or both horizontal and vertical symmetry
protected line nodes. Given the product of the representations
of the matrix and the form factor components of the order
parameters, the complete states in this sector transform within
the two-dimensional representation E . Finally, the order pa-
rameters in the dark green sector (ix) are also triplet states
with an in-plane d vector, now with odd basis functions
dab(k) ∼ {kx, ky} associated with the two-dimensional repre-
sentation E . Given that now both the matrix content and the
form factors belong to the two-dimensional representation E ,
we need to consider the product E × E to define the Irrep
of the complete order parameter. This product is decomposed
in the one-dimensional Irreps A1, A2, B1, or B2, as indicated
in Table III. Note that, in analogy to the helical states in the
original classification, these states are also fully gapped.

B. Connection with recent experiments

The most recent Knight shift measurements indicate that
there is a substantial drop in the spin susceptibility across the
superconducting transition for in-plane magnetic fields [28].
This observation is not easy to reconcile with a triplet state
with a d vector along the z direction, whose in-plane spin
susceptibility is not expected to change as the superconduct-
ing state sets in. Based on this fact, order parameters in the
blue sectors (iv), (v), and (vi), which include the originally
proposed chiral p-wave state, seem not to be good candidates.
Considering now the evidence for line nodes from specific
heat [21–25], ultrasound attenuation [26], and recent thermal
transport [27], gap structures without symmetry protected
nodes in the (i) and (ix) sectors do not seem to satisfy
the constraints imposed by the observations. Furthermore,
muon spin rotation [15,16] and polar Kerr effect [17] experi-
ments observe the onset of time-reversal symmetry breaking,
and ultrasound measurements [26] observe a drop in the
shear modulus below the critical temperature. These two
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observations, from experiments of very different nature, in
principle require an order parameter belonging to a two-
dimensional Irrep [33].

After these considerations, the order parameters which are
in accordance with the observed phenomenology belong to
sectors (iii), (vii), or (viii). Note that these always carry
horizontal line nodes (some also with vertical line nodes).
We can now write explicitly the form of the intraorbital
components of the best candidate order parameters. Starting
with the singlet states in sector (iii), we have a TRSB state
with horizontal line nodes:

	S
SRO(k) =

∑
a

(
dxz

a (k) + αdyz
a (k)

)
λa ⊗ σ0(iσ2), (9)

where a = {0, 7, 8}, α is a complex coefficient and the func-
tions dX

a (k) transform as X under the point group operations.
For the triplet states in sectors (vii) or (viii), we write TRSB
triplet states with in-plane d vector and horizontal and possi-
bly also vertical line nodes:

	T
SRO(k) =

∑
a

dX
a (k)(λa ⊗ σ1 + αλa ⊗ σ2)(iσ2), (10)

where X = {A1, A2, B1, B2}.

IV. SUPERCONDUCTING FITNESS ANALYSIS

The concept of superconducting fitness proved itself useful
for the understanding of the effects of external symmetry
breaking fields in complex multiorbital superconductors and
also gives a measure of the intrinsic robustness of different
superconducting states within a given normal state electronic

TABLE V. Superconducting fitness analysis for different ma-
trix basis [a, b] of 	(k) indicated in the first column. The
table displays the contribution of each term (c, d ) in H0(k)
for the superconducting fitness parameters as Tr[|FA(k)|2] =
64
9

∑
cd (table entry)|dab(k)|2|hcd (k)|2. Columns 2–5 include terms

present in a two-dimensional effective model, while columns 7–8
introduce additional terms allowed in a three-dimensional model.
Here a-SOC stands for atomic SOC, associated with terms (4,3) and
(5, 2) − (6, 1); IOH-z stands for interorbital interplane hopping asso-
ciated with {(3, 0), −(2, 0)}, k-SOC is associated with momentum-
dependent SOC from {(4, 2),−(4, 1)} and {(5, 3), (6, 3)}. The col-
umn labeled 2D-deg indicates by asterisks which pairs of order
parameters are degenerate for a two-dimensional model (quaside-
generacies are indicated by asterisks in parenthesis). Note that for
a three-dimensional model no degeneracies are left.

