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Spin waves parametrically excited via three-magnon scattering in narrow NiFe strips
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Three-magnon scattering can be used to evaluate the lowest frequency of the magnon band in a ferromagnet.
Both the ferromagnetic-resonant (FMR) frequency fFMR and the lowest frequency of the magnon band fmin

in narrow-shaped NiFe strips were electrically measured using the anisotropic-magnetoresistance effect. The
comparison with a micromagnetic simulation shows that fmin of the magnon band can be controlled independent
of fFMR by varying the width w and thickness t of the NiFe strip while maintaining a constant t/w ratio. In
addition, we found that the frequency difference, fFMR − fmin, can be greatly increased in thicker NiFe strips.
Our results show that narrow-shaped ferromagnets allow us to tune the magnon-band structures by varying their
w and t . This ability is important for designing magnon circuits in integrated magnonic devices and for improving
the quantitative study on the Bose-Einstein condensation of magnons.
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I. INTRODUCTION

Spin waves are potential candidates for realizing ultrafast,
low-power digital-data processing because they provide a
Joule-heating-free transfer of spin information over a sub-
millimeter distance in insulating magnetic materials such as
Y3Fe5O12 [1]. The scientific research field concerned with
information transport and processing by spin waves is known
as magnonics [2,3]. Various magnonic devices have been
proposed to date, including logic gates [4–8], majority gates
[9,10], interferometers [11–13], transistors [14,15], and others
[16–18]. It is known that magnons can form a Bose-Einstein
condensate (BEC), even at room temperature [19–24]. Con-
sequently, magnon supercurrent has attracted considerable
attention owing to the ability to realize an ultralow-power-
consumption transfer of digital information [24–26].

In magnonics, the engineering of a magnon-band structure
is significant because it determines both the linear and nonlin-
ear behavior of magnons. A promising approach to control
the magnon-band structure is to utilize magnonic crystals
[1,27–30], which are artificial periodic magnetic materials.
In such periodic structures, Bragg scattering affects the spin
wave spectrum and results in the formation of band gaps.
However, the ability to tune the magnon-band structure in a
confined ferromagnetic element is important to realize inte-
grated magnonic devices. Magnon bandwidth can be roughly
defined as � f ≡ fFMR − fmin, where fFMR and fmin are the
ferromagnetic-resonant (FMR) frequency and the minimum
frequency of the magnon-band structure, respectively. From
the analytical equation, which provides the magnon dispersion
relationship for the thin-film limit, it is expected that the width
of � f is only a few gigahertz.

In this paper, we demonstrate that � f can considerably
vary compared with the thin-film-limit case. To obtain � f , we
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experimentally measured fFMR and fmin by observing para-
metric magnons, which were excited via the three-magnon
scattering process in which one magnon with ( f , k) = ( fac, 0)
splits into two magnons with ( fac/2,±k). We can evaluate
fmin of the magnon-band structure because three-magnon scat-
tering occurs only when fac/2 > fmin. We detected the three-
magnon scattering spectra using an electric method based
on the measurement of the anisotropic-magnetoresistance
(AMR) effect. The large decrease in fmin from fFMR (i.e.,
the large � f ) appeared especially for narrow NiFe strips,
and the amplitude of � f was sensitive to the width w and
thickness t values of the NiFe strips even when the aspect
ratio t/w was fixed. The results enable us to change � f by
fixing fFMR because fFMR has the same value at a given t/w.
From an application point of view, the wide and tunable � f is
favorable for designing magnonic devices. Furthermore, from
a fundamental point of view, the magnon-band structure must
be systematically controlled to study the BEC of magnons.
Recently, it was reported that there are multiple channels for
parametrically excited magnons to be transferred toward a
condensed state [21,24]. However, it is difficult to explore
the complicated condensation process in the Y3Fe5O12 film,
which is generally used to study the BEC of magnons, because
the magnon-band structure cannot be considerably changed
in thin films. Our findings show the magnon-band structure
can be greatly deformed by changing only the width and
thickness of a ferromagnetic strip without changing the ma-
terial, which allows us to completely understand the BEC of
magnons.

The remainder of this paper is organized as follows.
Section II briefly introduces the scheme for three-magnon
scattering. The experimental setup and results are presented in
Sec. III. Section IV describes the numerical simulation results
of the magnon-band structure, and we compare the experi-
mental and numerical results. The conclusions are presented
in Sec. V.
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FIG. 1. Schematic illustration of the three-magnon scattering process in the magnon-band structure. (a) Magnon-band structures calculated
for the 60-nm-thick NiFe film at (a1) μ0Hdc = 20 mT, (a2) 80 mT, and (a3) 120 mT. The blue (green) thick solid line shows the dispersion
curve for the BVW mode with θk = 0◦ (MSSW mode, θk = 90◦). The thin gray solid lines show the dispersion relationship of the magnons
with oblique wave vectors at an interval of 5◦; the solid magenta lines show the dispersion relationship for θk = 15◦. The black open circles
indicate the uniform magnons, which were forcibly excited by the microwave field; the magnons scattered via three-magnon scattering are
indicated by red ellipses. (b) Schematic magnetic field dependence of μ0H th

ac (i.e., a butterfly curve). (c) Magnetic-field dependence of the
critical propagation angle θ th

k , which gives μ0H th
ac .

