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As realized by Kapitza long ago, a rigid pendulum can be stabilized upside down by periodically driving its
suspension point with tuned amplitude and frequency. While this dynamical stabilization is feasible in a variety
of systems with few degrees of freedom, it is natural to search for generalizations to multiparticle systems.
In particular, a fundamental question is whether, by periodically driving a single parameter in a many-body
system, one can stabilize an otherwise unstable phase of matter against all possible fluctuations of its microscopic
degrees of freedom. In this paper, we show that such stabilization occurs in experimentally realizable quantum
many-body systems: A periodic modulation of a transverse magnetic field can make ferromagnetic spin systems
with long-range interactions stably trapped around unstable paramagnetic configurations as well as in other
unconventional dynamical phases with no equilibrium counterparts. We demonstrate that these quantum Kapitza
phases have a long lifetime and can be observed in current experiments with trapped ions.
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I. INTRODUCTION

Periodic drivings are ubiquitous in natural phenomena
and particularly in applications ranging from electronics to
condensed-matter physics [1-3]. Understanding driven sys-
tems is of paramount importance in the context of quantum
technologies, since these systems can both realize peculiar
phases of matter and help manipulate quantum information
[4]. In fact, time-periodic protocols have been theoretically
proposed and experimentally realized to engineer a variety of
systems, including topological phases [5], time crystals [6,7],
and exotic Bose-Einstein condensates [8]. All of them have no
equilibrium counterparts, i.e., they do not exist in the absence
of driving. For instance, a gas of bosons may condense in
a nonuniform, m-quasimomentum state in the presence of
a rapidly varying electric field or of a shaken lattice [8].
Similarly, while invariance under time translations cannot be
broken at equilibrium, the formation of discrete time crystals
under the effect of AC-driving has been theoretically proposed
[6] and experimentally observed [7].

In systems with few degrees of freedom, a periodic drive
might have spectacular effects, such as the stabilization of a
pendulum upside down. A theory of this phenomenon was
formulated by P. Kapitza in 1951 [9], and found applica-
tions in laboratories (see, e.g., Refs. [10,11]) as well as to
the stabilization of otherwise unstable phases (referred to as
Kapitza phases) in many-body systems whose description,
at the mean-field level, can be reduced to a few collective
degrees of freedom (see, e.g., Refs. [12—15]). In this paper,
we demonstrate that this stabilization may occur over a para-
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metrically large timescale in Floquet prethermal phases of
periodically driven quantum magnets affected by many-body
fluctuations.

Although the results presented here are general, we
focus on experimentally relevant models, i.e., spin chains
with long-range ferromagnetic interactions described by the
Hamiltonian

N N

H = —Z of‘af—BZGf, ()
i=1

i#Jj

li—Jjl

where Ui" s are Pauli matrices, o, J > 0 (when 0 < o < 1 the
scaling J o« N®~! yields a meaningful thermodynamic limit
[16]), and the magnetic field B is periodically varied,

B(t) = By + 8B cos(2t). 2)

These systems accurately model the nonequilibrium dynamics
of quantum simulators with trapped ions (0 < o < 3) [17,18]
or Rydberg atoms (¢ = 6) [19,20]. In Fig. 1, our main
findings are illustrated: The nonequilibrium phase diagram
of the driven systems features a number of dynamically
stabilized phases, which include many-body analogs of the
Kapitza pendulum as well as unconventional magnetically
ordered phases with no equilibrium counterpart.