Tr[|FA(k)|2] 2D 3D

[a, b] (1,0) (7,0) (8,0) a-SOC 2D-deg IOH-z k-SOC
[0,0] 1 1 1 3 2 4
[7,0] - 3/2 1/2 3/4 3/4 3/4
[8,0] 1/2 1/2 3/2 3/4 1/4 5/4
[0,3] 1 1 1 1 * 2 2
[7,3] - 3/2 1/2 3/4 (**) 3/4 15/4
[8,3] 1/2 1/2 3/2 11/4 (***) 1/4 1/4
{[0, 1], [0, 2]} 1 1 1 1 * 2 1
{[7, 1], [7, 2]} - 3/2 1/2 9/4 (**) 3/4 9/4
{[8, 1], [8, 2]} 1/2 1/2 3/2 5/4 (***) 1/4 11/4

structure [31,32,34]. The superconducting fitness functions
are defined as [31,32]:

FC (k) = H0(k)	(k) − 	(k)H∗
0 (−k),

FA(k) = H0(k)	(k) + 	(k)H∗
0 (−k). (11)

Note that these are in fact matrices, which take into ac-
count the normal state electronic structure in H0(k) and
the superconducting gap in 	(k), both encoding as many
microscopic degrees of freedom as needed. The averages
over the Fermi surface of Tr[|FA(k)|2] and Tr[|FC (k)|2] were
shown to directly determine the critical temperature for two-
orbital scenarios [32]. The larger FA(k), the higher the crit-
ical temperature, while a finite FC (k) introduces detrimental
effects to the superconducting state, reducing the critical
temperature.

We apply this framework to Sr2RuO4, and the results
for FA(k) and FC (k) are summarized in Tables V and VI,
respectively. We highlight that, among the intraorbital order
parameters, the terms which contribute to a finite FC (k) in the
standard two-dimensional model are: (1,0), associated with
interorbital hopping, carrying a form factor in B2 (even) and
(4,3) and (5, 2)–(6, 1) in A1 (even), associated with atomic
SOC. In order to reduce the detrimental effects introduced
by a finite FC (k) function, we would like to combine these
terms with order parameters with nontrivial form factors
dab(k), preferably with nodal basis functions orthogonal to
B2 (even), for both singlet and triplet states. Analyzing now
FA(k), we focus on the largest contributions to the normal state
Hamiltonian, given by the intraorbital hopping terms (7,0) in
B1 (even) and (8,0) in A1 (even). In order to maximize the
average of Tr[|FA(k)|2] over the Fermi surface for the singlet
states, order parameters with dab(k) in A1 (even) would be
preferred, but under the condition that these should be nodal
in order to minimize Tr[|FC (k)|2], the best form factor would
be in the B1 ∼ (k2

x − k2
y ) (even) channel. For triplet states,

to maximize Tr[|FA(k)|2], a form factor in B2 ∼ (k2
x − k2

y )kz

(odd) is the most favored. Concerning the choice of singlet
versus triplet states, the superconducting fitness analysis finds
singlet states to be the most robust, which is guaranteed by
atomic SOC, as can be inferred by the larger coefficient for
a-SOC in the first line of Table V.

TABLE VI. Superconducting fitness analysis. Contributions for
the quantity Tr[|FC (k)|2]. Same notation as Table V.

Tr[|FC (k)|2] 2D 3D

[a, b] (1,0) (7,0) (8,0) a-SOC 2D-deg IOH-z k-SOC
[0,0] − − − − − −
[7,0] 3/2 − − 9/4 3/4 15/4
[8,0] − − − 9/4 9/4 9/4
[0,3] − − − 2 * − 2
[7,3] 3/2 − − 9/4 (**) 3/4 3/4
[8,3] − − − 1/4 (***) 9/4 13/4
{[0, 1], [0, 2]} − − − 2 * − 3
{[7, 1], [7, 2]} 3/2 − − 9/4 (**) 3/4 9/4
{[8, 1], [8, 2]} − − − 7/4 (***) 9/4 3/4
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A. Order parameter degeneracy