II. THREE-MAGNON SCATTERING AND THE
THRESHOLD CONDITION

Here, we introduce the principle of three-magnon scatter-
ing, which is applicable for a thin-film configuration [31].
For a ferromagnetic rectangle with t/w � 1, the spin wave
dispersion relation is generally approximated by the following
equations [32–36]:

f (k) = γ

2π

√[
μ0Hdc+ 2A

Ms
k2

][
μ0Hdc+ 2A

Ms
k2 + MsFp(kt )

]
,

(1)

Fp(kt ) = 1−N (k) sin2 θk + Ms

μ0Hdc+ 2A
Ms

k2
[Nk (1−Nk )] cos θk,

(2)

Nk = (1 − e−kt )/(kt ), (3)

where Fp(kt ) is the dipole-interaction factor. Here, γ , Ms,
and A are the gyromagnetic ratio, saturation magnetization,
and exchange-stiffness constant, respectively. θk is the relative
angle between the magnetization vector and the wave vector k
of the spin waves. Figures 1(a1)–1(a3) show the examples of
the magnon bands, which are calculated on the basis of Eq. (1)
for a 60-nm-thick NiFe at μ0Hdc of 20, 80, and 120 mT,
respectively. The blue and green solid lines in Figs. 1(a1)–
1(a3) show the dispersion relationships of the magnetostatic

backward-volume wave (BVW; θk = 0◦) and magnetostatic
surface wave (MSSW; θk = 90◦), respectively. The other thin
solid lines show the dispersion relationship for oblique wave
vectors at an interval of 5◦. Here, a microwave field with
a frequency fac of 10 GHz is assumed, and the black open
circles represent the forcibly excited magnons with ( fac, k) =
(10 GHz, 0). When the pumping microwave field is beyond
the threshold value, the higher-order spin wave interactions
lead to exponential growth of various magnon pairs with
opposite wave vectors [33,34,36]. As schematically shown in
Fig. 1(a), three-magnon scattering is the process by which one
magnon with ( fac, k = 0) splits into two magnons with ( fac/2,
±k), which are represented by the red ellipses. In particular,
three-magnon scattering occurs only when fac/2 > fmin. The
amplitude of the ac magnetic field μ0Hac must be larger than
the threshold value μ0H th

ac , which depends upon both the k and
θk values of scattered magnons with fac/2. For the thin-film
configuration [33], μ0H th

ac is analytically written as

μ0H th
ac = fac

fM
mink,θk

⎧⎨
⎩

1 − ( fFMR

fac

)2

1 + fFMR

fac
ek (θk )

�μ0Hk (k, θk )

sin θk cos θk

⎫⎬
⎭, (4)

where mink,θk {g(k, θk )} represents the minimum value of
g(k, θk ) with respect to k and θk . fM and fFMR are γ Ms and
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the FMR frequency,

fFMR = γ

2π

√
[μ0Hdc+(Ny − Nx )Ms][μ0Hdc+(Nz − Nx )Ms],

(5)

where Nx, Ny, and Nz are demagnetizing factors along the
x, y, and z axes, respectively. ek (θk ) is the k-dependent el-
lipticity of the magnetization precession. �μ0Hk is the spin
wave linewidth parameter, which is empirically written as
�μ0Hk (k, θk ) = A0 + A1k + A2 sin2 2θk , where A0, A1, and
A2 are the coefficients. It is known that the empirical equation
can explain well the experimental results for the yttrium iron
garnet sphere and NiFe film cases [31,33]. Although it is
difficult to obtain the explicit k and θk dependences of �μ0Hk

and ek (θk ), it has been experimentally determined that the
function in the curly brackets in Eq. (4) reaches its minimum
at approximately θk = 15◦ [31], as shown in Fig. 1(a) by the
solid magenta lines.

