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Magnetization plateaus of the quantum pyrochlore Heisenberg antiferromagnet
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We predict magnetization plateaus ground states for S = 1/2 Heisenberg antiferromagnets on pyrochlore
lattices by formulating arguments based on gauge and spin-parity transformations. We derive a twist operator
appropriate to the pyrochlore lattice, and show that it is equivalent to a large gauge transformation. Invariance
under this large gauge transformation indicates the sensitivity of the ground state to changes in boundary
conditions. This leads to the formulation of an Oshikawa-Yamanaka-Affleck–like criterion at finite external
magnetic field, enabling the prediction of plateaus in the magnetization versus field diagram. We also develop an
analysis based on the spin-parity operator, leading to a condition from which identical predictions are obtained
of magnetization plateaus ground states. Both analyses are based on the non-local nature of the transformations,
and rely only on the symmetries of the Hamiltonian. This suggests that the plateaus ground states can possess
properties arising from non-local entanglement between the spins.
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I. INTRODUCTION

Geometrically frustrated lattices are widely expected to
harbor exotic states of matter, including quantum spin-liquids
[1–3], spin-ice [4–6], fractional excitations [6–8], and mag-
netization plateaus [9–12] at a finite external magnetic field.
A plateau in the magnetization needs the existence of a finite
spectral gap, and can sometimes involve a magnetic ground
state with non-trivial entanglement [13–15]. A large number
of theoretical and experimental studies have sought such
exotic states on highly frustrated lattices like the kagome in
two spatial dimensions (2D) and the pyrochlore in three di-
mensions (3D) [16–25]. While studies of the S = 1/2 kagome
antiferromagnet at finite magnetic field have predicted as well
as verified the existence of several magnetization plateaus
[26–28], the pyrochlore counterpart has been much less
studied. A notable work on the pyrochlore lattice involves
a semi-classical (vector spin) symmetry-based analysis by
Penc et al. [9]. There, the authors showed that a spin-lattice
coupling may stabilize the 1/2-magnetization plateaus state.
Such a plateau has been confirmed by recent experiments on
the spinel (CdCr2O4) with S = 3/2 spins on the pyrochlore
lattice formed by the network of the Cr sites [10,29]. Further,
there are indications of magnetization plateaus in some recent
experiments on spin-ice pyrochlore (A2B2O7) systems with
large easy-axis anisotropy as well [30].

A quantum mechanical treatment of the finite-field proper-
ties of the pyrochlore system is, however, lacking at present.
We aim, therefore, to offer predictions of physical observables
via a quantum mechanical formalism that relies solely on
the symmetry properties of the Hamiltonian of interest, and
without any perturbative expansions. Such treatments can
sometimes offer non-trivial states of matter with topological
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properties, non-trivial plateaus states, etc. [31–35]. In the
work of Haldane for ferromagnetic spin chains [36] as well
as Tanaka et al. on antiferromagnetic spin chains [37], the
Euclidean path integral approach has been employed for the
calculation of non-trivial geometric phase factors (if any) in
the probability amplitude for excitations above the ground
state. This involves applying a gradual twist to the real-space
order parameter in a system with periodic boundary con-
ditions. As shown by Haldane, the topological quantization
of such geometric phases can give rise to the gapping of
the spectrum for the integer spin Heisenberg chains [36],
while the spectrum of the half-integer spin chains remains
gapless. Similar conclusions for half-integer spin chains can
also be obtained from twist operator-based arguments re-
lying on the sensitivity of the ground state to changes in
boundary conditions: the Lieb-Schultz-Mattis (LSM) theorem
[38] at zero external field, and its finite-field extension in
the Oshikawa-Yamanaka-Affleck (OYA) criterion [33]. Such
twist operations are equivalent to large gauge transformations,
and can be visualized in terms of the adiabatic insertion of
Aharanov-Bohm (AB) fluxes through the system [31,39]. The
main purpose of this article is to develop such a formalism
with the goal of predicting possible magnetization plateaus
states in the quantum (S = 1/2) pyrochlore lattice. This is
achieved by defining suitable twist and translation operators
for the pyrochlore lattice, and applying them to obtain an
OYA-like criterion for ground state properties in presence of
a finite magnetic field.