From Table V we can also review the discussion about
the accidental degeneracies of the order parameters. We start
considering a two-dimensional model. It is usually stated that
the helical and chiral order parameters are degenerate up
to the inclusion of SOC. This argument can be based on a
phenomenological Ginzburg-Landau theory, with SOC being
introduced at the free energy level by evaluating the expec-
tation value of L · S for a given pair wave function [35,36]
or from the analysis of its effects on different pairing mecha-
nisms [37–39]. Here we analyze the degeneracy directly from
a microscopic perspective, considering an orbital and spin
symmetric microscopic interaction. According to the concept
of superconducting fitness [32], in the weak coupling limit,
the critical temperature depends only on the averages over
the Fermi surface of the superconducting fitness parame-
ters. In the context of two-dimensional models, we find that
the order parameters marked with one asterisk in Tables V
and VI have exactly the same FA(k) and FC (k) [assuming
the same form factors dab(k)]. This means that these order
parameters are in fact degenerate and would have the same
critical temperature within a single band scenario (or with
three equivalent bands). This perspective tells us that atomic
SOC does not split the degeneracy between different d-vector
directions, and suggests that a rotation of the d vector in the
presence of magnetic field is possible. In addition, we would
like to highlight that the contributions of interorbital hopping
∼0.01t and SOC ∼0.1t introduce shifts of 10−2 − 10−4 to
Tr[|FA(k)|2], taking as baseline intraorbital hopping terms
(here t stands for the maximal intralayer intraorbital hopping
amplitude [30]). If we neglect these shifts, we have quaside-
generacies which are not protected by symmetry, therefore not
usually discussed (marked by asterisks between parentheses
in Tables V and VI). This fact is related to the almost de-
generate superconducting states recently found in numerical
approaches [30]. There is also an apparent unexpected de-
generacy between singlet and triplet order parameters [3,0]
and [3,3]. A degeneracy would assume the same form factor
dab(k), what is not possible given the different parity of the
order parameter in both cases.

B. Order parameters coupling to the lattice

It is interesting now to consider some consequences of
these symmetry considerations and quasidegeneracies for the
interpretation of experiments under uniaxial strain ∼εxx − εyy,
in which case the point group is reduced from D4 to D2 [29].
Given that inversion and time-reversal symmetries are pre-
served, there are no new (a, b) terms allowed in H0(k), and the
matrix basis [a, b] for the order parameters can be separated
in even and odd momenta as before. As D4 is reduced to D2,
we can make the following correspondence of Irreps: A1 and
B1 → A, A2 and B2 → B1, and E → {B2, B3}. The last corre-
spondence means that the two-dimensional representation E
of D4 splits into two one-dimensional representations of D2,
B2, and B3, under strain.

If we consider the degenerate (and quasidegenerate) basis
matrices suggested by the superconducting fitness analysis,
marked with asterisks in Tables V and VI, we find that these
indicate a (quasi)degeneracy of order parameters with a d

TABLE VII. Summary of the experimental consequences of
accidental degeneracies under strain, indicating if these split or do
not split, as well as if the respective combination of order parameters
would allow for coupling to the c66 mode in ultrasound attenuation
experiments.

Accidental degeneracy Product Under strain Couples to c66

A1 and A2 A2 Split No
A1 and B1 B1 No Split No
A1 and B2 B2 Split Yes
A2 and B1 B2 Split Yes
A2 and B2 B1 No Split No
B1 and B2 A2 Split No
{A1, A2, B1, B2} and E E Split Yes

vector in plane and along the z direction for any type of
intraorbital pairing. Consulting Table III assuming the same
form factor dab(k) for both order parameters, we find that
this implies a (quasi)degeneracy of order parameters in a
one-dimensional representation and in the two-dimensional
representation E . Under strain, these would necessarily map
into different Irreps of D2, corresponding to the splitting of
the superconducting transition.

Interestingly, the mapping of Irreps from D4 to D2 sug-
gests a peculiar possibility: If there are quasidegenerate order
parameters in the Ai and Bi representations, i = {1, 2}, the
introduction of strain would not lead to a splitting of the
superconducting transition since in D2 these belong to the
same Irrep. Going beyond the quasidegeneracies suggested
by the superconducting fitness analysis, we can look at more
exotic cases of accidental degeneracies. For example, consult-
ing Table III, if we choose a form factor dab(k) in B2, its
composition with basis matrices [0,3] or [8,3] in A2, would
generate an order parameter in the B1 representation, while its
composition with the basis matrix [7,3] in B2 would generate
an order parameter in the A1 representation. Note that all
these basis matrices correspond to intraorbital pairing and d
vector along the z direction, with the difference that [0,3]
and [8,3] introduce intraorbital order parameters for orbitals
xz and yz with the same amplitude and phase, while [7,3]
introduces intraorbital order parameters for orbitals xz and yz
with the same amplitude but opposite phase. Note that if the
magnitude of the order parameters for these two orbitals is not
the same, the order parameter should necessarily include basis
matrices [a, 3] (a = 0, 8) and [7,3], and as a consequence the
order parameter would have components both in the B1 and
A1 representations. Note that this is in agreement with the
mapping of the Irreps from D4 to D2. This scenario is likely to
happen around defects and interfaces, where the two orbitals
become inequivalent. Given this example, we summarize in
Table VII the different types of quasidegeneracies and their
consequences for experiments under strain.