II. INFINITE-RANGE SYSTEMS

To gain insight into the physics of this problem, it is
worth starting by analyzing the simplest limit « — 0, where
mean-field theory becomes exact and ideas analogous to those
employed by Kapitza in 1951 can be applied [9]. In fact, in
this limit A in Eq. (1) reduces to the Lipkin-Meshkov-Glick
model, which is equivalent to a single macroscopic spin [21]
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FIG. 1. Left: Fast-driving nonequilibrium phase diagram of the
periodically driven long-range Ising model defined by Egs. (1) and
(2). Upon varying the average magnetic field By and the rescaled
modulation amplitude ¢ = §B/€2, a dynamical paramagnetic phase
P, a dynamically stabilized Kapitza paramagnetic phase K, a con-
ventional dynamical ferromagnetic phase F, and an unconventional
dynamical ferromagnetic phase F|, with orthogonal magnetization
emerge. The axis ¢ =0 corresponds to the equilibrium phase
diagram, where a ferromagnetic F| and a paramagnetic P phase
are present. The diagram shows the exact phase boundaries of the
infinite-range system with o = 0. (Note that the dashed line sepa-
rating K and P does not correspond to an actual phase transition.)
When 0 < o < 2, quantum fluctuations modify these boundaries,
leaving, however, their qualitative structure unaltered. Within the
shaded region on the left, a second Kapitza phase coexists with
Fj, 1, but is stable for o = 0 only. Right: Schematic phase portraits
on the Bloch sphere of the effective high-frequency Hamiltonians
governing the evolution of the collective spin of the system, high-
lighting the various phases. These phases persist up to timescales
T ~ exp(const x ©/J,) for finite driving frequencies Q larger than
the characteristic energy scale J, = erv J/r® of the system, before
eventual heating takes place.

on the Bloch sphere. Indeed, the coupling strength is the
same J = Jy/N for all pairs of spins, hence H describes the
dynamics of a single collective spin § = > 8i/N [22-24]. In
the thermodynamic limit N — oo, the rescaled Hamiltonian
H /N becomes equivalent to its classical limit He = —Jo S —
BS.. At zero temperature and constant B, this system has a
paramagnetic phase for |B| > 2Jy, where all the microscopic
spins are oriented along the transverse direction z of the field,
and a ferromagnetic phase for |B| < 2Jy, where the spins
acquire a nonvanishing component along the longitudinal
direction x [22,23,25].

A. Dynamics

The nonequilibrium evolution of the system in the pres-
ence of a time-dependent field B = B(¢) is described by the
dynamics of the collective spin S(¢) on the sphere of radius 1
governed by the classical Hamiltonian H (). When B = By
is static and supports the ferromagnetic state indicated by
the arrow in Fig. 2(a), §(t) follows one of the trajectories
represented on the Bloch sphere in Fig. 2(a), selected by
the initial condition S(0) (for definiteness, we will assume

(c) (d)

FIG. 2. Dynamics on the Bloch sphere of the infinite-range
(¢ = 0) ferromagnet in the thermodynamic limit. (a) Semiclas-
sical phase space trajectories of the static Hamiltonian (6B = 0)
with B/Jy = 1.2. (b)—(d): Stroboscopic trajectories {§(tn)}, with
t, =2nn/Q, n=0,1,2,... of the semiclassical collective spin on
the Bloch sphere with driving frequency Q/J; =5 and increas-
ing §B/Jy, = 0.01 (b), 3.3 (c), and 5 (d), with By/Jo = 1.2. Panel
(b) shows the presence of a possible ferromagnetic dynamical or-
dering, corresponding to the evolution occurring within a single
ferromagnetic sector S, > 0, with a special synchronized trajec-
tory (appearing as a single point under stroboscopic observations),
together with the onset of chaotic behavior around the unstable
paramagnetic point [26]. Panel (c) shows the appearance of a dynam-
ically stabilized phase, akin to the well-known stabilization of the
inverted driven Kapitza pendulum [9,30]. Panel (d) shows that for
larger driving frequencies, an unconventional dynamical ferromag-
netic ordering appears, where the direction of the magnetization is
orthogonal to the direction x of the actual ferromagnetic interactions.
Islands with stable stroboscopic trajectories are indicated by the
arrows.