While the LSM theorem and OYA criterion were originally
obtained for 1D and quasi-1D systems, following the works of
Oshikawa, Hastings, and others, these arguments have been
extended to higher-dimensional systems with short-ranged
interactions [32–35,38,40]. In general, applying the LSM
argument in higher dimensions (D > 1) gives the energy of
the variational twisted state as O(C/L) (where CL is the
volume, and L is the length of the direction being twisted).
Clearly, this energy is not small in the thermodynamic limit
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in a spatially isotopic system. By considering a strongly
anisotropy limit such that C/L → 0 [41], one can then apply
the LSM argument once more. However, by relating the twist
operator with a large gauge transformation, Oshikawa [32]
showed that taking the LSM argument is valid well beyond the
strong-anisotropy regime. Recent works have also extended
the validity of the theorem to frustrated quantum spin systems
[27,42]. This needs, for instance, a careful definition of the
twist operator by taking into consideration the symmetries of
the geometrically frustrated lattice [27].

Here, we extend the twist-operator formalism of Ref. [27]
in deriving an OYA-like criterion for the possible existence of
several fractional magnetization plateaus states in the S = 1/2
pyrochlore system. Besides this, we develop a spin-parity
operator based analysis [43,44] of the system, and obtain
predictions of magnetization plateaus identical to those found
from the twist-operator method. This identifies spin-parity
as a good quantum number for the identification of plateaus
states. The rest of the work is organized as follows. In Sec. II,
we discuss briefly the symmetries of the Hamiltonian. In
Sec. III, we develop a twist-operator formalism and thereby
derive an OYA-like criterion for possible plateaus states of the
pyrochlore lattice. Section IV is devoted to the formulation of
a spin-parity based criterion for magnetization plateaus, and a
comparison made with those obtained from the twist-operator
method. We conclude in Sec. V with a discussion of the results
and some future directions. Details of some of the calculations
are provided in the Appendices.

II. HAMILTONIAN FOR THE PYROCHLORE LATTICE

The Hamiltonian for a system of spins on the three dimen-
sional pyrochlore lattice with nearest neighbor (n.n.) antiferro-
magnetic Heisenberg exchange and an external magnetic field
may be written as

H =
∑
〈�r�r′〉

J �S�r · �S�r′ − h
∑

�r
Sz

�r , (1)

where �r ∈ ( �R, j) with the lattice vector �R = n1â1 + n2â2 +
n3â3. Here, â1, â2, and â3 are the three non-orthogonal basis
vectors of the pyrochlore lattice, and n1, n2, n3 are coordinate
numbers along their respective basis vectors (see Fig. 1). The
basis vectors (â1, â2, â3) can be defined in Cartesian coordi-
nates {x1, x2, x3} as follows: â1

2 = 1√
2
(x̂1 + x̂2), â2

2 = 1√
2
(x̂1 +

x̂3) and â3
2 = 1√

2
(x̂2 + x̂3). The four sub-lattice indices in

a tetrahedron are given by the index j ∈ {a, b, c, d}. The
coupling constant J is the n.n. spin-exchange coupling, while
the external magnetic field (h) is applied along the direction
perpendicular to the plane containing the basis vectors â1 and
â2. For N1, N2, and N3 being the number of units of each
sub-lattice along the â1, â2, and â3 directions, respectively,
the total number of sites in the lattice is N = 4N1N2N3.
Below, we will consider periodic boundary conditions (PBC)
along the â1 direction. Further, for δ denoting the distance
between n.n. sites, Lâ1 = 2δN1, Lâ2 = 2δN2, and Lâ3 = 2δN3

are the lengths along the â1, â2, and â3 directions, respectively.
Hereafter, we will consider δ = 1. In the following section, we
will derive the twist operator for the pyrochlore lattice, and

FIG. 1. Schematic diagram of the pyrochlore lattice with the
basis vectors â1, â2, and â3 (defined in the main text). Red spheres
represent sites with spin S = 1/2. The four vertices of a tetrahedron
are different from one another with respect to their environment,
indicating four sub-lattices through the indices a, b, c, and d . The
dashed lines form a tetrahedron, signaling the geometric frustration
present in the system.

employ it in formulating an OYA-like criterion for predicting
magnetization plateaus possible in this system.

