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Large-S and large-N theories (spin value S and spinor component number N) are complementary, and
sometimes conflicting, approaches to quantum magnetism. While large-S spin-wave theory captures the correct
semiclassical behavior, large-N theories, on the other hand, emphasize the quantumness of spin fluctuations.
In order to evaluate the possibility of the nontrivial recovery of the semiclassical magnetic excitations within a
large-N approach, we compute the large-S limit of the dynamical spin structure factor of the triangular lattice
Heisenberg antiferromagnet within a Schwinger boson spin representation. We demonstrate that, only after
the incorporation of Gaussian (1/N) corrections to the saddle-point (N = ∞) approximation, we are able to
exactly reproduce the linear spin-wave theory results in the large-S limit. The key observation is that the effect of
1/N corrections is to cancel out exactly the main contribution of the saddle-point solution, while the collective
modes (magnons) consist of two spinon bound states arising from the poles of the random phase approximation
propagator. This result implies that it is essential to consider the interaction of the spinons with the emergent
gauge fields and that the magnon dispersion relation should not be identified with that of the saddle-point spinons.
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I. INTRODUCTION

Understanding the role of quantum fluctuations in frus-
trated antiferromagnets has been the focus of multiple studies
over the last decades [1–8]. These efforts were originally
motivated by the resonant valence bond (RVB) state proposed
by Anderson for describing the ground state of the triangular
antiferromagnetic (AF) Heisenberg model [9,10]. The RVB
state is a linear superposition of different configurations of
short-range singlet pairs, a quantum spin-liquid state, whose
resonant character leads to the decay of spin-1 excitations into
pairs of free spin- 1

2 spinons. This strongly quantum mechani-
cal scenario has no classical counterpart, given that semiclas-
sical phases correspond to magnetically ordered states with
integer spin-1 excitations known as magnons [11].

While the semiclassical picture relies on the spin-wave
theory [11,12] (large-S expansion), a systematic and
controlled approach to the RVB picture can be formulated in
the context of large-N theories. Here, the SU(2) Heisenberg
model is extended to a family of Sp(N ) Heisenberg models,
with N being the number of flavors of a generalized spinor. In
this formulation, the spin degree of freedom is represented by
a product of spin- 1

2 parton operators with bosonic (Schwinger)
or fermionic (Abrikosov) character, subject to certain
constraints [12–20]. The resulting Hamiltonian is expressed in
terms of isotropic bond operators that emphasize the quantum
nature of the bonds. The basic strategy is to describe the
low-energy properties of the system, such as the dynamical
spin susceptibility, by expanding the parameter 1/N . The first
term of the expansion corresponds to the saddle-point (SP)
approximation, which is equivalent to the mean field theory,

consisting of a gas of free spin- 1
2 spinons. The 1/N corrections

introduce interactions between spinons mediated by emergent
gauge fields [12,15,17,18,21]. In the extreme N → ∞ limit,
the physics of free spin- 1

2 spinons associated to the SP
solution is exact, while the inclusion of 1/N corrections may
drastically change the SP physics for finite N .

Although large-N treatments were introduced to describe
quantum spin-liquid states [16–18], there is a renewed interest
focused on the reliability of the parton method for describing
the excitation spectrum of magnetically ordered states near
a quantum melting point (QMP). This is mainly motivated
by the increasing number of magnetically ordered quantum
magnets, whose excitation spectrum is not well described by a
simple large-S expansion [22–27]. In this context, the large-N
theory based on the Schwinger bosons (SB) representation is
more adequate since, unlike the fermionic case, it can describe
the magnetically ordered states through the condensation
of the SBs [28–30]. At the SP level, which is equivalent to
the the Schwinger boson mean field theory (SBMFT), the
dynamical spin susceptibility shows a two-free-spinon con-
tinuum (branch cut) which misses the true collective modes
(magnon) of the magnetically ordered state [12,31]. The main
signal of the magnetic spectrum is a pole located at the lower
edge of the two-spinon continuum, that has the single-spinon
dispersion. For collinear antiferromagnets and for a particular
mean field decoupling of the Heisenberg term, this single-
spinon dispersion coincides with the semiclassical linear spin-
wave result. This coincidence was originally interpreted as a
general attribute of the SBMFT [31]. However, it was later
recognized that the single-spinon band (low-energy edge of
the continuum) predicted by the SBMFT for noncollinear
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phases does not coincide with the single-magnon dispersion in
the large-S limit. This fact was interpreted as a strong failure
of the SBMFT [32,33].

As we will see later, this problem has a common root with
the O(4) symmetry of the fixed point at the transition between
the noncollinear magnetic ordering and a gapped Z2 spin-
liquid phase [34]. The bottom line is that the gapless spinon
modes of the SP solution have the same spin velocity. This
property, which is a direct consequence of the invariance of
the Hamiltonian under global spin rotations and under spatial
inversion, has two important implications. The first implica-
tion is that the long-wavelength limit of the SP action has an
emergent O(2N ) symmetry. This symmetry is broken by the
interaction terms (higher-order terms in a 1/N expansion) that
become irrelevant at the quantum critical point that signals the
onset of the Z2 quantum spin-liquid phase [34]. The second
implication is that the three gapless magnetic modes that are
obtained from SP solution must also have the same velocity.
This degenerate triplet of Goldstone modes is not consistent
with the generic low-energy spectrum of noncollinear mag-
nets because the three Goldstone modes cannot be related by
symmetry transformations. In particular, for the 120◦ ordering
of the triangular Heisenberg antiferromagnet, the velocity of
the Goldstone mode associated with rotations about the axis
perpendicular to the plane of the magnetic ordering is different
from the velocity of the other two Goldstone modes [35].

Motivated by these observations, here we demonstrate that
the linear spin-wave theory (LSWT) result for the dynamical
spin susceptibility is recovered in large-S limit upon adding
a 1/N correction to the SP or SBMFT. For simplicity, we
focus on the triangular lattice Heisenberg antiferromagnet
with a 120◦ Néel ground-state ordering, whose quantum
(S = 1

2 ) magnetic excitation spectrum is very different from
the semiclassical (S → ∞) limit [36–38].