By > 0 throughout). Two families of them are characterized
by a ferromagneticlike, symmetry-breaking periodic evolution
with opposite signs of the nonvanishing time-averaged order
parameter S,. A trajectory (red) passing through the equilib-
rium unstable paramagnetic point (red star) separates these
two families from the paramagneticlike orbits with S, = 0.
Turning on the modulation as in Eq. (2), representative sam-
ples of discrete stroboscopic trajectories {S(1,)}, where 1, =
2nn/R, with n =0, 1,2, ... of the semiclassical collective
spin are reported in Figs. 2(b)-2(d). When the modulation §B
is small [see Fig. 2(b)], the equilibrium ferromagnetic states
leave room to periodic trajectories of the collective spin within
the corresponding ferromagnetic sector synchronized with the
drive (and hence appearing as a single point under strobo-
scopic observations). Conversely, initial states in a neighbor-
hood of the unstable paramagnetic point [red star in Fig. 2(a)]
display chaotic motion as soon as 8B # 0 [25,26]. As §B
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increases, this chaotic region invades an increasingly large
portion of the sphere [26]. This behavior can be understood
on the basis of classical KAM and chaos theory [27,28] and
related phenomena have been experimentally observed with
Bose-Einstein condensates [29]. Upon further increasing the
modulation 8B [see Fig. 2(c)], a region in the parameter space
emerges where dynamical stabilization of the unstable para-
magnetic point occurs, thereby opening up a stability region
around it. This phenomenon is analogous to the stabilization
of the inverted pendulum discovered by Kapitza [9,30]. In
addition to this Kapitza-like stabilization, as 6B increases with
By ~ Jy [see Fig. 2(d)], an unconventional regime appears
characterized by dynamical ferromagnetic ordering in the yz
plane, orthogonal to the direction x of the actual ferromagnetic
interactions.

B. Fast-driving limit

To understand later on the full many-body case (« # 0),
we first analyze the behavior of the system described above
in the regime of fast-driving 2 — oo as a function of the
rescaled amplitude ¢ = §B/S2. In fact, the effective Floquet
Hamiltonian governing the stroboscopic evolution [31] can be
determined nonperturbatively, by switching to a convenient
oscillating reference frame [2] (see Appendix A). The effect
of the driving then amounts to redistributing the ferromagnetic
coupling strength along the directions x and y, thereby turning
the Ising model into an XY model, with

1+y(©) 1-y@)

Hetr = —f0<

and anisotropy parameter y(¢) = Jo(4¢), where Jp is the
Bessel function of the first kind.

As ¢ increases from zero, the effective ferromagnetic
interaction along x weakens, which makes it possible to
dynamically stabilize the paramagnetic configuration. The ex-
act boundary By = B (¢) = Jo(1 + | Jo(4¢)]) of the Kapitza
phase K is reported in Fig. 1. Note that this region is contin-
uously connected with the paramagnetic one P in the phase
diagram, see Fig. 1, similarly to the region of dynamical
stabilization of the Kapitza pendulum, which is continuously
connected with the parameter region corresponding to a re-
versed direction of gravity, in which stability is trivial [30]. As
¢ increases even further, due to the oscillations of 7, around
zero, intervals with a negative anisotropy y appear, favoring
ferromagnetic ordering along the y direction. This explains
the occurrence of the unconventional dynamical phases with
ferromagnetic ordering in the yz plane, orthogonal to the
direction x of the actual ferromagnetic interaction, which
builds up whenever y < 0, By < Jo(1 — y), i.e., within the
regions denoted by F| in Fig. 1. A second Kapitza phase
coexists with F | for By < Jo(1 — | Jo(40))), as discussed in
Appendix D.

The numerical results reported in Fig. 2 show that these
nonequilibrium phases persist even at smaller driving fre-
quencies, comparable to the characteristic energy scale Jy of
the system. Indeed, as discussed in Appendix A, when the
driving frequency €2 is large but finite, the effective Floquet
Hamiltonian Eq. (3) receives perturbative corrections in an
expansion in inverse powers of 2. The first term beyond

Eq. (3) is reported in Appendix B [cf. Eq. (B1)] and it causes
small quantitative modifications of the boundaries in Fig. 1.
Furthermore, this dynamical stabilization is robust to finite-
size effects, as demonstrated in Sec. III C below.