III. TWIST OPERATORS AND THE OYA CRITERION

In defining twist operators appropriate to a geometrically
frustrated lattice such as the pyrochlore, it is important to
take notice of the following. As mentioned earlier, the twist
operator is equivalent to a large gauge transformation opera-
tor. Thus, we place the system shown in Fig. 1 on a hyper-
cylinder with PBC in the â1 direction. The application of
an AB-flux along the axis of the cylinder induces a time-
varying vector potential in the periodic direction (â1). As
â2 and â3 are not orthogonal to â1, spins at different sites
along basis vectors â2 and â3 differ in the phase induced
by the equivalent AB-flux [27]. Further, a pyrochlore lattice
can be considered as a collection of parallel layers of two-
dimensional kagome lattices, with interpolating layers of two-
dimensional triangular lattices [22]. In Fig. 1, we choose the
kagome layers to lie in planes containing the basis vectors
(â1, â2), with the non-orthogonal basis vector â3 running
between the parallel kagome layers. Thus, we construct the
twist operator for the pyrochlore lattice along the direction
â1 by using that developed recently for the kagome lattice
[27].
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We first write down, therefore, the twist operators for the
four individual sub-lattices j ∈ (a, b, c, d ) as

Ôa = exp

⎡
⎣i

2π

N1

∑
�R

(
n1 + n2

2
+ n3

2

)
Ŝz

�R,a

⎤
⎦,

Ôb = exp

⎡
⎣i

2π

N1

∑
�R

(
n1 + n2

2
+ n3

2
+ 1

4

)
Ŝz

�R,b

⎤
⎦,

(2)

Ôc = exp

⎡
⎣i

2π

N1

∑
�R

(
n1 + n2

2
+ n3

2
+ 1

2

)
Ŝz

�R,c

⎤
⎦,

Ôd = exp

⎡
⎣i

2π

N1

∑
�R

(
n1 + n2

2
+ n3

2
+ 1

4

)
Ŝz

�R,d

⎤
⎦,

where Ŝz
�R, j

is the z-component of spin operator for jth sub-

lattice at lattice vector �R, and N1 is the number of units of
a given sub-lattice along the â1 direction. Choosing site a
as reference site within the unit-cell, the b and c sites differ
by phases 1

4 (2π/N1) and 1
2 (2π/N1), respectively, from the

geometry of the kagome lattice [27]. Further, as the projection
of the b and d site on the â1 axis are identical, the d site has
the same phase difference as the b site; this is the origin of the
factors 1

4 and 1
2 in the twist operator definitions for the various

sub-lattices given above. Also, the phase difference between
spins belonging to nearest sites of the same sub-lattice and
with fixed n2 and n3 coordinates is given by 2π/N1; the same
for a fixed n1 coordinate gives a phase difference of π/N1.
This is the origin of the phase terms n2

2 and n3
2 in the twist

operators above.
As spin components at different sites commute, we can

combine all four twist operators into one: Ô = ÔaÔbÔcÔd .
The final form of the twist operator for the pyrochlore lattice
is then

Ô = exp

[
i
2π

N1

( ∑
�r

(
n1 + n2

2
+ n3

2

)
Ŝz

�r

+
∑

�R

(
1

4
Ŝz

�R,b
+ 1

2
Ŝz

�R,c
+ 1

4
Ŝz

�R,d

))]
. (3)

We note that the terms exp [i 2π
N1

∑
�r ( n3

2 Ŝz
�r )] and

exp [i 2π
N1

∑
�R( 1

4 Ŝz
�R,d

)] in Eq. (3) are extra with respect to the
twist operator for the kagome lattice formulated in Ref. [27].
The first of these phases arises due to the contribution from
the third non-orthogonal basis vector â3. The second phase,
on the other hand, is simply due to fourth sub-lattice (d) of
the pyrochlore system.

Defining T̂â1 as a translation operator along â1 direc-
tion, such that T̂â1

�Sn1,n2,n3 T̂ †
â1

= �Sn1+1,n2,n3 , yields the following
identity for the pyrochlore lattice (the detailed steps of which
are shown in Appendix A):

T̂â1 ÔT̂ †
â1

= Ô exp

[
−i2π (4N2N3)

(
m̂ − Ŝz

�
4

)]
, (4)

where m̂ = Ŝz
Tot/(4N1N2N3) is the magnetization per site oper-

ator, with Ŝz
Tot = ∑

�r Ŝz
�r being the total magnetization operator,

and Ŝz
� is the z-component of the four spins in a tetrahedron.