We have recently computed the dynamical spin structure
factor of the S = 1

2 triangular lattice antiferromagnet by in-
cluding 1/N corrections (Gaussian fluctuations) around the
SP solution [39]. The predicted excitation spectrum reveals
a strong quantum character consistent with a magnetically
ordered ground state in the proximity of a QMP. The low-
energy part of the spectrum consists of two-spinon bound
states (magnons) induced by fluctuations of the gauge fields,
that emerge as poles of the random phase approximation
(RPA) propagator. A crucial observation is that the main
signal of the SP solution (pole at the lower edge of the two-
spinon continuum) is exactly canceled by the 1/N correction
and the remaining low-energy poles are the poles of the RPA
propagator. In view of this result, it is not surprising that the
poles of the SBMFT theory do not coincide with the poles
of the linear spin-wave theory in the large-S limit [37,40].
In other words, magnons (collective modes of the underlying
magnetically ordered ground state) should not be identified
with the poles that appear in the dynamical spin susceptibility
at the SP level (lower edge of two-spinon continuum), but with
the new poles (poles of the RPA propagator) that appear in the
dynamical spin susceptibility upon adding higher-order 1/N
corrections. In Ref. [39] we demonstrated that, even for S = 1

2
(quantum limit), the spin velocities of these poles basically
coincide with the spin-wave velocities obtained from LSWT
plus 1/S corrections [34,37,40]. In this work we demonstrate

these poles coincide over the full Brillouin zone with the ones
obtained from LSWT in the S → ∞ limit. Furthermore, the
spectral weight of the magnon peaks predicted by LSWT is
also exactly recovered by the SBMFT plus a 1/N correction.

The paper is organized as follows: Sec. II is a general intro-
duction to the large-N Schwinger boson theory for frustrated
antiferromagnets. More specifically, we review the extension
to N > 2 that was proposed by Flint and Coleman [20] by
requiring that the generalized spin operators must preserve
their transformation properties under rotations and under the
time-reversal operation. Section III describes the large-N ex-
pansion of the extended theory around the SP solution. In
Sec. IV we present a formal 1/N expansion of the dynamical
spin susceptibility. In particular, we discuss the four different
Feynman diagrams that appear to order 1/N . In Sec. V we fix
N = 2 to consider the excitation spectrum of triangular lattice
Heisenberg antiferromagnetic model, whose ground state is
known to exhibit 120◦ Néel order and take the large-S limit
(for fixed N) of the SP solution and the higher-order 1/N
corrections. The results of Sec. V are applied in Sec. VI to
demonstrate that the dynamical spin structure factor predicted
by LSWT is exactly recovered when we add a particular 1/N
correction (one of the four Feynman diagrams of Fig. 2) to the
SP result. This is the 1/N correction that was recently included
in Ref. [39]. We conclude the work in Sec. VII with a general
discussion of the implications of our result for other frustrated
magnets.

II. LARGE-N SCHWINGER BOSON THEORY
FOR FRUSTRATED ANTIFERROMAGNETS

In this section we describe the extension of the Schwinger
boson theory for frustrated antiferromagnets to arbitrary num-
ber of flavors N . For this purpose, we use the time-reversal
(symplectic) scheme introduced in Ref. [20]. This discussion
complements the results presented in Ref. [39] for N = 2 and
S = 1

2 , by taking explicitly into account the N dependence
in the theory. We start by considering the Schwinger boson
representation of the generators of SU(N ): Sαβ = b†

αbβ with
α running over N different flavors. Following Ref. [20], we
will request that the large-N theory must preserve not only
the invariance of the Hamiltonian under time-reversal and spin
rotations, but also the properties of the generalized spins under
these transformations. The generators of SU(N ) can be di-
vided into even and odd under a time-reversal transformation.
The odd ones are the generators of the Sp(N ) subgroup of
SU(N ). In the physical case N = 2, the isomorphism between
SU(2) and the symplectic Sp(2) group implies that the three
generators of SU(2) must be odd under time reversal. The
situation is different for N > 2 because the number of gen-
erators of Sp(N ) is smaller than the number of generators of
SU(N ). The generators of Sp(N ) can be constructed by taking
the antisymmetric combination between a generator Sαβ of
SU(N ) and its time-reversed counterpart sgn α sgn βS−β−α

version,

Sαβ = b†
αbβ − sgn α sgn βb†

−βb−α, (1)

where N is assumed to be even and α, β = {−N/2, . . . , N/2}.
Note that the number of independent generators of Sp(N ) is
N (N + 1)/2 because Sαβ = − sgn α sgn β S−α−β . As shown
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in Ref. [20], the Heisenberg Hamiltonian of the generalized
symplectic spins turns out to be

H =
∑
〈i j〉

2Ji j

N
Ŝi · Ŝ j, (2)

where Ji j is rescaled by N to make H extensive in N and the
generalized Heisenberg interaction is given by

Ŝi · Ŝ j ≡ 1

8

∑
αβ

Sαβ (i)Sαβ ( j) =: B†
i jBi j : −A†

i jAi j, (3)

where,

A†
i j = 1

2

∑
α

sgnα b†
iαb†

jᾱ, B†
i j = 1

2

∑
α

b†
iαb jα, (4)

are Sp(N ) invariant bond operators (ᾱ ≡ −α). The bond
operators A†

i j create Sp(N ) singlets, while the B†
i j operators

make them resonate. Furthermore, the Casimir operator of the
symplectic spins is [20]

Ŝ2
i = 1

4 nbi(nbi + N ), (5)

with nbi = ∑
α b†

iαbiα . The Casimir operator results from fix-
ing nbi = NS:

Ŝ2
i = 1

4 N2S(S + 1). (6)

We note that Eq. (2) coincides with the two-singlet bond
structure of the SU(2) Schwinger boson theory for N =2 [41].
In particular, the condition of one SU(2) Schwinger boson per
site, nbi = 2S = 1, that corresponds to S = 1

2 , is recovered
through the Casimir operator for N = 2. This two-singlet
bond structure is adequate to describe noncollinear magnetic
orderings [42,43] and to classify quantum spin-liquid states
with the projective symmetry groups [44,45].