III. VARIABLE-RANGE INTERACTIONS

The behavior of infinite-range systems can essentially be
understood in terms of one-body physics. However, when
interactions have a nontrivial spatial dependence, fluctuations
at all length scales are activated. The possibility to stabilize
many-body dynamical phases by modulating in time a global
external field represents a major conceptual and practical
challenge. To address this problem, we study below the
spin system Eq. (1) with o # 0 and we will show how the
dynamical phases reported above can be stabilized also for
0 < a < 2, where quantum fluctuations around the semiclas-
sical evolution are not suppressed, with the exception of the
coexistence region. Their effect is reduced by decreasing the
parameter o, which continuously connects these models with
their infinite-range semiclassical limit.

When « # 0, both the total spin S, corresponding to the
k = 0 Fourier mode of &;, and all the k # 0 quasiparticle
(spin wave) excitations are affected by interactions [32,33].
To account for the coupled dynamics of the collective spin
and of the spin-wave excitations around the time-dependent
direction of S(r), we employ the time-dependent spin-wave
theory developed in Ref. [32], see also Appendix C for a
concise overview. In the presence of k # 0 modes, represent-
ing all microscopic fluctuations, the system may be thought
of as a macroscopic semiclassical collective degree of free-
dom, i.e., the total spin S‘(t), which “drags” an extensive
set of quantum oscillators (§x, pr)’s, i.e., of microscopic
degrees of freedom corresponding to the bosonic spin wave
excitations with quasimomentum k # 0 [32,33]. Indeed, the
time-dependent spin-wave theory maps spin fluctuations into
such bosonic excitations and the Hamiltonian H(¢) is then
written in terms of the collective spin variables S/|S| =
(sin @ cos ¢, sin 8 sin ¢, cos 6) and of the spin wave operators
gx’s, Pr’s. Truncation to quadratic order in the quantum fluc-
tuations yields

H(t) = —NB(t)(1 — €)cos @ — NJp[(1 — €)sin6 cosqb]2

—4 X:fk(cos2 6 cos? p Tk | g2 g PRPK
2 2
k#£0
- GkP—k + Prd—k
_cosecosqbsmq)f ’ )

where J;, is the Fourier transform of the interaction J/r® (the
scaling of J as N — oo, see below Eq. (1), guarantees that
Jo is finite in the thermodynamic limit) and € = Zk(q”kq,k +
pxP—r — 1)/N is the relative depletion of the total spin length
from its maximal value, i.e., |§ | =1 — €. The last term in
Eq. (4) accounts for the interaction between the collective
semiclassical spin § and the quantum spin-wave excitations.

A. Dynamically stabilized many-body phases

A many-body Kapitza phase consists of a simultaneous
dynamical stabilization of the whole spectrum of quantum
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excitations around an unstable paramagnetic configuration.
Intuition on this phenomenon can be obtained at the level of
linear stability by expanding H(¢) to quadratic order in the
quantum fluctuations, as in Eq. (4), around the point 8 = 0:

Geq—k
2

Ht)=E@t)+2) [(B(,)_zjk) ﬁkﬁ—k],
k

+ B(1t) >
©)

where FE(t) = —2NB(t) and k=2nn/N with n=
0,1,...,N — 1 (assuming periodic boundary conditions for
simplicity). In the absence of modulation in the ferromagnetic
phase [i.e., B(t) = By < 2Jp], an extended interval near k = 0
in the spin-wave band corresponds to unstable modes, as their
corresponding frequency wy = 2[By(By — 2J;)]/? becomes
imaginary for J; > By/2. However, upon introducing the
modulation B(t) as before, the effective dispersion relation is
modified and, for a suitable choice of the driving parameters,
wr may become real for all values of k. The occurrence of
this nontrivial stabilization of an otherwise unstable phase
of matter against all possible fluctuations of its degrees
of freedom is illustrated in Fig. 3 and it represents an
actual generalization of the Kapitza pendulum to a genuine
many-body system.