For a finite magnetic field, one can now predict the possibility
of magnetization plateaus by deriving an OYA-like criterion
[33] from this relation in term of the fractional magnetization
per site m/ms, where ms = 1/2 is the saturation magnetization
per site:

Qm

2

(
m

ms
− Sz

�
2

)
= n, (5)

where Qm (= 4, 8, 12, 16, . . . , etc.) [45,46] is the magnetic
unit cell and n is an integer. In obtaining Eq. (5) from
Eq. (4), we have rewritten 4N2N3 = qQm, where Qm = 4p
and N2N3 = pq (p and q are any non-zero positive inte-
ger). The factor q is absorbed by noting that the phase
factor in Eq. (4) is known mod(2π ). Thus, for Sz

� = 2
and Qm = 4 (the fundamental lattice unit cell), the criterion
predicts possible magnetization plateaus at m/ms = 0 and
1/2 for n = −2 and −1, respectively. On the other hand,
for Qm = 8, 12, and 16 we have more plateaus possible
at 0, 1/8, 1/6, 1/4, 1/3, 3/8, 2/3, 5/8, 3/4, 5/6, and 7/8. In
keeping with Ref. [27], these plateaus are likely good can-
didate ground states in the search for topological order in a
three-dimensional geometrically frustrated spin-1/2 system.
We will see below that identical predictions are obtained
for magnetization plateaus based on arguments employing a
spin-parity operator for the pyrochlore lattice.

As there are some experimental indications of plateaus
obtained in S = 3/2 pyrochlore systems [10,29], we com-
ment briefly here on magnetization plateaus that are similarly
obtained from the twist-operator approach for this system
as well. From Eq. (4), following the same steps as required
to reach Eq. (5) and with Sz

� = 6, we obtain an OYA-like
criterion for the S = 3/2 pyrochlore system

3Qm

2

(
m

ms
− 1

)
= n, (6)

where Qm (= 4, 8, 12, 16, . . ., etc.) is the magnetic unit cell
[as in Eq. (5)], ms = 3/2 is the saturation magnetization per
site, and n is an integer. For Qm = 4, criteria for plateaus
at m/ms = 1/2, 2/3, and 5/6 are satisfied for n = −3,−2,
and −1, respectively. Further, a plateau at m/ms = 3/4 is
obtained for an extended unit cell of Qm = 8 and n = −3.
While a plateau at m/ms = 1/2 has been verified in the spinel
materials CdCr2O4 [10] and ZnCr2O4 [29], there are only
preliminary indications of plateaus at m/ms = 2/3, 3/4, and
5/6 thus far [29].

IV. SPIN-PARITY AND MAGNETIZATION PLATEAUS

In the previous section, we predicted possible magneti-
zation plateaus for the quantum pyrochlore system with the
help of a symmetry-based OYA criterion. The twist-operator
employed in reaching these predictions is observed to be
non-local in nature, respects various spin and lattice symme-
tries of the Hamiltonian, and the operation involves a global
sensitivity to changes in boundary conditions. The spin-parity
transformation also involves a global change via a spin-flip
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(i.e., rotation by π in the xy plane) of all spins, and respects
the spin and lattice symmetries of the Hamiltonian [43,44].
It is, therefore, interesting to see whether predictions of
plateaus can be made in geometrically frustrated quantum spin
systems with the help of the spin-parity operator. Therefore,
we devoted the current section to an analysis based on the
spin-parity transformation. We will see that this formalism
predicts similar plateaus states for the S = 1/2 pyrochlore
system as obtained earlier from the twist operator analysis.
We will comment on the origin of this similarity at the end of
this section.