III. SADDLE-POINT EXPANSION

The partition function of the interacting symplectic spins
can be expressed as a functional integral over coherent
states [12,39]

Z =
∫

D[b, b]D[λ] e−
∫ β

0 dτ[
∑

iα b
τ

iα∂τ bτ
iα+ H(b,b)]

× e− ∫ β

0 dτ i
∑

i λ
τ
i (

∑
α b

τ

iαbτ
iα−NS), (7)

with a generalized spin Hamiltonian

H =
∑
〈i j〉

2Ji j

N

(
B

τ

i jB
τ
i j − A

τ

i jA
τ
i j

)
. (8)

The integration measures are D[b, b] = ∏
iτα

db̄τ
iαdbτ

iα
2π i and

D[λ] = ∏
iτ

dλτ
i

2π
. The local constraint nbi = NS is incor-

porated via integration over the time- (τ ) and space-
(i) dependent auxiliary field λτ

i . After introducing the
Hubbard-Stratonovich (HS) transformations that decouple the
AA and BB terms [39], the partition function becomes

Z =
∫

D[W ,W ]D[λ] e−NSeff (W ,W,λ), (9)

where the parameter 1/N plays the role of the Planck’s
constant in a semiclassical expansion. W=W A,W B are the

space- and time-dependent bond HS fields and the effective
action is

Seff (W ,W, λ) =
∫ β

0
dτ

∑
i jr

1

2Ji j
W

rτ
i j W rτ

i j −iS
∑

i

λτ
i

+ 1

N
Tr ln[G−1(W ,W, λ)]. (10)

The integration measure of the HS fields is D[W,W ] =∏
i jτ r

dW
rτ
i j dW rτ

i j

4π iJi j/N , with r=A, B, and G−1≡M is the bosonic dy-
namical matrix [39] with the trace taken over space, time,
and boson flavor indices. Note that the integration measure
dependence on Ji j has changed with respect to Ref. [39] in
order to keep the factor of N in front of Seff [see Eq. (9)].

The effective action (10) is invariant under a U(1) gauge
transformation of the SBs and the auxiliary fields. The phase
of the HS fields W ,W, and the Lagrange multiplier λ repre-
sent the emergent gauge fields of the SB theory [12].

To compute the partition function (9) we expand the effec-
tive action Seff about its SP solution

Seff ≡
∞∑

n=0

∑
α1...αn

S(n)
α1...αn

�φα1 . . . �φαn , (11)

with

S(n)
α1...αn

= 1

n!

∂nSeff

∂φα1 . . . ∂φαn

∣∣∣∣
SP

, (12)

and �φα = φα − φSP
α . The fields φα are the auxiliary fields

{W rτ
i j ,W rτ

i j , λτ
i } (α includes field, space i, and time τ indices)

and φSP
α is the SP solution that fulfills the condition S(1)

α = 0:

∂Seff

∂φα

∣∣∣∣
SP

= ∂ S0

∂φα

∣∣∣∣
SP

+ 1

N
Tr[GSPvα] = 0, (13)

where S0 is equal to the first line of Eq. (10) and GSP is the
saddle-point Green’s function and vα = ∂G−1

∂φα
is the so-called

internal vertex. S(0) coincides with the effective action SSP
eff

evaluated at the SP solution, so the effective action can be
rewritten as [12,39]

Seff = SSP
eff +

∑
α1α2

S(2)
α1α2

�φα1�φα2 + Sint, (14)

with

Sint =
∞∑

n=3

∑
α1...αn

S(n)
α1...αn

�φα1 . . . �φαn . (15)

It is straightforward to show that

SSP
eff =

∫ β

0
dτ

⎛
⎝1

2

∑
i jr

1

Ji j
W

rτ
i j W rτ

i j −iS
∑

i

λτ
i

⎞
⎠∣∣∣∣

SP

+ 1

N
Tr ln

[
G−1

SP

]
, (16)

S(2)
αα′ = 1

4Ji j

(
δα,W rτ

i j
δα′,W rτ

i j
+ δα,W

rτ
i j
δα′,W rτ

i j

)

− 1

2N
Tr ln [GSPvαGSPvα′], (17)
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and

S(n�3)
α1...αn

= (−1)n+1

n!n

∑
P(α1...αn )

1

N
Tr ln[GSPvP1 . . .GSPvPn ], (18)

where P(α1 . . . αn) denotes all the different permutations of
(α1 . . . αn). SSP

e f f , S(2)
αα′, and S(n�3)

α1...αn
are all of order N0 because

the trace over the flavor index that appears in Eqs. (16)–(18)
scales like N . Sint is neglected from Eq. (14) at the Gaussian
level and the free energy F = − 1

β
lnZ per flavor becomes

F (2)

N
= 1

β
SSP

eff − 1

Nβ
Tr ln[S(2)], (19)

with β = 1/T . Here, the trace must be computed over time,
space, and the auxiliary field index. Consequently, the con-
tribution of the Gaussian fluctuations to the free energy per
flavor is of order 1/N .

IV. DYNAMICAL SPIN SUSCEPTIBILITY: 1/N EXPANSION

The computation of the dynamical spin susceptibility re-
quires to couple the symplectic spins (1) to space- and time-
dependent external sources jτiαβ ,

Js =
∑

i

jτiαβSτ
βα (i), (20)

where the sum over repeated flavor indices is assumed. After
adding this term to the Lagrangian in Eq. (7), the dynamical
susceptibility is obtained from the generatrix Z[ j] [12,39]

χαβ (1, 2) = ∂2lnZ[ j]

∂ jαβ

1 ∂ j βα

2

∣∣∣∣
j=0

, (21)

where 1 and 2 denote space and time points r1 and r2,
respectively. The above expression can be split into two
contributions,

χ = χI + χII , (22)

with

χI αβ (1, 2) = N

Z

∫
D[φ, φ]

(
− ∂2Seff

∂ jαβ

1 ∂ jβα

2

∣∣∣∣
j=0

)

× e−NSeff (φ,φ, j=0) (23)

FIG. 1. Diagrammatic representation of the external loops corre-
sponding to one external vertex S(n+1) (a), and two external vertices
S(n+2) (b) [12].

and

χII αβ (1, 2) = N2

Z

∫
D[φ, φ]

(
∂Seff

∂ jαβ

1

∣∣∣∣
j=0

∂Seff

∂ jβα

2

∣∣∣∣
j=0

)

× e−NSeff (φ,φ, j=0). (24)

The partial derivatives of the effective action are given by

N
∂Seff

∂ jαβ

1

∣∣∣∣
j=0

= Tr [G( j = 0)uαβ (1)],

N
∂2Seff

∂ jαβ

1 ∂ jβα

2

∣∣∣∣
j=0

= Tr[G( j =0)uαβ (1) × G( j =0)uβα(2)],

(25)

where uαβ (1) ≡ ∂G−1/∂ jαβ

1 is the so-called external vertex.
By using the SP expansion (14) and defining

S(n+1)
α1...αn;(ri ;αβ ) = N

∂S(n)
α1...αn

( j)

∂ jαβ
i

∣∣∣∣
j=0

(26)

and

S(n+2)
α1...αn;(r1αβ ),(r2;βα) = N

∂2S(n)
α1...αn

( j)

∂ jαβ

1 ∂ jβα

2

∣∣∣∣
j=0

, (27)

which are diagrammatically represented in Fig. 1, we obtain
an explicit expansion of χI αβ (1, 2) and χII αβ (1, 2) [Eqs. (23)
and (24)] in powers of 1/N :