Figures 1(b) and 1(c) show the schematic μ0Hdc depen-
dence of μ0H th

ac and the corresponding critical propagation
angle θ th

k , respectively, which can be explained by considering
the dispersion relationships at different μ0Hdc. When a uni-
form magnon with a frequency of fac = 10 GHz is forcefully
excited at μ0Hdc = 20 mT, as shown in Fig. 1(a1), the magnon
splits into two magnons with opposite wave vectors and fac

2
via three-magnon scattering, as indicated by the red ellipses
in Fig. 1(a1). Magnons, which are excited through such a
nonlinear-scattering process, are called parametric magnons,
in contrast to the normally excited spin waves. Because there
are no magnon states with θk = 15◦ at μ0Hdc = 20 mT, the
parametric magnons have θ th

k values that are larger than 15◦,
as shown in Fig. 1(c). When μ0Hdc reaches 80 mT, fac/2
matches the dispersion relationship for θk = 15◦, as shown
in Fig. 1(a2), where μ0H th

ac becomes minimal. The further
increase in μ0Hdc up to 120 mT causes fac/2 to approach the
bottom of the magnon band, which corresponds to θk = 0◦, as
shown in Fig. 1(a3). Thus, μ0H th

ac rapidly increases because
the denominator of Eq. (4) approaches zero. When μ0Hdc is
larger than 120 mT, three-magnon scattering can no longer
occur because there are no magnon states at fac/2. Thus, the
butterfly curve in Fig. 1(b) is closely related to the magnon-
band structures. From the values of fac/2 and μ0Hdiv

dc at which
the divergence of μ0H th

ac appears, we can determine the lowest
frequency of the magnon band as fmin(μ0Hdiv

dc ) = fac/2.

III. EXPERIMENT

In this section, we will show that fmin in narrow-shaped
NiFe strips can be experimentally obtained by detecting the
spin waves excited via the three-magnon scattering process.
In Sec. III A, we present the sample configuration and exper-
imental setup; in Sec. III B, the ferromagnetic resonance of
the NiFe strips in the linearly responding regime is shown. In
Sec. III C, the strong excitation of magnons is examined by
applying microwave fields that are stronger than those used
in Sec. III B, and magnon modes are successfully detected by
measuring the change in the electric resistance of the NiFe
strips owing to the AMR effect.

FIG. 2. (a) Scanning electron microscopy image of the sample
and setup for the AMR experiment and (b) a schematic enlargement
of the dashed square area in (a). A microwave synthesizer applies
a continuous microwave to the CPW, which is embedded below
the NiFe strip. The dc source and nanovoltmeter are connected to
the four terminals, which are attached to the NiFe strip. (c) μ0Hdc

dependence of the electric resistance of the NiFe strip for each
sample. The red (blue) curve shows the AMR curve of the NiFe
strip when μ0Hdc was swept parallel (perpendicular) to the electric
current J .

A. Sample preparation and experimental setup

In this section, the sample preparation and our exper-
imental setup are shown. Figure 2(a) shows the scanning
electron micrograph of the sample and the experimental
setup. A 2-μm-wide coplanar waveguide (CPW) made of Ti(5
nm)/Au(70 nm) was fabricated on the surface-oxidized Si
substrate by a conventional liftoff technique using electron-
beam lithography and evaporation. Then, three NiFe strips
with different dimensions (see Table I) were fabricated. These
strips had the aspect ratio t/w fixed at 0.075 but differ-
ent dimensions with (w, t) = (400 nm, 30 nm), (800 nm,
60 nm), and (1600 nm, 120 nm) for samples 1, 2, and 3,
respectively. Finally, four-terminal electrodes composed of
Ti(5 nm)/Au(100 nm) were connected to the NiFe strips. The
separation distance between the voltage terminals was 20 μm.
By applying a continuous microwave to the CPW using a
microwave synthesizer (Anritsu MG3694B), an ac magnetic
field μ0Hac was produced perpendicular to the NiFe strip. The
resistance of the NiFe strip was measured by the conventional
four-terminal method.

The AMR curves, which were measured by applying a
direct current of 0.2 mA in the absence of μ0Hac, are shown
in Fig. 2(c) for each NiFe strip. Owing to the AMR effect, the
electrical resistance depends on the relative angle ϕ0 between
the magnetization vector and the current direction (x axis):

R(ϕ) = R⊥ + (R‖ − R⊥) cos2 ϕ0. (6)
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TABLE I. Configurations of the NiFe strips used in the micromagnetic simulation and experiment. Three types of NiFe strips with different
dimensions but the same aspect ratio are used. The lengths of the NiFe strips are 10 μm for the simulation and 20 μm for the experiment.
Demagnetization factors (Nx , Ny, Nz) are calculated on the basis of the analytical relationship [40]. fFMR and fmin, respectively, are the resonant
frequency of the FMR and the bottom frequency of the BVW at μ0Hdc = 20 mT, as expected from the numerical-dispersion relationship in
Fig. 8.