To understand how all the degrees of freedom can get
dynamically and simultaneously stabilized by driving a single
global field B(z), we concentrate first on the fast-driving
limit 2 — oo as a function of the rescaled driving amplitude
¢, which can be studied analytically also for o # 0. Here,
the effective Floquet Hamiltonian governing the stroboscopic
time-evolution is the long-range XY spin chain,

N
J 14 1— ,
Hegr = —Z T ( ;(g)aix"f"k%%yaj)

—B()ZO'I-Z, (6)

where the parameter y(¢) is the same as in Eq. (3) and is
independent of the particular dependence of the interactions
on the distance (see Appendix A).

The stability analysis of the paramagnetic configurations
is carried out by expanding H.¢ at the quadratic order in the
spin-wave operators around the field direction z and hence
by determining the range of parameter values within which
the dispersion relation is real. It turns out that a simultaneous
dynamical stabilization of the whole spectrum of spin-wave
excitations, such as that illustrated in Fig. 3, is possible within
the region denoted by K in Fig. 1, and, upon increasing «,
the quantum fluctuations solely modify its phase boundary.
Within the shaded region in Fig. 1, instead, the second Kapitza
phase turns out to be unstable to many-body fluctuations at
finite wavelength: Although the driving stabilizes the collec-
tive mode with £ = 0, an extended interval in the Brillouin
zone with k # 0 appears, which is characterized by imaginary
frequencies (see Appendix D for further details). To the
lowest order in jk;é(), the shift AB.(¢) of the left boundary

m Undriven
m Driven

= I 71(>k

FIG. 3. Stabilization of the many-body Kapitza phases. In the
presence of a suitable periodic driving, the otherwise unstable spec-
trum of quantum excitations around the paramagnetic configuration
gets simultaneously dynamically stabilized for all values of k. Here
a = 1.5, N =400, and Bo/fo = 1.35: In the absence of the driving
8B = 0, the system is in the ferromagnetic phase. The red points
represent the (squared) frequency spectrum w,f = 4By(By — 2J;) of
the spin-wave excitations, labeled by their wave vector k, with an
extended interval of unstable long-wavelength modes (i.e., @} < 0
for k near 0). As the driving is turned on with a strength in a
suitable range of values, not only the collective spin mode with k = 0
discussed in Sec. II, but also the whole set of modes with k # 0
become stable (i.e., a),f > () for all k). The blue points show the exact
effective dispersion relation a),% = 4(By — Ji)? in the presence of a
high-frequency driving Q2 — oo with { =8B/ = 0.6014 (corre-
sponding to y = 0 in the effective Hamiltonian, see the text). When
Jo < Q < 00, this effective dispersion relation receives perturbative
corrections in inverse powers of €2, thus no qualitative changes occur
as long as the system is in the prethermal regime (see Sec. III B
and references therein). As discussed in the text, upon decreasing
a below 1, the Fourier transform J; of the ferromagnetic couplings
approaches zero for all k # 0 in the thermodynamic limit, thus
reducing this many-body problem to the single-body dynamical
stabilization of the collective spin discussed in Sec. II.

By = B (¢) of region K is given by

= T dk (T N\ + 2
AB.(¢) = —Jo|V(§)||:/ - (J%) ]%

as derived in Appendix E. Due to the rescaling of long-
range interactions in the thermodynamic limit [see below
Eq. (1)], one has Jyz — O when 0 < & < 1 (i.e., as N — o0
fluctuations are suppressed and the system becomes equiv-
alent to its infinite-range limit), whereas Jio approaches a
finite value when 1 < o < 2, with a cusp behavior jk;é() ~
Jo(1 — clk|*~") for small wave numbers k. Accordingly, the
modification of the phase boundary in Fig. 1 due to quantum
fluctuations is vanishingly small in the thermodynamic limit
when 0 < o < 1 and is finite as o > 1, the smallness parame-
ter being o — 1. The resulting modified nonequilibrium phase
diagram is presented in Fig. 4.