The spin-parity operations Sx
�r → −Sx

�r , Sy
�r → −Sy

�r , and
Sz

�r → Sz
�r leave the Hamiltonian (1) invariant. The operation

corresponds to a π -rotation of all spins (�Si = 1
2 �σi, where σ ’s

are Pauli spin matrices) about the z-axis and can be written as
[43,44]

S = exp

[
i
π

2

∑
�r

σ z
�r

]
=

∏
�r

iσ z
�r = W × Z, (7)

where W = exp[i π
2 N ] and Z = ∏

�r σ z
�r , with N the total

number of sites in the lattice. Then, we can rewrite Z as

Z = exp
[
iπ

(
Ŝz

Tot − NS
)] = exp[iπN (m̂ − S)], (8)

where Ŝz
Tot = 1

2

∑
�r σ z

�r is the total magnetization operator of
the system, S = 1/2, and m̂ = 1

N
∑

�r Ŝz
�r is magnetization per

site operator. The operator Z is clearly a global operator, and
takes values ±1 corresponding to two topologically different
parity sectors of the many-body Hilbert space. It is straightfor-
ward to show that the spin-parity operator Z commutes with
the Hamiltonian H : [Z, H] = 0 (see Appendix B for details).
Thus, the eigenvalues of Z are good quantum numbers. There-
fore, from the quantization condition of Eq. (8), we have

N (m − S) = n, (9)

where n is any integer.
Thus far, we have not invoked any notion of a specific

lattice geometry in reaching Eq. (9). In order to make conclu-
sions specific to the pyrochlore lattice, we note that since the
four lattice sites of a tetrahedron form the minimum unit cell
of a pyrochlore lattice with periodic boundary conditions in
all directions, we must impose the condition: N = 4N1N2N3.
For S = 1/2, the magnetization (m) values satisfying the
condition Eq. (9) correspond to states with a well-defined
parity. If protected by a spectral gap, we expect that such
states correspond to non-trivial topologically ordered spin
liquid ground states and exhibit plateaus in the magnetization
vs. field plot. We will now show that, upon imposing the
condition

N = 4N1N2N3 = qQ̃m, (10)

where Q̃m = 4p is the magnetic unit cell, N1N2N3 = pq (p, q
belongs to the set of non-zero positive integers). Together
with S = 1/2, Eq. (9) gives the same predictions for the
positions of magnetization plateaus for pyrochlore lattice as
obtained from the OYA criterion [Eq. (5)]. The fundamental
unit cell of the pyrochlore lattice is Q̃m = 4 (for p = 1) and
various enlarged unit cells are Q̃m = 8, 12, 16, . . ., etc. (for

p = 2, 3, 4, . . .) [45,46]. Then, we can rewrite Eq. (9) as

qQ̃m

2

(
m

ms
− 1

)
= n, (11)

where ms = 1/2 is the saturation magnetization per site.
We find two cases for the possible plateaus states of the

minimum unit cell Q̃m = 4. First, we define ZPy as the spin-
parity operator relevant to the pyrochlore lattice, and obtained
from Eq. (8) by imposing the condition Eq. (10). Then, for
ZPy = −1, such that n is an odd integer from Eq. (8). When
put into Eq. (11), this implies that q is an odd integer, and thus

2

(
m

ms
− 1

)
= 2k + 1, k ∈ integer. (12)

For k = −1, this gives a possible magnetization plateaus at
m/ms = 1/2. Similarly, for ZPy = 1, such that n is an even
integer, Eq. (11) implies that if q is odd

2

(
m

ms
− 1

)
= 2w, w ∈ integer. (13)

For w = −1, we obtain a possible plateau at m/ms = 0.
Finally, if q is even integer

2

(
m

ms
− 1

)
= l, l ∈ integer. (14)

If l is either odd or even, we obtain the m/ms = 1/2 and
m/ms = 0 plateau, respectively (as before). The analysis
can also be extended to the case of the enlarged unit cells,
i.e., Q̃m = 8, 12, 16, . . ., obtaining possible plateaus states at
m/ms = 0, 1/8, 1/6, 1/4, 1/3, 3/8, 2/3, 5/8, 3/4, 5/6, and
7/8. We find, therefore, predictions that are identical to those
obtained earlier from the twist operator analysis, and end by
commenting on the origin of this similarity. The similarity in
predictions arises from the fact that both the twist (Ô) and the
spin-parity operators (ZPy) analyses involve a sensitivity to
changes in boundary conditions: the former by a twist that is
distributed gradually among the spins, and the latter by a twist
identical to all the spins. This can be seen from the following
relation between the matrix elements obtained from Eqs. (4)
and (8) acting on the ground state |ψ0〉,

〈ψ0|
(
Ô†T̂â1 ÔT̂ †

â1

) N1
2 |ψ0〉 = 〈ψ0|ZPy|ψ0〉. (15)

This relation indicates that the final result of the applica-
tion of both types of twists is equivalent in terms of the
global rotations they apply on the ground state of the spin
system. The resulting OYA-like relations, Eqs. (5) and (9),
obtained from these global rotations should, therefore, lead
to identical predictions on possible gapped plateaus ground
states.