Another interesting experiment which allows us to infer
about the symmetry of the order parameter as it couples to the
lattice is ultrasound attenuation. Experiments have observed a
sharp decrease of the transverse sound velocity, related to the
elastic constant c66, in B2, across the critical temperature [26].
The coupling of the order parameter to a lattice mode with B2
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symmetry is in principle expected only if the order parameter
is in the two-dimensional representation E [33]. As a more un-
usual possibility, we can consider the accidental degeneracies
discussed above in order to check in which cases a coupling
to c66 is allowed. The results are summarized in Table VII.
If there is an accidental degeneracy between A1 and B2, or
between A2 and B1, such coupling would be possible. Note,
though, that there is no accidental degeneracy that would not
lead to a splitting of the critical temperature under uniaxial
strain and at the same time would lead to coupling to the
mentioned transverse lattice mode. This result might indicate
that further microscopic work concerning the coupling of
different order parameters to the lattice might be required in
order to understand if there are new selection rules that emerge
due to the multiorbital nature of the order parameter.

C. Time-reversal symmetry

Time-reversal symmetry breaking has been observed be-
low Tc by muon spin rotation [15,16] and polar Kerr effect
measurements [17]. TRSB is associated with multicompo-
nent order parameters, and in the case of Sr2RuO4 it has
been specially related to the chiral p-wave state in the E
representation. Given that the standard chiral p-wave state
does not seem to account for several other experimental
observations, we now need to consider other two-dimensional
order parameters in order to understand this phenomena. As
discussed in Sec. III B, good candidates are the singlet chiral
d-wave state, or triplet two-dimensional representations with
in-plane d vector. Another possibility is the composition of
two quasidegenerate order parameters as discussed in the
previous section, what would fit well with the absence of
splitting at the transition for certain combinations of Irreps.
Recent works have proposed that a singlet order parameter of
the type s + idx2−y2 [40] would also be a possibility. This type
of superposition is beyond what we can infer based on the
symmetry analysis of our study.

V. DISCUSSION AND CONCLUSION

From the extended classification of the order parameters
for Sr2RuO4 in the orbital basis, we find that the best spin
singlet candidate order parameter is given by Eq. (9) with
dab(k) in E ∼ {kxkz, kykz}, while the best triplet order param-
eter is the one in Eq. (10) with dab(k) in B2 ∼ (k2

x − k2
y )kz.

Given the kz dependence of these order parameters, it is now
important to carefully consider interlayer couplings, within a
full three-dimensional model. Recent works highlight the non-
trivial effects of the third dimension in Sr2RuO4, within which
one can identify a nontrivial texture in the spin and orbital
DOF along the Fermi surface [41–43]. Previous theoretical
proposals already have suggested order parameters which are
odd along the z direction [44–47] and therefore should be
closely revisited.

As a first step in this direction, we have evaluated the super-
conducting fitness functions including the out-of-plane terms
in the normal state Hamiltonian which are usually neglected.
One interesting finding is that, within the assumption of a
spin- and orbital-independent interaction, only the interlayer
terms introduce a splitting between triplet states with the d

vector along the z direction or in plane. Note that this effect
is expected to be smaller than the one previously discussed
splitting of the triplet order parameters based on the value of
the atomic SOC.