This proves the existence of many-body nonequilibrium
Kapitza phases for sufficiently fast driving (and in the regime
of prethermal slow heating, see Sec. III B below), under the
sole condition that the effect of fluctuations is not so strong as
to modify the bulk structure of the equilibrium phases of the

)
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FIG. 4. Fast-driving nonequilibrium phase diagram of the peri-
odically driven long-range Ising model defined by Egs. (1) and (2),
for @ > 0. Compared to Fig. 1, the shaded region of coexistence of
phase K with F; | has disappeared, and the left boundary of region
K moves leftward upon increasing «, as determined by Eq. (7) and
indicated by the white arrows. This displacement is vanishingly small
in the thermodynamic limit for 0 < o < 1, due to the rescaling of
long-range interactions as N — oo [see below Eq. (1)], whereas it
is finite for & > 1. The amount indicated by the arrows corresponds
to Eq. (7) with o = 1.5 (it is magnified by a factor of 2 for ease of
visualization).

effective Hamiltonian H.g, which is known to be generally
the case for long-range interactions with exponent o < 2,
as well as for higher-dimensional systems with short-range
interactions [16,34].

More generally, the stability of the various many-body
nonequilibrium phases can be determined by studying the
local extrema of the mean-field energy landscape of H.g
and the corresponding spectra of excitations. In particular,
driving amplitudes ¢ corresponding to negative anisotropy
parameters y(¢) < 0 allow the appearance of dynamically
stabilized unconventional ferromagnetic phases with orthog-
onal ferromagnetic ordering in the yz plane whenever By <
Jo(1 — y) 4+ AB,, [cf. Eq. (7)], which have no equilibrium
counterpart in the Ising model. Such phases arise under the
same conditions as the Kapitza phases discussed above.

B. Prethermalization and heating

We address here the footprint of the fast-driving nonequi-
librium phase diagram on the finite-frequency dynamics, upon
reducing €2 down to a scale comparable with the microscopic
energy scale Jy of the system. In this case, one should expect
the system to eventually absorb an ever-increasing amount
of energy from the drive [35,36]. To investigate this point,
we initialize the system in various fully polarized states pa-
rameterized by angles (6, ¢o) on the Bloch sphere and study
the nonequilibrium evolution for various values of & > 0 and
driving parameters By, §B, 2 by numerically integrating the
dynamical equations of the time-dependent spin wave theory,

where the heating rate can be monitored, e.g., through the
depletion of the collective spin magnitude from its maximal
value (see Appendix C). The results are illustrated in Fig. 5.

Whenever the system is initialized in a nonchaotic dynam-
ical regime, P, K or Fj |, and the frequency 2 is off-resonant
with the spin-wave band, i.e., Q2 > 4J,, as shown in Fig. 5(a),
5(c) and 5(d), the evolution presents a long time interval
during which the absorption of energy from the drive, as well
as the amount of spin-wave excitations, is bounded. On the
other hand, whenever the system is in a chaotic dynamical
regime as in Fig. 5(b), irrespective of the value of € and
of «, the amount of generated spin-wave excitations and the
energy increase at a finite rate. Such a behavior corresponds to
heating, which has been extensively proven to be the generic
response of a many-body system to an external periodic driv-
ing [35-37], in the absence of dissipative mechanisms [38]. In
the nonchaotic dynamical regimes Fj ; of Figs. 5(a) and 5(d),
the synchronized trajectories of the collective spin S(r) act as
an “internal” periodic driving at frequency 2 on the quantum
oscillators (gk, px)’s through the last interaction terms in the
spin-wave Hamiltonian Eq. (4). As long as 2 is off-resonant
(see above), the spin waves behave like a periodically driven
system of quasifree particles, which relaxes to a periodic
quasistationary state described by a stroboscopic generalized
Gibbs ensemble [39,40]. The presence of nonlinear spin-wave
interactions cause the latter prethermal stage [37,41-44] to
be ultimately followed by slow heating, after a parametrically
long time T which scales as T ~ exp( const x Q/Jo) [36]. On
the contrary, the occurrence of chaotic motion of the collective
spin S(t) translates, as in Fig. 5(b), into an irregular, noisy
“internal” driving of the spin waves through the last terms
in Eq. (4), possessing a broad frequency spectrum, whereby
the unavoidable resonances with the spin waves band together
with the local instability trigger the process of internal dissi-
pation and hence a much faster heating.