χI αβ (1, 2)= 1

Z

∫
[DφDφ]

(
−

∞∑
n=0

S(n+2)
α1...αn;(1αβ ),(2βα)�φα1 . . . �φαn

)[ ∞∑
L=0

(−N )L

L!
(Sint )

L

]
e−N (�φαS(2)

αα′ �φα′ +Ssp
eff ), (28)

χII αβ (1, 2) = 1

Z

∫
[DφDφ]

(
−

∞∑
n=0

S(n+1)
α1...αn;(1αβ )�φα1 . . . �φαn

)(
−

∞∑
n=0

S(n+1)
α1...αm;(2βα)�φα1 . . . �φαm

)

×
[ ∞∑

L=0

(−N )L

L!
(Sint )

L

]
e−N (�φαS(2)

αα′ �φα′ +Ssp
eff ), (29)

where

Z=
∫

[DφDφ]

[ ∞∑
L=0

(−N )L

L!
(Sint )

L

]
e−N (�φαS(2)

αα′ �φα′ +Ssp
eff ).

(30)

Note that diagrams that arise from χI αβ must contain two
external lines that arrive to the same loop [see Fig. 1(b)].
In contrast, the two external lines of the diagrams that arise
from χII αβ are connected to different loops. The integrals of an
even number of fields φ are the sum of all possible pair con-
tractions (Wick’s theorem) that defines the RPA propagator
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(a) (b)

(c) (d) (e)

FIG. 2. Diagrammatic representation of (a) saddle-point contri-
bution and (b)–(e) the 1/N corrections to the dynamical spin sus-
ceptibility. In our calculation we only include the contribution (b) for
reasons explained in the text. The diagram (c) corresponds to a vertex
correction relative to (a), while the diagrams (d) and (e) include a
Hartree-Fock correction of the single-spinon propagator. The dashed
lines represent the external sources, the full lines represent spinon
propagators GSP at the SP level, and the wavy lines represent the
RPA propagator D

N [12]. Solid and empty circles denote internal u
and external v vertices, respectively.

Dα1α2 = [2S(2)]−1
α1α2

:

1

N
Dα1α2 = 1

Z

∫
[DφDφ] φα1φα2 e−N�φαS(2)

αα′ �φα′ . (31)

The diagrams for χI and χII [see Eqs. (28) and (29)] are
constructed as follows [12]: The elements S(n+1) and S(n+2)

contribute to external loops with n internal vertices and one
and two external vertices, respectively. The derivatives of
S(n) [see Eqs. (16)–(18)] with respect to ji are of order 1/N
because each source ji carries a flavor index. Consequently,
according to the definition of S(n+1) and S(n+2) given by
Eqs. (26) and (27), these external loops are of order N0. The
terms of the expansion of Sint in Eq. (15) contribute to internal
loops with n � 3 internal vertices. Even though Sint is of order
N0, it is multiplied by factor N , implying that each diagram
contains a factor NL, where L is the number of internal loops.
In addition, each contraction of the φ fields gives rise to an
RPA propagator D (of order N0) divided by N . Summarizing,
each external loop contributes with a factor of order N0, each
internal loop contributes with a factor of order N , and each
field contraction contributes with a factor 1/N . In other words,
a diagram with L internal loops and P RPA propagators is
of order ( 1

N )P−L. Figure 2(a) shows the SP contribution to
the dynamical susceptibility, while Figs. 2(b)–2(e) show all
the diagrams of order 1/N that contribute to χI and χII . In
particular, the diagram of Fig. 2(b) corresponds to χII for
L = 0 and P = 1, while Figs. 2(c) and 2(d) are the diagrams
corresponding to χI for L = 0 and P = 1. The diagram shown
in Fig. 2(e) corresponds to χI and it is the only diagram that
arises from non-Gaussian corrections of the effective action
with one internal loop (L = 1) and two RPA propagators
(P = 2).

V. SU(2) CASE: THE 120◦ NÉEL-ORDERED STATE

The large-N Schwinger boson theory developed in the
previous sections is valid for the family of Sp(N ) models.
Therefore, given that SU(2) ∼= Sp(2), the SU(2) case is re-
covered by fixing N = 2 in the above expressions. To study
the magnetic excitation spectrum of the 120◦ Nèel-ordered
ground state of the triangular SU(2) Heisenberg antiferromag-
net, we must add a symmetry-breaking field h that selects
the ordered ground state in the thermodynamic limit [39].
The field h couples linearly to Nèel order parameter and it
is set to zero after taking the thermodynamic limit. In the
SB language, this process corresponds to condensing the SBs
in a single-particle state (the single-spinon ground state is
degenerate) that spontaneously breaks the SU(2) symmetry
of the spin Hamiltonian.

Only the diagram shown in Fig. 2(a) contributes to the
dynamical spin susceptibility at the SP level (SBMFT):

χSP
I μν (q, iωn) = 1

2 Tr[GSPuμ(q, iωn)GSPuμ(−q,−iωn)]. (32)

The index μ = x, y, z refers to the three spin components and
uμ is the external vertex that couples the spin excitations
to the q component of an external magnetic field. It can be
shown that χSP

II μμ = 0 [39]. The magnetic excitation spectrum
of χSP

I μμ consists of a two-spinon continuum (branch cut), cor-
responding to a gas of free spin- 1

2 spinons. The condensation
of the SBs also generates a delta-function contribution (pole)
at the lower edge of the two-spinon continuum. In addition,
due to the relaxation of the local constraint, the magnetic
spectrum also exhibits spurious modes arising from density
fluctuations of the SBs [12,15,39,46,47]. The inclusion of
the 1/N correction corresponding to the diagram shown in
Fig. 2(b) leads to the following contribution [39]:

χfl
II μν (q, iωn) =

∑
α1α2

1

2
Tr

[
GSP vφα1

GSP uμ(q, iωn)
]

× 1

2
Dα2α1 (q, iωn)

× 1

2
Tr

[
GSP vφα2

GSP uν (−q,−iωn)
]
. (33)

The factors of 1/2 in front of each trace must be included to
avoid double-counting of momenta (see below). In Ref. [39]
we demonstrated that this particular 1/N correction introduces
a drastic change in the dynamical spin susceptibility. In the
first place, it cancels out the SP poles at the lower edge of the
two-spinon continuum and it introduces new poles, which are
the poles of the RPA propagator D. As we will show below,
these new poles are associated with the collective modes
(magnons) of the theory and they correspond to two-spinon
bound states generated by the fluctuations of the gauge fields.
In the second place, the spurious modes of the SP solution
are also exactly canceled out. It is important to note that the
contribution from this diagram is exactly equal to zero for a
singlet ground state (h = 0) [15]. However, we have recently
shown in Ref. [39] that it becomes finite for the magneti-
cally ordered ground state under consideration. Moreover, for
N = 2 and S = 1

2 , the magnon dispersion obtained from this
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particular 1/N correction has Goldstone modes at the � and
±K points, whose velocities agree very well with the results
obtained with LSWT plus 1/S corrections [34,37].