Sample (w, t) t/w (Nx , Ny, Nz) fFMR (GHz) fmin (GHz)

Sample 1 (400 nm, 30 nm) 0.075 (0, 0.10, 0.90) 8.4 6.2
Sample 2 (800 nm, 60 nm) 0.075 (0, 0.10, 0.90) 8.4 4.9
Sample 3 (1600 nm, 120 nm) 0.075 (0, 0.10, 0.90) 8.4 3.8

Here, R⊥ and R‖ are the electrical resistances of the NiFe strip
when the magnetization direction is, respectively, perpendic-
ular and collinear to the current direction. The blue and red
curves in Fig. 2(c) show R⊥ and R‖, respectively. When the
magnetization precession with a cone angle of ϕ is excited
in the NiFe strip, the magnetization components, which are
collinear to the current direction, decrease.

B. Low-power excitation of spin waves

We examined the resonant condition of the NiFe strip in
the linearly excited regime (i.e., μ0Hac < μ0H th

ac ) using the
vector-network-analyzer FMR (VNA-FMR) measurement. A
microwave with an amplitude of −5 dBm and a frequency
in the range of 1 to 20 GHz was applied to the CPW em-
bedded under the NiFe strip to obtain a microwave-reflection
coefficient S11. The inset in Fig. 3 shows an example of the
frequency dependence of Re[�S11] at μ0Hx = 145 mT, which
was measured for sample 2. The rapid decrease in Re[�S11] is
clearly observed at 12.2 GHz, which can be denoted by fFMR

at 145 mT. The open circles in Fig. 3 show fFMR as a function
of μ0Hx, which is measured for each NiFe strip. The dashed
lines in Fig. 3 show the lines of best fit according to Eq. (5).
The parameters that best match the experiment are Ms =
0.91 T and (Nx, Ny, Nz) = (0, 0.11, 0.89). We also determined
the Gilbert damping constant α = 0.0095 ± 0.0002 from the

FIG. 3. The μ0Hx dependence of fFMR for each NiFe strip mea-
sured by the VNA-FMR technique. The inset shows an example of
the fac dependence of Re[�S11] at μ0Hdc = 145 mT for sample 2. A
clear dip appears at fac = 12.2 GHz, which we denote as fFMR. The
dashed lines are the lines of best fit calculated by Eq. (5).

full width at half maximum. These values are consistent with
the previously reported values for NiFe [37].

FIG. 4. AMR curves for each sample measured while applying
μ0Hac with a frequency in the range from 9 to 14 GHz when
(a) μ0Hac < μ0H th

ac and (b) μ0H th
ac < μ0Hac for samples 1 to 3. When

the magnetization precession was excited, the electric resistance of
the NiFe strips decreased. The solid black triangles show the FMR
modes, and the open red triangles show the parametric magnons
excited via the three-magnon scattering process.
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FIG. 5. (a) Transition of the AMR curves under various μ0Hac

measured for sample 2. The dips indicated by the blue and red
arrows correspond to the excitation of the FMR and three-magnon
scattering, respectively. (b) Definition of �R for the two resonant
modes. (c) μ0Hac dependence of �R for the FMR and three-magnon
scattering mode. μ0H th

ac is defined by the value of μ0Hac at which �R
begins to increase from zero.

C. High-power excitation of spin waves

In this section, we will show the results of a strong magnon
excitation. By applying continuous microwave radiation with
an amplitude larger than −5 dBm, the higher-order spin
waves, which were not detected by the previous VNA-FMR
measurement, were observed. The initially excited magnons
with a frequency of fac are laterally quantized in each NiFe
strip with a wave number determined by the width of the
strips, i.e., ky = π

w
[35]. Figures 4(a2) and 4(b2) show the

μ0Hdc dependence of the resistance of sample 2 measured
with fac ranging from 9 to 12 GHz. As shown in Fig. 4(a2),
when μ0Hac = 0.8 mT, only one mode, which is indicated
by solid black triangles, appeared at each frequency. This
mode is attributable to the FMR mode by comparison with
the resonant condition in Fig. 3. When μ0Hac is increased to
2.0 mT, additional dips appear in the lower field at fac in the
range from 9 to 11 GHz (indicated by open red triangles).
As shown later in this section, the additional modes appear
when the amplitude of μ0Hac exceeds a threshold value.
This threshold behavior is a characteristic feature of magnons
excited via three-magnon scattering. Similarly, AMR curves
were measured for sample 1 at μ0Hac = 0.8 mT [Fig. 4(a1)]
and μ0Hac = 8.0 mT [Fig. 4(b1)] and for sample 3 at μ0Hac =
0.8 mT [Fig. 4(a3)] and μ0Hac = 2.0 mT [Fig. 4(b3)]. The
comparison of μ0H th

ac amplitudes required to excite three-
magnon scattering showed that three-magnon scattering can
occur via smaller μ0Hac for thicker NiFe strips. As shown
in Fig. 4, the resonant fields for FMR and three-magnon
scattering (solid black and open red triangles, respectively)
are closer to each other in thicker NiFe strips. According to
Eq. (4), μ0H th

ac ∝ 1 − ( fFMR/ fac)2, such that μ0H th
ac is smaller

for the thicker NiFe strip, in which the value of fFMR/ fac is
close to unity. Indeed, as shown later in Sec IV, our numerical

result for the dispersion relationships for the NiFe strips in
Fig. 8 is also consistent with this experimental behavior.