C. Quantum simulations with trapped ions

We finally address the robustness of the dynamically sta-
bilized nonequilibrium phases to finite-size effects as well as
their observability in the setup of quantum simulations with
trapped ions. In particular, we computed the nonequilibrium
evolution of small driven systems of N = 16 spins by numer-
ically integrating the time-dependent many-body Schrodinger
equation, and demonstrate the occurrence of quantum many-
body Kapitza phases for the long-range interacting chains
in Eq. (1) as well as with the space-dependent spin-spin
couplings J;; which characterize a chain of trapped ions ex-
perimentally investigated in Ref. [17], roughly corresponding
to model Eq. (1) with @ =~ 1.

In Fig. 6, we report an illustration of the stabilization
of the ordered phase F,, which is of greater experimental
relevance as it presents a type of magnetic ordering that
is absent in the equilibrium phase diagram. To probe its
occurrence, the driving parameters in Eq. (2) are chosen well
inside the region F| of the nonequilibrium phase diagram
in Fig. 4, and the system is initialized in a fully polarized
state along the y direction. In the top panel, the stroboscopic
time evolution of the orthogonal magnetization (S,(nT)),
with T =27/Q and n=0,1,2,..., is shown for the
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FIG. 5. Persistence of the dynamically stabilized phases at finite driving frequency. Left in each panel: Stroboscopic time evolution of

the total spin (projected on the unit sphere) of the long-range Ising chains in Eq. (1) with o # 0, subject to the modulated magnetic field
in Eq. (2). The dynamics is obtained by numerically integrating the system of coupled evolution equations for the total spin and the spin
waves provided by the time-dependent spin-wave theory, see Eq. (4) and Appendix C. In all simulations, the static field is Bo/Jy = 1.2, as
in Fig. 2, the driving frequency is Q/Jo = 8, the system size is N = 100, and the system is initialized in spin-coherent (fully polarized)
states in the xz [panels (a)—(c)] and yz [panel (d)] planes. Right in each panel: Relative departure €(¢) of the total spin from its maximal
length N/2 [i.e., |S(t)| = 1 — €()], due to the generation of quantum spin wave excitations, corresponding to the largest trajectory in each
panel. Notice €(r = 0) = 0 with our choice of fully polarized initial states. In particular: (a) Dynamical ferromagnetic phase, with &« = 1 and
8B/Jy = 0.05. (b) Fast heating in the chaotic dynamical regime, with & = 0.8, §B/Jy = 0.2. (c) Dynamically stabilized Kapitza phase, with
a =1, 8B/Jy = 5.33. (d) Unconventional, dynamically stabilized ferromagnetic phase with magnetization in the yz plane orthogonal to the
direction x of the actual ferromagnetic interactions, with & = 1, B/Jy = 8. Panels (a), (c), and (d) demonstrate that the dynamical phases Fj,
K, F, (see Fig. 1), respectively, continue to exist at finite driving frequency. The amount of excitations generated remains small and the total
energy remains bounded across many cycles, qualifying these phases as being prethermal. In panel (b), instead, the broad frequency spectrum
of the chaotic semiclassical motion gives rise to resonant generation of excitations, witnessed by the growth of €(7) (notice the different vertical

scale in the plot), and absorption of energy from the drive (heating). The heating rate in this case increases upon increasing «.