Below we demonstrate another virtue of this 1/N correc-
tion. The LSWT result for the dynamical spin susceptibility,
which is exact in the large-S limit, is recovered from the
large-N expansion by keeping only the diagrams shown in
Figs. 2(a) and 2(b) [see Eqs. (32) and (33)] and taking the
S → ∞ limit.

A. Large-S limit

The SP approximation is equivalent to the SBMFT de-
scribed by the quadratic mean field Hamiltonian [46]

HB =
∑

k

ψ
†
kHMF(k)ψk, (34)

with ψk = (bk,↑, b†
−k,↓),

HMF(k) =
⎛
⎝λSP + γ B

k −γ A
k

−γ A
k λSP + γ B

k

⎞
⎠ (35)

and

γ A
k =

∑
δ>0

JδAδ sin (k · δ), (36)

γ B
k =

∑
δ>0

JδBδ cos (k · δ). (37)

The amplitudes iAδ and Bδ are the SP values of the bond
operators Ai,i+δ and Bi,i+δ, while iλSP is the SP value of
the Lagrange multiplier that was introduced to implement
the local constraint b†

i↑bi↑ + b†
i↓bi↓ = 2S. The single-spinon

Green’s function is given by the 2 × 2 matrix

GSP
0 (k, iωn) =

⎛
⎝ λSP+γ B

k +iωn

ε2
k+ω2

n
− γ A

k
ε2

k+ω2
n

− γ A
k

ε2
k+ω2

n

λSP+γ B
k −iωn

ε2
k+ω2

n

⎞
⎠. (38)

The poles of this Green’s function determine the single-spinon
dispersion

εk =
√(

λSP + γ B
k

)2 − (
γ A

k

)2
. (39)

The SP single-spinon spectrum has two degenerate minima
at k = ±Q

2 . On a finite-size lattice, the minimum energy ε± Q
2

is proportional to 1/Ns, where Ns is the number of lattice
sites, and the ground state of HB is a singlet state. Upon taking
the thermodynamic limit Ns → ∞, the spectrum becomes
gapless at ±Q

2 and the bosons condense at T = 0. Given
that there are four single-particle ground states (two gapless
points with momenta ±Q

2 and two possible spin orientations),
there is a continuous ground-state degeneracy corresponding
to different ways of condensing the bosons. The infinitesimal
symmetry-breaking field h selects a ground state with a par-
ticular 120◦ magnetic ordering [39]. It is then convenient to
work in the twisted spin reference frame where the selected
120◦ magnetic ordering becomes an in-plane ferromagnetic
(FM) ordering along the x axis. The real-space Schwinger
boson operators become bi↑ = b̃i↑e−iQ·r/2 and bi↓ = b̃i↓eiQ·r/2

in the new reference frame and the FM magnetic ordering

arises from condensation at momentum k = 0. After taking
the thermodynamic limit and sending h to zero (the two
operations do not commute), the SP Green’s function of the
spinons becomes

GSP(k, iωn) = GSP
0 (k, iωn) + (2π )2δ(k)GSP

c (iωn), (40)

where GSP
0 (k, iωn) and GSP

c (iωn) are the contributions
from the noncondensed and condensed bosons,
respectively. After extending the two-component
representation ψk to the four-component representation
�k = (bk−Q/2,↑, b̄−k+Q/2↓, bk+Q/2↓, b̄−k−Q/2,↑), we obtain

GSP
0 (k, iωn) =

(
GSP

0

(
k − Q

2 , iωn
)

0
0 GSP

0

( − k − Q
2 , iωn

)),

(41)

whose single-spinon pole locates at ε±k− Q
2
. For the condensed

spinons, we have

GSP
c (iωn) = nc�c

�2
c + ω2

n

⎛
⎜⎝

1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1

⎞
⎟⎠, (42)

where �c = h
2 and nc is the density of the condensate. The

symmetry-breaking field is sent to zero in the thermodynamic
limit, meaning that h = 0+.

1. Large-S limit of the saddle-point solution

The self-consistent SP equations (13), for arbitrary spin
size S, become [39]

Bδ =
∫

d2k
(2π )2

cos(k · δ)
λSP + γ B

k

2εk
+ nc

2
cos

[
Q
2

· δ

]
,

Aδ = i
∫

d2k
(2π )2

sin(k · δ)
γ A

k

2εk
+ i

nc

2
sin

[
Q
2

· δ

]
,

2S + 1 =
∫

d2k
(2π )2

λSP + γ B
k

εk
+ nc. (43)

In all cases, the integral that appears in each of the three ex-
pressions is the contribution from the noncondensed spinons,
while the second term, proportional to nc, is the contribution
from the condensate.

In the large-S limit, the ground state is the 120◦ Néel-
ordered state characterized by 〈Si〉 = Sni with ni the unit
vector along the local moments. In the SBMFT, 〈Si〉 =
1
2 〈biα〉∗σαβ〈biβ〉, where σ is the vector of Pauli matrices,
implying that 〈biβ〉 ∼ √

S. This observation fixes the scaling
of the SP parameters: nc = 〈biα〉∗〈biα〉 ∼ S and Aδ, Bδ ∼ S,
for large enough S, implying that γ A

k , γ B
k , and εk are also

O(S). Back to the saddle-point equations (43), we observe that
the contribution from the noncondensed bosons is of order S0,
while the contribution from the condensed bosons is of order
S, implying that these equations become much simpler,

nc → 2S, Bδ → S cos

[
Q
2

· δ

]
, Aδ → iS sin

[
Q
2

· δ

]
,

(44)
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∼ O(S0)

(a) (b)

(c) (d)

(e) (f)

T
iωn

∼ O(S)

∼ O(S−1)

∼ O(S0)

∼ O(S0)

∼ O(S0)

FIG. 3. Power-counting rule for the S power of each Feynman
diagram. Solid line: Noncondensed boson propagator GSP