The amplitude of μ0H th
ac for three-magnon scattering is

discussed. Here, we focus on the results for sample 2 because
it is difficult to separate the FMR and three-magnon scattering
modes in sample 3, as shown in Fig. 4(b3). Moreover, for
sample 1, an excessive increase in the microwave is needed to
realize the three-magnon scattering, although the frequency
that appears in the three-magnon scattering mode can be
much higher than the FMR frequency. Figure 5(a) shows
the transition of the AMR curves at fac = 10 GHz with an
increase in the μ0Hac amplitude from 1.9 to 2.2 mT with
an interval of 0.02 mT. As shown in Fig. 5(b), three dips
appear at μ0Hdc = 7, 21, and 72 mT when μ0Hac = 1.9 mT.
The dip at μ0Hdc = 72 mT corresponds to the FMR mode.
The amplitudes of the two dips, which appear in the fields
below 72 mT, increased with μ0Hac, before finally merging.
We define the decreases in electrical resistance owing to FMR
and spin waves as �RFMR and �R3MS, respectively, as shown
in Fig. 5(b). Then, the spin wave modes are found to be
excited via three-magnon scattering. Blue and red squares in
Fig. 5(c) show �RFMR and �R3MS, respectively, as a function
of μ0Hac. The lower field mode appeared when μ0Hac >

1.60 mT, and �RFMR increased linearly with μ0Hac. We define
the value of μ0Hac at which �R3MS becomes nonzero, e.g.,
μ0H th

ac = 1.60 mT, in Fig. 5(c). The existence of the μ0Hac

threshold amplitude needed to excite the lower field mode is
the evidence that spin waves are excited via the three-magnon
scattering process.

Figure 6(a) shows the μ0Hx dependence of μ0H th
ac (i.e., the

butterfly curve) measured for sample 2. When fac = 9 GHz,
μ0H th

ac shows a broad flat minimum with fine structures in the
field range between 12 and 15 mT and then rapidly increases
at a divergence field μ0Hdiv

dc of approximately 18 mT. Similar
results were obtained for other fac. We can evaluate fmin at a
given magnetic field μ0Hx from the butterfly curve shown in
Fig. 6(a). Because μ0H th

ac shows a finite value below μ0Hdiv
dc ,

the region where μ0Hx < 18 mT qualitatively corresponds
to the situation shown in Figs. 1(a1) and 1(a2). Then, at the
divergent field μ0Hdiv

dc , the condition that fac/2 = fmin(μ0Hx )
is satisfied. Thus, we can determine fmin at μ0Hdiv

dc . Blue
open circles in Fig. 6(b) show fmin as a function of μ0Hx,
as evaluated from the butterfly curves in Fig. 6(a). As shown
later in Sec. IV B, these experimental results are quantitatively
consistent with the numerical results (red open squares) in
Fig. 6(b).

In contrast, some temperature increase is expected in the
three-magnon scattering experiments [Fig. 4(b)] because the
microwave applied to the antenna is much stronger than
that in the VNA-FMR experiments (Fig. 3). The temperature
increase in sample 1 is the largest among the three samples
because of the largest applied μ0Hac. Indeed, the asymmetric
resonant field is prominent in Fig. 4(b1). This temperature
increase causes a decrease in Ms which leads to a decrease
in resonant frequencies. However, the heating effect on the
resonant frequency of three-magnon scattering modes is neg-
ligible because the experimental results are consistent with
the resonant frequency of the three-magnon scattering modes,
which are calculated in the numerical simulation without
considering any sample heating (see the Appendix).
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FIG. 6. (a) Butterfly curves measured for sample 2 at frequencies
of 9 to 12 GHz. The shaded area shows a certain magnetic field
at which μ0H th

ac diverges, which yields the divergent field μ0H div
dc .

(b) μ0Hx dependence of fmin. Blue open circles represent the exper-
imental results, and red open squares are the values obtained from
the simulated dispersion relationship in Fig. 8(a2). The dashed line
serves as a guide for the eyes.

Figure 7 shows resonant frequencies for the FMR (open
circles) and the three-magnon scattering (open squares)
modes as a function of μ0Hx. The fFMR values measured using
the VNA-FMR technique are also shown as the solid curves.
The three NiFe strips in Fig. 7 show completely different

FIG. 7. Resonant frequencies of the FMR (open circles) and spin
wave (open squares) modes. The solid line shows the FMR condition
measured using the VNA-FMR technique. The dashed lines serve
as a guide for the eyes for the spin wave modes excited via three-
magnon scattering.

resonant frequencies for three-magnon scattering at a given
μ0Hx, although those fFMR are approximately the same. In
the following section, the dispersion relationships of narrow
NiFe strips and their detailed strip size dependence will also
be discussed.