Richer possibilities can emerge when we consider the
contribution of interorbital pairing [48,49]. As can be in-
ferred from the tables in Appendix C, there is a series of
interorbital order parameters which fall in one of the five
Irreps of the point group and will therefore coexist with
intraorbital components discussed here. A similar analysis
of the superconducting fitness functions can indicate which
basis matrices are degenerate for a given Irrep of the form
factors dab(k). A construction of a detailed Ginzburg-Landau
functional from a microscopic perspective could elucidate
what is the most suitable superposition of these different basis
matrices. This is an important direction for future work in
order to better understand the nature of the order parameter
in Sr2RuO4and how the different building blocks of the order
parameter couple to external fields.

In conclusion, we analyzed Sr2RuO4 from a microscopic
perspective, with the most general single-particle Hamiltonian
describing the normal state based on the orbitals in the t2g

manifold and reclassifying the order parameters in the orbital
basis. These constructions use the point group symmetry and
on the orbital character of the underlying DOFs. We propose
new order parameter candidates which allow for the consistent
understanding of many experimental results available at the
moment. From the observed phenomenology, the best candi-
date order parameters are: a singlet state or a triplet supercon-
ductor with an in-plane d vector. From the superconducting
fitness analysis, we determine that the most robust order
parameter is a trivial singlet state with form factors in the B1

representation. Among the triplet states, an order parameter
with a form factor in the B2 representation is the most robust,
what would imply the presence of both horizontal and vertical
line nodes. Furthermore, we find that for a two-dimensional
model with orbital and spin symmetric interactions, the order
parameter with in plane d vector is in fact degenerate with
the triplet state with d vector along the z direction even in
the presence of atomic SOC. Interestingly, this degeneracy is
lifted only by interlayer processes. Extra quasidegeneracies
can also be identified and could be associated with unusual
types of order parameter superpositions. Our work does not
concern the pairing mechanism but provides a detailed clas-
sification of the order parameters from the orbital perspective
and probe these against the available experimental results and
within the concept of superconducting fitness. Our analysis
should motivate a reconsideration of theories which take into
account the role of interlayer processes and the construction
of interacting models from an orbital perspective, considering
the role of Hund’s coupling [50,51], in order to elucidate the
origin of superconductivity in Sr2RuO4 from a microscopic
perspective.
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APPENDIX A: GELL-MANN MATRICES
AND PAULI MATRICES

The Gell-Mann matrices used in this work are the follow-
ing:

λ1 =
⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠, λ2 =

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠,

λ3 =
⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠, λ4 =

⎛
⎝0 −i 0

i 0 0
0 0 0

⎞
⎠,

λ5 =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, λ6 =

⎛
⎝0 0 0

0 0 −i
0 i 0

⎞
⎠,

λ7 =
⎛
⎝1 0 0

0 −1 0
0 0 0

⎞
⎠, λ8 = 1√

3

⎛
⎝1 0 0

0 1 0
0 0 −2

⎞
⎠. (A1)

We also define

λ0 =
√

2

3

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠. (A2)

Note that all matrices follow Tr[λ2
j ] = 2.

The Pauli matrices used are the following:

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A3)

and

σ0 =
(

1 0
0 1

)
. (A4)

Note that all matrices follow Tr[σ 2
j ] = 2.

APPENDIX B: POINT GROUP D4

As stated in the main text, Sr2RuO4 has the tetragonal
space group I4/mmm or #139. This group consists of oper-
ations in the point group D4 (total of eight operations), as well
as its combination with inversion (totalling 16 operations).
There is also another set of 16 operations which are related to
intra-unit-cell shifts by half lattice constant in all directions.

Given the strong two-dimensional phenomenology of this
material, Sr2RuO4 is usually described by a model on the
square lattice, what would suggest C4 symmetry, but here the
transformations which consider rotations along in-plane axes
are also important because of the odd character of some of
the orbitals along the z direction. We therefore start with D4

symmetry, a group which has eight elements arranged in five
conjugacy classes:

(1) E: Identity.
(2) 2C4: two rotations along the z axis, one by π/2 and

another by 3π/2.

(3) C2: a rotation along the z axis by π .
(4) 2C′

2: rotations by π along the x or y axis.
(5) 2C′′

2 : rotations by π along the diagonals d (x = y) or
d̄ (x = −y).