0 . Double
line: Condensed boson propagator GSP

c . Wavy line: RPA propagator
D of the fluctuation fields. Dashed line: External source. Solid and
empty circles denote internal v and external u vertices, respectively.

in the S → ∞ limit. Note that the saddle-point value of the
Lagrange multiplier is equal to λSP = 3

2 JS, as required by the
gapless nature of εk.

This solution indicates that the rescaled mean-field Hamil-
tonian H̃B = HBS−1 and frequency ω̃ = ωS−1 are indepen-
dent of S or O(S0) in the large-S limit. Consequently, each
integral over frequency (summation over Matsubara frequen-
cies) introduces an S factor:

∫
dω
2π

= S
∫

dω̃
2π

. In addition,
according to Eq. (41), the Green’s function G0 of the noncon-
densed Schwinger bosons scales as S−1. In contrast, Eq. (42)
indicates that Green’s function of the condensed Schwinger
bosons Gc scales as S0 (note that �c = h

2 ∼ S). This analysis
provides a 1/S power-counting rule for evaluating relative
contributions of different Feynman diagrams at the SP level
[see Figs. 3(a), 3(b), and 3(f)].

The classical limit is then dominated by the contributions
from the condensed spinons. For instance, the SP contribution
to the ground-state energy per site becomes [41]

ESP =
∑
δ>0

Jδ

(
B2

δ − |Aδ|2
) → −3

2
JS2, (45)

which corresponds to the classical limit (S → ∞). The mag-
netic moment becomes nc/2 = S, which is also the expected
value in the classical limit.

2. Corrections beyond the saddle-point level

As G−1 is linear in the fields φα , the internal vertex turns
out to be of order S0: vα = ∂G−1

∂φα
∼ S0. The RPA propagator

of the fluctuation fields can be expressed as D−1(q, iωn) =
2[�0 − �(q, iωn)], where [39]

�φα1 φα2
(q, iωn) = 1

8
Tr

[
GSPvφα1

GSP vφα2

]
(46)

is the polarization operator and �0 is a diagonal matrix con-
taining the inverse of the exchange couplings 1/4Ji j along the
diagonal except for the entries corresponding to λ-λ deriva-
tives, which are zero. By replacing the Green’s function (40)
in the polarization operator (46) and applying the power-
counting rule shown in Fig. 3, we obtain �αβ (q, iωn) ∼ S0

in the large-S limit (the dominant contribution arises from a
loop containing one condensed and one noncondensed spinon

(a) (b)

FIG. 4. Feynman diagrams of the dynamical structure factor in
the large-S limit. (a) Saddle-point contribution. (b) 1/N diagram that
accounts for the true collective modes (magnons) of the magnetically
ordered ground state. These modes appear as poles of the RPA
propagator represented as a wavy line.

propagator). It is then clear that D(q, iωn) is O(S0) in the
large-S limit [Fig. 3(c)].

The resulting power-counting rule for each Feynman dia-
gram is (1/S)Pnc−L� where Pnc is the number of propagators
of noncondensed bosons and L� is the number of indepen-
dent loops (i.e., the number of independent integrals over
frequency).

VI. DYNAMICAL SPIN STRUCTURE FACTOR

We are now ready to take the large-S limit of the T = 0
dynamical spin structure factor for the physical SU(2)
(N = 2) version of the spin model:

Sμν (q, ω) = − 1

π
Im [χμν (q, ω)]. (47)

The off-diagonal components vanish for symmetry reasons.
At the SP level, the magnetic susceptibility is obtained by an
analytic continuation iωn → ω + i0+ of χSP

I μν (q, iωn) given in
Eq. (32), which corresponds to the diagram shown in Fig. 2(a).
Along the ω axis, the imaginary part of χSP

I μν (q, ω) includes
a two-spinon continuum arising from two noncondensed
spinons [spinon lines in Fig. 4(a) with momentum k + q and k
are both noncondensed bosons] and δ peaks arising from one
condensed spinon with k = 0 and one noncondensed spinon
with momentum k = ±q in Fig. 4(b). The resulting dispersion
of these δ peaks is ε±q− Q

2
. The in-plane components of the

dynamical structure factor Sxx(q, ω) and Syy(q, ω) contain
four δ peaks centered at ε±q+ Q

2
and ε±q− 3Q

2
for each q, while

the out-of-plane component Szz(q, ω) contains two δ peaks
centered at ε±q− Q

2
for each q. Due to inversion symmetry,

the six δ peaks form three groups of degenerate pairs [see
Fig. 5(a)].

The weight of the two-spinon continuum vanishes in the
large-S limit because GSP

0 ∼ S−1 and GSP
c ∼ S0. The remain-

ing δ-peak contributions (corresponding to the poles of the
SBMFT) lead to a single-particle spectrum, which is qual-
itatively different from the single-magnon spectrum of the
LSWT (see Fig. 5). The first qualitative difference appears
in the number of gapless modes. While the single-magnon
spectrum of the LSWT has only three gapless (Goldstone)
modes, which are linear in momentum, the dispersion relation
of the poles obtained at the SP level also includes spurious
quadratic modes that become gapless in the S → ∞ limit.
The second qualitative difference appears in the velocities
of the three linear Goldstone modes. The LSWT correctly
predicts that the velocity of the Goldstone mode associated
with spin rotations along the axis perpendicular to the plane
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FIG. 5. (a) Dispersion relation of the poles of the dynamical spin
susceptibility in the laboratory reference frame at the SP level. Each
line is doubly degenerate. The spectral weight (residue of the pole)
is zero for the dashed lines that correspond to in-plane modes [see
(b)], while it is finite for the full lines that correspond to in-plane
and out-of-plane modes. (b) Dynamical spin structure factor obtained
from the SBMFT (red line) and from LSWT (black line). The color
scale represents the spectral weight.

defined by the coplanar spin ordering is different from the
velocity of the other two Goldstone modes associated with
the two independent in-plane rotations. In contrast, the three
linear modes of the magnetic excitations that are obtained at
the SP level have exactly the same velocity. This unexpected
degeneracy arises from a simple fact: The four gapless spinon
modes have the same velocities because of the invariance of H
under global SU(2) spin rotations (for the moment we are fo-
cusing on N = 2), that connect the spin-up with the spin-down
spinon branches, and under spatial inversion that connects the
spinon branches ±Q/2 in the original reference frame, while
preserving the spin quantum number. This degeneracy can
be associated with an enlarged O(4) symmetry that emerges
upon taking the long-wavelength limit of the SP action. This
O(4) symmetry is broken by the 1/N corrections to the action,
i.e., by the terms that account for the interactions between
spinons mediated by fluctuations of the gauge fields. Note
that these interaction terms become irrelevant at the quantum

critical point that signals the transition into a spin-liquid state,
implying that the fixed point that describes this transition has
an emergent O(4) symmetry [48]. For arbitrary values of N ,
the emergent symmetry becomes O(2N ).