V. DISCUSSION

In conclusion, we have predicted possible magnetization
plateaus ground states for the S = 1/2 pyrochlore lattice
with arguments based on an OYA-like criterion and the spin-
parity operator. Our analysis shows that for the fundamental
lattice unit cell (i.e., a tetrahedron), m/ms = 0 and 1/2 are
the two possible plateaus states, while other plateaus with
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fractional magnetization arise with the enlargement of the
unit cell. Similar results have been obtained for magnetization
plateaus in the spin-1/2 kagome system [11,12,27]. We have
also obtained results from the twist-operator approach for
S = 3/2 pyrochlore systems that predict plateaus at m/ms =
1/2, 2/3, 3/4, and 5/6. While a plateau at m/ms = 1/2 has
been observed in certain spinels [10,29], there are only pre-
liminary results on plateaus at other fractions [29].

It is important to note that our analysis does not depend
on the perturbative expansion of any coupling, instead relying
only on the symmetries of the Hamiltonian. Given that the
operators employed in reaching these predictions are non-
local (i.e., global) in nature, we expect that the properties of
the corresponding ground states will be topologically distinct.
For instance, some recent theoretical studies on the spin-1/2
kagome lattice have also revealed the topological nature of
magnetization plateaus ground states [13,14].

To our knowledge, this is the first analytical work for
the S = 1/2 pyrochlore system that predicts the existence of
plateaus in the magnetization. It will be interesting to test
these predictions numerically by looking for signatures in, for
instance, exact diagonalization (ED) studies of small clusters.
Extending our work to the case of spinel systems (in which
both A and B sites are magnetic) should be interesting, as
magnetization plateaus [47] and spin liquid ground states
[48,49] in such systems are under investigation. Finally, it will
be challenging to adapt either the functional RG method [50]
or the renormalization group method used recently in studying
the m/ms = 1/3 plateau of the kagome system [14] to the
plateaus we have predicted here for the pyrochlore.

Note added in proof. We take note of a recent arxiv
posting by Dr. S. Pujari [46], where connections between
different magnetization plateau states of the kagome (ana-
lyzed in Ref. [27]) and pyrochlore lattices presented earlier
are discussed. This appears to arise from the possibility
that the pyrochlore lattice can accommodate stable closely
packed hexagonal modes in a commensurate fashion within
its alternating kagome layers, and have the remaining sites as
fully polarized (including those on the intervening alternating
triangular layers). The link is especially interesting, given that
the known exact ground state wave function for the m/ms =
7/9 plateau of the kagome system is linked with the ground
state of the pyrochlore lattice plateau at m/ms = 5/6.
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APPENDIX A: LSM CALCULATION

Here, we present a calculation of the non-commutativity
between twist and translation operators defined in Sec. III:

T̂â1 ÔT̂ †
â1

= T̂â1 exp

⎡
⎣i

2π

N1

⎛
⎝∑

�r

(
n1 + n2

2
+ n3

2

)
Ŝz

�r +
∑

�R

(
1

4
Ŝz

�R,b
+ 1

2
Ŝz

�R,c
+ 1

4
Ŝz

�R,d

)⎞
⎠

⎤
⎦ T̂ †

â1

= T̂â1 exp

⎡
⎣i

2π

N1

∑
n2,n3, j

(
Ŝz

(1,n2,n3 ), j + 2Ŝz
(2,n2,n3 ), j + · · · + (N1 − 1)Ŝz

(N1−1,n2,n3 ), j + N1Ŝz
(N1,n2,n3 ), j

)⎤⎦ T̂ †
â1

× exp

⎡
⎣i

2π

N1

( ∑
�r

(n2

2
+ n3

2

)
Ŝz

�r +
∑

�R

(
1

4
Ŝz

�R,b
+ 1

2
Ŝz

�R,c
+ 1

4
Ŝz

�R,d

))⎤
⎦

= exp

⎡
⎣i

2π

N1

∑
n2,n3, j

(
Ŝz

(2,n2,n3 ), j + 2Ŝz
(3,n2,n3 ), j + · · · + (N1 − 1)Ŝz

(N1,n2,n3 ), j + N1Ŝz
(N1+1,n2,n3 ), j

)⎤⎦

× exp

⎡
⎣i

2π

N1

⎛
⎝∑

�r

(n2

2
+ n3

2

)
Ŝz

�r +
∑

�R

(
1

4
Ŝz

�R,b
+ 1

2
Ŝz

�R,c
+ 1

4
Ŝz

�R,d

)⎞
⎠

⎤
⎦

= Ô exp

⎡
⎣i

2π

N1

∑
n2,n3, j

N1Ŝz
(1,n2,n3 ), j

⎤
⎦ exp

[
−i

2π

N1

∑
�r

Ŝz
�r

]

= Ô exp

⎡
⎣i2π

∑
n2,n3, j

Ŝz
(1,n2,n3 ), j

⎤
⎦ exp

[
−i

2π

N1
Ŝz

Tot

]

= Ô exp

[
−i

2π

N1

(
Ŝz

Tot − N1N2N3Ŝz
�

)]
, (A1)
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where Ŝz
� = Ŝz

(1,1,1),a + Ŝz
(1,1,1),b + Ŝz

(1,1,1),c + Ŝz
(1,1,1),d is the

vector sum of the z-component of the four sub-lattice spins
in a boundary tetrahedron (n1 ≡ 1 corresponds to a boundary
spin). Ŝz

Tot = ∑
�r Ŝz

�r is the total magnetization operator, and we
have used periodic boundary conditions along â1 such that site
N1 + 1 ≡ site 1.

APPENDIX B: COMMUTATION RELATIONS

We present here the calculation of the commutation re-
lation [Z, H], which is equivalent to calculating the two
commutators, [

∏
�̃r σ z

�̃r , σ z
�r ] and [

∏
�̃r σ z

�̃r , �σ�r · �σ�r′ ]. Of these, the
first commutation relation is exactly zero, as it involves only
the z-component of Pauli matrices. The second commutator
can be computed as follows:⎡

⎣∏
�̃r

σ z
�̃r , σ x

�r σ x
�r′

⎤
⎦

=
⎡
⎣∏

�̃r
σ z

�̃r , σ x
�r

⎤
⎦σ x

�r′ + σ x
�r

⎡
⎣∏

�̃r
σ z

�̃r , σ x
�r′

⎤
⎦

= (
0 + · · · + σ z

�r1
· · · [σ z

�r , σ x
�r
] · · · σ z

�rN + · · · + 0
)
σ x

�r′

+ σ x
�r
(
0 + · · · + σ z

�r1
· · · [σ z

�r′ , σ
x
�r′
] · · · σ z

�rN + · · · + 0
)

= σ z
�r1

· · · (iσ y
�r
) · · · (iσ y

�r′
) · · · σ z

�rN
+ σ z

�r1
· · · ( − iσ y

�r
) · · · (iσ y

�r′
) · · · σ z

�rN
= 0. (B1)

In the above, we have used the following Pauli matrix identi-
ties: [σα

n , σ β
m ] = iεαβγ δnmσ

γ
n , where {α, β, γ } ∈ {x, y, z}, εαβγ

is the antisymmetric tensor, and δnm is the δ function between
site n and m. In the same way, we find that⎡

⎣∏
�̃r

σ z
�̃r , σ

y
�r σ

y
�r′

⎤
⎦ =

⎡
⎣∏

�̃r
σ z

�̃r , σ z
�r σ z

�r′

⎤
⎦ = 0. (B2)

Thus, we can conclude that⎡
⎣∏

�̃r
σ z

�̃r , �σ�r · �σ�r′

⎤
⎦ = 0. (B3)

Bringing together both commutators, we find that

[Z, H] = 0, (B4)

i.e., the spin-parity operator commutes very generally with the
Hamiltonian for the S = 1/2 Heisenberg antiferromagnet in a
field.
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