IV. MICROMAGNETIC SIMULATION

We conducted a micromagnetic simulation using MUMAX3
[38]. The thickness t and width w of the NiFe strips ranged
from 30 to 120 nm and from 200 to 1600 nm, respectively. The
lengths of the NiFe strips were fixed at 10 μm. The saturation
magnetization, exchange-stiffness constant, and the Gilbert
damping coefficient were set to Ms = 0.90 T, Aex = 1.3 ×
10−11 J/m, and α = 0.01, respectively, and thermal agitation
at 300 K was assumed. The numerical grid had dimensions of
5 × 5 × 5 nm3, with a side length comparable to the exchange
length lex of NiFe (5.7 nm) [39]. The eigenfrequency of the
magnon excited in the NiFe strip is obtained via a fast-Fourier-
transform (FFT) analysis of the temporal evolution of the y
component of the magnetic moment my located at the center of
the strip. Conversely, the magnon number 〈nmag〉 is calculated
via the time averaging of the volume-averaged magnetization
component Mx along the long axis of the strip.

A. Dispersion relationship for the BVW mode

First, the μ0Hdc dependence of fmin is examined by cal-
culating the dispersion relationship for these modes. The
magnetization precession caused by the application of the
temporally and spatially varying magnetic field

μ0H (kx, fac) = μ0Hdc

⎡
⎢⎣

cos(0.1◦)

sin(0.1◦)

0

⎤
⎥⎦

+ μ0Hac

⎡
⎢⎣

0

sin(kxx) sin(2π fact )

0

⎤
⎥⎦ (7)

was simulated. The magnetic field given by Eq. (7) preferen-
tially excites magnons with a wave number kx and frequency
fac. Because μ0H (kx, fac) is modulated only along the x axis,
the obtained dispersion relationship corresponds to the BVW
modes. Here, μ0Hac = 1.0 mT, and the rise time was set to
zero. fac and kx were varied from 3 to 10 GHz and from
1 to 90 rad/μm, respectively. By calculating the amplitude
of the temporally oscillating magnetization component in the
interval from 9 to 10 ns after the μ0H (kx, fac) application
commenced, 〈nmag〉 could be evaluated. Figure 8(a) shows a
color plot of 〈nmag〉 as a function of kx and fac when μ0Hx =
20 mT. The bright contrast corresponds to the condition when
the BVW modes are resonantly excited. fmin is located at
approximately kx = 20 μm−1 for all NiFe strips. To compare
it with the experimental μ0Hx dependence of fmin, the fmin

value obtained from the simulated dispersion relationship is
shown by red open squares in Fig. 6(b). The consistency
between the experiment and simulation clearly suggests that
fmin can be measured by detecting three-magnon scattering.
In addition, we confirmed that the simulated dispersion rela-
tionship in Fig. 8(a) can quantitatively explain the numerical
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FIG. 8. Color plot of 〈nmag〉 as a function of the wave number
kx along the strip and the frequency calculated for the NiFe strips
with (w, t) of (a1) (400 nm, 30 nm), (a2) (800 nm, 60 nm), and (a3)
(1600 nm, 120 nm). The aspect ratio t/w of the NiFe strip is fixed
at 0.075 for (a1), (a2), and (a3). Bright contrast shows the magnon
excitation condition, which corresponds to the spin wave dispersion
relationship. For comparison, the spin wave dispersion relationships
obtained from the analytical solutions given by Eqs. (1)–(3), which
are generally used for the thin-film limit, are shown in (b1), (b2), and
(b3), where the thickness of the NiFe is the same as that in (a1), (a2),
and (a3), respectively.

resonant conditions of parametric magnons generated via
three-magnon scattering, as described in the Appendix. It
was also confirmed that the dispersion relationship in narrow
strips had a completely different structure than that for the
thin-film-limit case. Figures 8(b1)–8(b3) show the dispersion
relationships calculated from Eq. (1) for t = 30, 60, and
120 nm, respectively, when μ0Hx = 20 mT. However, there
was a larger variation in � f as a function of w and t in
narrow-shaped strips [Fig. 8(a)] than that for the thin-film-
limit case [Fig. 8(b)]. This characteristic suggests that narrow
ferromagnetic strips have low resonance frequency for the
BVW mode, whereas they show strong coercivity owing to the
strong shape anisotropy, which enables spin wave excitation
without an external magnetic field.