In summary, going back to N = 2, the SP result provides an
incorrect description of the low-energy modes of noncollinear
ordered magnets because (i) the low-energy spectrum includes
extra unphysical or spurious gapless modes with a quadratic
dispersion and (ii) the three Goldstone modes form a degener-
ate triplet due to an extra “isospin” SU(2) symmetry, which is
broken by the higher-order terms in the 1/N expansion. This
symmetry analysis demonstrates that the correct collective
modes (magnons) can only be obtained from the SB theory
by going beyond the SP level [39].

To see how the above-mentioned analysis is reflected by
our calculations, we note that after taking the S → ∞ limit,
εq includes two gapless modes at q ± 3Q/2 with a quadratic
dispersion, in addition to the gapless modes with linear dis-
persion at q ± Q/2. The quadratic modes have a finite-energy
gap for finite-S values, while the linear modes remain gapless
for arbitrary values of S. Given that ε±q+ Q

2
, ε±q− 3Q

2
, and ε±q− Q

2

correspond to shifts of εq by three different wave vectors, the
δ peaks of the dynamical structure factor should also exhibit
linear and the quadratic gapless modes. Indeed, as indicated
in Fig. 5(a), the gapless modes appear at the � point and at the
K points (ordering wave vector Q) of the Brillouin zone. The
two in-plane modes at ε±q− 3

2 Q, indicated with dashed lines
in Fig. 5(a), have no spectral weight. Consequently, as it is
shown in Fig. 5(b), the dynamical structure factor exhibits
only two different doubly degenerate gapless modes. Both of
them are linear at the � point, while one is linear and the other
one is quadratic at the K1 and K ′

1 points. In contrast, Fig. 5(b)
shows the three linear Goldstone modes at the �, K1, and
K ′

1 points that appear in the dynamical structure factor of the
LSWT. As expected from the O(4) symmetry of the SP action,
the linear spinon modes have the same velocity v = 3

2 JS at
both the � and K points, while the Goldstone modes of the

LSWT have velocities v� = 3
√

3
2 JS and vK = 3

2

√
3
2 JS at the

� and K points, respectively.
The key observation of this work is that the correct dynam-

ical spin structure factor in the large-S limit is recovered only
after adding the 1/N correction corresponding to the diagram
shown in Fig. 4(b). Note that both diagrams in Figs. 4(a)
and 4(b) are of order S0. The effect of this 1/N correction is
twofold: It cancels out exactly the poles of the SP contribution
(the quadratic and the linear ones), while a new quasiparticle
peak (delta function) emerges from the pole of the RPA
propagator of the fluctuation fields [note that the poles of
the RPA propagator are also poles of the diagram shown in
Fig. 2(b) [39]]. The cancellation of the SP contribution along
the spinon dispersion, i.e., on the shell ω = ω± = ε±q− Q

2
, for

the zz component of the dynamical spin susceptibility can be
derived as follows [12,49]. After noticing that the trace in
Eq. (33) reduces to Tr[Gsp vφα1

Gsp uz] = Tr[Gsp
0 vφα1

Gsp
c uz] +

Tr[Gsp
c vφα1

Gsp
0 uz], [39] it is possible to demonstrate that

lim
ω→ω±

(ω − ω±)Tr
[
Gsp

0 vφα1
Gsp

c uz(q, iω)
]

= lim
ω→ω±

(ω − ω±)Cq
(
�

(c)
φα1 ,WA

+ �
(c)
φα1 ,W A

)
, (48)
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where �
(c)
φα1 ,φα2

= 1
8 Tr[Gsp

0 vφα1
Gsp

c vφα2
]+ 1

8 Tr[Gsp
c vφα1

Gsp
0 vφα2

]
and Cq is a q-dependent proportionality constant. Further-
more, the RPA propagator can be safely approximated by
D(q, iω±) ≈ [2(�0 − �(c) )]−1(q, iω±) in the large-S limit.
Then, by replacing D and the above trace in Eq. (33), we
find that the poles of χ

sp
I zz along the SP spinon dispersion are

exactly cancelled with poles of χ
f l

II zz at the same frequency.
A similar analysis can be applied to the in-plane xx and
yy components of the dynamical spin susceptibility. It is
important to remark that this cancellation holds for any value
of S [39].

On the other hand, the poles of the RPA propagator are
zeros of the fluctuation matrix (17):

S(2)(q, ω) · X = 0. (49)

The first four components of X = (X1(δ), X2(δ), X3(δ),
X4(δ), X5) correspond to fluctuations of the Hubbard-
Stratonovich fields W A

δ , W
A
δ , W B

δ , W
B
δ , respectively, and X5 is

the fluctuation of the Lagrange multiplier.
The pole equation turns out to depend on four linear

combinations of X , namely,

R1 ≡ c1 + c2 + c−
3 + c−

4 , (50)

R2 ≡ c1 − c2 − c+
3 + c+

4 + 4iX5, (51)

R3 ≡ c̄1 + c̄2 − c̄−
3 − c̄−

4 , (52)

R4 ≡ c̄1 − c̄2 + c̄+
3 − c̄+

4 − 4iX5, (53)

where

c1(q)=
∑

δ

F−∗
q (δ)X1(δ),c2(q)=

∑
δ

F−∗
q (δ)X2(δ),

c−
3 (q)=

∑
δ

F−∗
q (δ)X3(δ),c+

3 (q)=
∑

δ

F+∗
q (δ)X3(δ),

c−
4 (q)=

∑
δ

F−∗
q (δ)X4(δ),c+

4 (q)=
∑

δ

F+∗
q (δ)X4(δ),

and

c̄1(q)=
∑

δ

F̄−∗
q (δ)X1(δ),c2(q)=

∑
δ

F̄−∗
q (δ)X2(δ),

c̄−
3 (q)=

∑
δ

F̄−∗
q (δ)X3(δ),c+

3 (q)=
∑

δ

F̄+∗
q (δ)X3(δ),

c̄−
4 (q)=

∑
δ

F̄−∗
q (δ)X4(δ),c+

4 (q)=
∑

δ

F̄+∗
q (δ)X4(δ).

Here, we have introduced the following two functions:

F∓
q (δ) = ei(q− Q

2 )·δ ∓ ei Q
2 ·δ,

F̄∓
q (δ) = F∓∗

−q (δ) = ei(q+ Q
2 )·δ ∓ e−i Q

2 ·δ.