Given the five conjugacy classes, there are five irreducible
representations. Below we have the character table of D4

highlighting the irreducible representations and the associated
even and odd lowest order basis functions:

D4 E 2C4 C2 2C′
2 2C′′

2 Even Basis Odd Basis

A1 +1 +1 +1 +1 +1 1 xyz(x2 − y2)
A2 +1 +1 +1 −1 −1 xy(x2 − y2) z
B1 +1 −1 +1 +1 −1 x2 − y2 xyz
B2 +1 −1 +1 −1 +1 xy z(x2 − y2)
E +2 0 −2 0 0 {xz, yz} {x, y}

Note that all the operations can be written in terms of
C4,C′

2x,C′′
2d :

E = C4
4 ,

C2 = C2
4 ,

C′
2y = C4C

′
2xC

−1
4 ,

C′′
2d̄ = C4C

′′
2dC−1

4 ,

so if the system is invariant under C4,C′
2x,C′′

2d , it is invariant
under all transformations of the point group. One can think of
these operations as the generators of the group. Note that we
should consider also inversion P to complete the point group
D4h associated with I4/mmm.

1. Generators acting on coordinates

The generators identified above act on the spatial coordi-
nates as follows:

C4 =
⎧⎨
⎩

x → y
y → −x
z → z

, C′
2x =

⎧⎨
⎩

x → x
y → −y
z → −z

,

C′′
2d =

⎧⎨
⎩

x → y
y → x
z → −z

, P =
⎧⎨
⎩

x → −x
y → −y
z → −z

. (B1)

2. Generators acting on orbitals

Considering the orbitals in the t2g manifold in the basis
�† = (c†

yz, c†
xz, c†

xy), the basic operations above can be written
as:

C4 =
⎛
⎝ 0 1 0

−1 0 0
0 0 −1

⎞
⎠,

C′
2x =

⎛
⎝1 0 0

0 −1 0
0 0 −1

⎞
⎠,

C′′
2d =

⎛
⎝ 0 −1 0

−1 0 0
0 0 1

⎞
⎠,

P =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠. (B2)
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3. Generators acting on spin

Considering the spin DOF in the basis �† = (c†
↑, c†

↓), the
basic operations above can be written as:

C4 = σ0 − iσ3√
2

, C′
2x = iσ1,

C′′
2d = i

(σ1 + σ2)√
2

, P = σ0. (B3)

APPENDIX C: IRREDUCIBLE REPRESENTATIONS OF
THE MATRIX BASIS OF THE ORDER PARAMETERS

Here we summarize the properties of the 15 matrices which
would pair with even dab(k) functions:

[a, b] Irrep Orbital Spin

[0,0] A1 Intra Singlet
[4,3] A1 Singlet Triplet
[8,0] A1 Intra Singlet
[5, 2] − [6, 1] A1 Singlet Triplet
[5, 1] + [6, 2] A2 Singlet Triplet
[7,0] B1 Intra Singlet
[5, 2] + [6, 1] B1 Singlet Triplet
[1,0] B2 Triplet Singlet
[5, 1] − [6, 2] B2 Singlet Triplet
[3,0] E (i) Triplet Singlet
−[2, 0] E (i) Triplet Singlet
[4,2] E (ii) Singlet Triplet
−[4, 1] E (ii) Singlet Triplet
[5,3] E (iii) Singlet Triplet
[6,3] E (iii) Singlet Triplet

Here we summarize the properties of the 21 matrices which
would pair with odd dab(k) functions:

[a, b] Irrep Orbital Spin

[2, 2] − [3, 1] A1 Triplet Triplet

[0,3] A2 Intra Triplet

[4,0] A2 Singlet Singlet

[8,3] A2 Intra Triplet

[7,3] B2 Intra Triplet

[2, 1] + [3, 2] A2 Triplet Triplet

[1,3] B1 Intra Triplet

[2, 2] + [3, 1] B1 Triplet Triplet

[2, 1] − [3, 2] B2 Triplet Triplet

[0,1] E (i) Intra Triplet

[0,2] E (i) Intra Triplet

[1,2] E (ii) Triplet Triplet

[1,1] E (ii) Triplet Triplet

[2,3] E (iii) Triplet Triplet

[3,3] E (iii) Triplet Triplet

[6,0] E (iv) Singlet Singlet

−[5, 0] E (iv) Singlet Singlet

[7,1] E (v) Intra Triplet

−[7, 2] E (v) Intra Triplet

[8,1] E (vi) Intra Triplet

[8,2] E (vi) Intra Triplet
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