The low fmin for the narrow NiFe strip is attributable to
the aspect ratio dependence of dipole-interaction energy. For
simplicity, we consider NiFe with two limit cases, i.e., t/w =
0 (thin-film limit) and t/w = 1 (strip). In the limit of t/w = 0,

FIG. 9. (a) Spin wave dispersion relationship for the BVW
modes calculated for the NiFe strip (red curve) and NiFe film (blue
curve) with t = 60 nm at μ0Hx = 20 mT. (b) and (c) Schematic
magnetic configurations of the BVW mode propagating along the
static magnetization direction M0. Blue arrows show the dynamic
component of magnetization m(t ) for the (b) strip and (c) thin film.

fFMR is given by

fFMR = γ

2π

√
μ0Hdc[μ0Hdc + Ms], (8)

whereas in the limit of t/w = 1,

fFMR = γ

2π

[
μ0Hdc + Ms

2

]
. (9)

When t/w = 1, the dipole interaction should be considered
along the y and z axes, equivalently. Similar to fFMR, the
dispersion relationship for the BVW mode in the strip with
t/w = 1 can be expected from Eq. (1) as

f = γ

2π

[
μ0Hdc + 2A

Ms
k2 + MsFp(kt )

2

]
. (10)

Red and blue solid curves in Fig. 9(a) show the dispersion
relationships calculated using Eqs. (10) and (1), respectively.
As shown in Fig. 9(a), when the dipole interaction becomes
isotropic between the y and z axes, � f considerably increases.
This increase in � f can be qualitatively understood from
the shape dependence of the ellipticity of the dynamic com-
ponent of magnetization m(t ). Figures 9(b) and 9(c) show
the schematic configuration of the dynamic component of
magnetization for t/w = 1 and 0, respectively. Owing to the
shape anisotropy, m(t ) exhibits a circular orbit in Fig. 9(b) and
a highly elliptical orbit in Fig. 9(c). The isotropic precession
of magnetization, which appeared in the strip, promotes the
decrease in the dipole-interaction energy owing to the spin
wave excitation, which is expressed by Fp(kt ) in Eqs. (1) and
(10). Consequently, fmin can be considerably decreased from
fFMR when t/w increases.
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FIG. 10. (a) fFMR (open squares) and fmin (open circles) as a
function of (a1) t and (a2) t/w for the NiFe strips with w = 200,
400, and 800 nm. The solid curve in (a2) shows the fFMR calculated
using the Kittel relationship of Eq. (5). (b) � f as a function of t . The
dashed line shows � f calculated from Eq. (1).

B. Size dependence of the magnon bandwidth

Finally, we will discuss the size dependence of � f .
Figure 10(a) shows the fFMR (open squares) and fmin (open
circles) values for the NiFe strips with different values of w as
functions of t and t/w, respectively. fFMR was obtained via the
FFT analysis of the magnetization relaxation process, which
slightly deviated from its equilibrium direction at μ0Hx =
20 mT. As shown in Fig. 10(a1), fmin decreased with t ,
whereas fFMR increased, which resulted in the increase in � f
with t . Open triangles in Fig. 10(b) show the t dependence
of � f , and the black dashed line shows � f , which was
calculated using Eq. (1) by assuming that t/w � 1. It was
determined that the variation range of � f in narrow NiFe
strips is larger than that in the film-limit case by a degree of
magnitude. Figure 10(a2) shows fFMR and fmin as a function
of t/w. It is observed that fFMR does not depend on w or
t but on their aspect ratio t/w. However, fmin depends on
the absolute values of w or t . Here, the black solid curve

shows fFMR, which was calculated on the basis of Eq. (5).
The obtained value is in good agreement with the simulation
results. Ni in Eq. (5) was obtained from w and t using
the analytical relationship [40]. These features enable us to
independently vary fFMR, fmin, and, consequently, � f over
a wide range. Thick and narrow ferromagnetic strips offer
considerable advantages for designing integrated magnonic
devices and for systematically studying BEC of magnons.

V. CONCLUSION

In this paper, we demonstrated that the magnon bandwidth
(� f = fFMR − fmin) can be significantly increased in narrow
NiFe strips with magnon-band structures that are difficult to
solve analytically. Three-magnon scattering was successfully
observed in 20-μm-long NiFe strips with three different di-
mensions of (w, t) = (400 nm, 30 nm), (800 nm, 60 nm), and
(1600 nm, 120 nm) but with fixed aspect ratio t/w of 0.075.
We examined the magnon bandwidth from the three-magnon
scattering spectra by measuring the AMR effect in the NiFe
strips. When the microwave field was stronger than a certain
threshold amplitude, the spin wave mode was observed in
addition to the FMR. The resonant frequencies of the spin
wave mode are widely scattered among the three NiFe strips,
although the FMR frequencies are almost identical. A com-
parison with the micromagnetic simulation results confirmed
that the spin wave mode may be attributed to three-magnon
scattering. This consistency supports the experimental scheme
by which we can evaluate fFMR and fmin and hence � f .