R1, . . . , R4 form a closed set of equations:

M1(ω)

(
R2

R4

)
= 3(1 − γq)ω

(
R1

R3

)
, (54)

M2(ω)

(
R1

R3

)
= 3

2
(1 + 2γq)ω

(
R2

R4

)
, (55)

FIG. 6. Dynamical spin structure factor obtained from the
Schwinger boson theory by including the diagrams shown in
Figs. 4(a) and 4(b) (red). The black lines correspond to the result
from LSWT. (a) Shows the magnon dispersion relation (poles of
the dynamical spin structure factor), while (b) shows the momentum
dependence of the intensity of the magnon peak.

where γq = 1
3 (cos kx + 2 cos kx

2 cos
√

3
2 ky), and

M1(ω)=
⎛
⎝ω2 − ε2

q− Q
2

− 1
2ω2

q ω2 − ε2
q− Q

2

ω2 − ε2
q+ Q

2

ω2 − ε2
q+ Q

2

− 1
2ω2

q

⎞
⎠, (56)

M2(ω) =
( −ε2

q− Q
2

ω2 − ε2
q− Q

2

ω2 − ε2
q+ Q

2

−ε2
q+ Q

2

)
. (57)

At ω=ωq = 3
√

(1 − γq)(1 + 2γq), the product of the two
matrices is proportional to the 2 × 2 unit matrix

M1(ωq)M2(ωq) = 1
2ω4

qI2×2. (58)

Here, we have used a simple relation between the single-
spinon dispersion obtained from the SBMFT and ωq:

ε2
q− Q

2
+ ε2

q+ Q
2

= 1
2ω2

q. (59)

In other words, Eqs. (54) and (55) are satisfied for any choice
of R2, R4 with R1, R3 determined by Eq. (54) when ω=ωq.
Given that ωq is the single-magnon dispersion of the LSWT,
this demonstrates that the poles of the RPA propagator coin-
cide with the poles of the LSWT [see Fig. 6(a)]. In addition,
as shown in Fig. 6(b), the spectral weight of the magnon peak,
defined as W (q)=∫

dω S(q, ω), is also exactly captured by the
two diagrams in Figs. 4(a) and 4(b). We note that there are
other diagrams (or order 1/N and higher) that scale as S0.
Consequently, it is surprising that only the two diagrams in
Figs. 4(a) and 4(b) are required to obtain the exact magnetic
susceptibility in the large-S limit.
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VII. DISCUSSION

In summary, we have shown that it is necessary to go
beyond the SP level of the Schwinger boson theory of
the triangular-lattice antiferromagnet in order to capture the
correct collective modes in the large-S limit. These modes
are two-spinon bound states generated by the interaction of
spinons with the auxiliary fields (emergent gauge fields). The
magnon energies are determined by the poles of the RPA
propagator. This result must be contrasted with the dynamical
susceptibility at the SP level, where the quasiparticle disper-
sion relation coincides with the single-spinon dispersion.

Although we have not shown it in this paper, this conclu-
sion remains valid for the one-singlet bond AA decomposi-
tion [15,17,18] of the Heisenberg interaction and for other
noncollinear magnetic orderings of frustrated Heisenberg
Hamiltonians. This result, along with the long-wavelength
limit of the S = 1

2 theory that we presented in Ref. [39],
demonstrate that the Schwinger boson theory can correctly
capture the low-energy magnons of the underlying magneti-
cally ordered state. In addition, unlike the semiclassical 1/S
expansion, the Schwinger boson theory is well suited for
describing the higher-energy continuum associated with the
formation of two-spinon bound states (magnons) with long
confinement length scale. Given that this is the expected
scenario for magnetically ordered states in the proximity of
a QMP, we conclude that the Schwinger boson theory can
be a more adequate tool for describing the spin dynamics of
frustrated magnets with strong quantum fluctuations.

While we have shown that the correct classical limit of the
theory can be captured by including only the 1/N correction
corresponding to the Feynman diagram of Fig. 2(b), the
other 1/N diagrams of Fig. 2 may play a significant role in
a quantitative description of the dynamical spin structure
factor in the presence of strong quantum fluctuations. We note
that the diagram shown in Fig. 2(c) corresponds to a vertex
renormalization, while the two diagrams shown in Figs. 2(d)
and 2(e) correspond to a renormalization of the single-spinon
propagator. In other words, we expect that these diagrams
should renormalize the single-spinon dispersion along with
the two-spinon continuum and the single-magnon (two-spinon
bound-state) dispersion. Magnon-magnon interaction effects
are captured by diagrams of order 1/N2 and higher [39].

Finally, it is interesting to note that the situation is qualita-
tively different for collinear magnetic orderings of Heisenberg

magnets, like the square-lattice Heisenberg antiferromagnet,
because of the residual U(1) symmetry group. As it was
explained in Ref. [39], the bubbles of the Feynman diagram
shown in Fig. 2(b) vanish for the transverse components of
the dynamical susceptibility due to this U(1) symmetry. This
cancellation implies that the 1/N contribution that we consid-
ered in this paper only corrects the longitudinal component of
the magnetic susceptibility. In other words, unlike the case
of the noncollinear orderings that we considered here, the
SP contribution to the transverse components of the magnetic
susceptibility is not corrected by the 1/N contribution shown
in Fig. 2(b). However, it is still true that the poles of the
RPA propagator coincide with the single-magnon poles
of the LSWT. We note that the SP spinon dispersion is
half of the single-magnon dispersion in the large-S limit:
εq+ Q

2
= 1

2ωq. However, the missing factor of 2 is recovered,
ωq = 2εq+ Q

2
, in the dispersion of the poles of the RPA prop-

agator through Eq. (59) [εq− Q
2

= εq+ Q
2

for Q = (π, π )].1 It
is also important to note that the SP expansions of collinear
and noncollinear orderings cannot be continuously connected
because the fluctuation matrix is not semipositive defined
around the Lifshitz transition point that connects both types
of magnetic orderings [43]. In other words, the result that we
presented here cannot be extended to collinear cases by taking
the collinear limit of a sequence of noncollinear magnetic or-
derings (continuous incommensurate to commensurate transi-
tion). Work to overcome the U(1) residual symmetry problem
for collinear antiferromagnets is in progress.
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1Alternatively, an AA decomposition [12,15] of the Heisenberg
term leads to a SP spinon dispersion that already coincides with the
single-magnon dispersion: ωq = εAA

q+ Q
2
.
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