A ferromagnetic strip with a large shape anisotropy, which
is significant for the dense integration of magnon circuits,
enables spin wave excitation under zero magnetic field. A
large decrease occurs more fluently, which enables us to
excite many magnons with a small μ0Hac. Furthermore, the
magnon bandwidth and propagation velocity of the spin wave
can easily be tuned by changing the t and w values of the
ferromagnetic strip.
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APPENDIX: EXTERNAL FIELD DEPENDENCE OF THE
RESONANT FREQUENCY OF THE SPIN WAVE

For clarity, the spin wave spectra, which were ex-
cited via three-magnon scattering, will be shown, and the
magnon frequency for each resonant mode will be addressed.
Figure 11(a) shows the temporal evolution of Mx/Ms as calcu-
lated for the three strips with different w and t values. Here,
μ0Hac was applied for a duration of 50 ns. The time-averaged
value of Mx/Ms between 45 and 50 ns was used to eval-
uate the magnon numbers, 〈nmag〉 = 1 − 〈Mx/Ms〉, because
the temporal variation of 〈nmag〉 owing to the transient of
a nonequilibrium magnetization dynamics can be neglected.
Color plots of 〈nmag〉 as a function of μ0Hx and fac are
shown in Figs. 11(b) and 11(c), which correspond to the
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FIG. 11. Results of the micromagnetic simulation. (a) Examples of the temporal development of Mx/Ms over 50 ns for (a1) sample 1 to
(a3) sample 3. μ0Hdc and fac dependence of the magnon number nmag when (b) μ0Hac < μ0H th

ac and (c) μ0H th
ac < μ0Hac. (d) Magnon frequency

spectra obtained from the FFT analysis, which was applied to the temporal development of the my component for the unit cell at the center of
the NiFe strip. The FFT spectra were calculated at the condition marked by the open circles in (c).

weak- and strong-excitation regimes, respectively. Red shows
the condition under which the large-angle precession, i.e.,
many magnons, is excited. Figure 11(b) shows a color plot
of 〈nmag〉 as a function of μ0Hx and the frequency at which
μ0Hac < μ0H th

ac . Two resonant modes of frequencies (i.e., 6.0
and 11.2 GHz) appear at zero magnetic field for all NiFe
strips. The lower-frequency mode is attributed to the FMR. It
is noted that the higher-frequency mode is not excited via the
three-magnon scattering process because the applied μ0Hac is
too small to excite the three-magnon scattering. Indeed, we
confirmed that the higher-frequency mode is attributable to
the Damon-Eshbach (DE) mode from the magnetization dis-
tribution of the excited-spin wave mode. Figure 11(c) shows
a color plot of 〈nmag〉 as a function of μ0Hx and the frequency
calculated for the condition at which μ0Hac > μ0H th

ac . As
shown in Fig. 11(c), a resonant mode other than FMR or DE
appears. In addition, the resonant frequencies of the spin wave
mode, which are shown in Fig. 11(c), are different for the
three NiFe strips with different dimensions. For comparison
with the experimental resonant conditions, the dashed lines
in Fig. 7 are shown in Fig. 11(c). Clearly, there is a strong
contrast, i.e., large 〈nmag〉, around the experimental resonant
condition. For sample 2, as shown in Fig. 8(a2), fmin is

4.9 GHz at μ0Hdc = 20 mT. Therefore, the spin wave modes
excited via three-magnon scattering may appear when fac >

9.8 GHz. Indeed, as shown in Fig. 11(c2), many magnons are
excited at approximately 10.2 GHz when μ0Hdc = 20 mT is
applied. Similarly, as shown in Fig. 11(c1) for sample 1 and
Fig. 11(c3) for sample 3, three-magnon scattering excited spin
wave modes were confirmed to appear when fac > 2 fmin. The
consistency between the experimental and simulated results
supports the scheme to evaluate fmin by measuring resonant
conditions, as shown in Fig. 7.

In the three-magnon scattering process, the fac/2 magnons
are excited in addition to fac magnons. Specifically, we can
determine whether the spin wave mode is excited via three-
magnon scattering from the spin wave precession frequency.
We applied the FFT analysis to the temporal development of
my, which is located at the center of the NiFe strip, to confirm
the frequency of the magnetization precession, which was
calculated at the magnon frequency. Figure 11(d) shows the
power spectra, which were calculated for the condition indi-
cated by the open circles in Fig. 11(c). In all NiFe strips, peak
signals appear at fac/2 and at fac. The results clearly suggest
that the experimentally observed additional resonant mode in
Fig. 7(c) is excited by the three-magnon scattering process.
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