simulated trapped-ion system subject to the drive (magenta)
as well as in the limit of vanishing driving strength (blue). In
both cases, the shaded region around the symbols indicates
the instantaneous quantum uncertainty of the magnetization
ASy (1) = \/(Syz(nT)) — (Sy(nT))*. As the plot clearly shows,
in agreement with the theory developed in this paper, the drive
stabilizes a magnetic ordering that is not possible in static
conditions. We emphasize that the preparation of tilted fully
polarized states, the implementation of the considered driving
protocols and the measurements of the tilted magnetization
can be achieved with standard experimental techniques, which
make it possible to actually observe this phenomenon with
trapped ions.

To disentangle the finite-frequency and finite-size effects
from the effects of having experimentally realistic interac-
tions, we report in the bottom panel of Fig. 6 the outcome
of analogous simulations in which the trapped-ion couplings
have been replaced by uniform collective interactions J;; =
Jo/(N — 1) with the same average strength. The qualitative
appearance of the two plots is similar, in agreement with
our theory. However, we observe that the strong many-body

quantum fluctuations affecting data in the top panel have a
visible effect in the transient relaxation dynamics: In fact,
while the single-body collective spin oscillations in the bottom
panel become increasingly long-lived in larger systems as
the classical limit is approached, the many-body spatially
decaying interactions in the top panel cause damping and,
correspondingly, are expected to lead to a Gibbs-type Floquet
prethermal state in terms of the approximate high-frequency
Floquet Hamiltonian given by Eq. (6) with the couplings
J/|i — j|* replaced by the experimental ones J;; [36].

IV. CONCLUSIONS AND PERSPECTIVES

Dynamical stabilization is a well-understood mechanism
since the original work of P. Kapitza in 1951 [9] on the
driven classical pendulum and has found several experimental
applications, e.g., in particle synchrotrons [10] and in Paul
traps [11]. More recently, it has been applied to quantum
many-body physics out of equilibrium, for instance, to stabi-
lize Bose-Einstein condensate clouds in two and three spatial
dimensions [12], to prevent spin mixing in spinor condensates
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FIG. 6. Illustration of the dynamical stabilization of the uncon-
ventional ferromagnetic phase F, in a realistic trapped-ion setup
(top panel) and in the corresponding infinite-range system (bottom
panel). The orthogonal magnetization (S, (¢)) £ AS,(¢) (see the text)
is plotted at stroboscopic times t = nT, with T =27 /Q and n =
0,1, 2,...,forundriven and driven systems of N = 16 spins with the
actual space-dependent couplings J;; which characterize a chain of
trapped ions experimentally studied in Ref. [17], roughly described
by Eq. (1) with ¢ =1 and Eq. (2) (top panel). The system is
initialized in a fully polarized state in the y direction, and the driving
parameters are By/J; = 0.5, ¢ =1, and ©/J, = 8, corresponding
to a point well inside a region F, in Fig. 4. For comparison, the
corresponding simulation with J;; replaced by all-to-all uniform
interactions of equal average strength is shown in the bottom panel.
Ferromagnetic ordering in the yz plane is dynamically stabilized
by the drive, and is found to be robust to finite driving frequency,
finite-size effects and “imperfections” in the long-range couplings,
realizing a pre-thermal quantum many-body Kapitza phase observ-
able with trapped-ion quantum simulators.

[13,14], and to stabilize 7w -modes in driven bosonic Josephson
junctions [15]. In all these cases, however, the dynamical
stabilization by periodic driving involves a single collective
mode of the system. The driven infinite-range model which
we preliminarily study in Sec. II represents an instance of the
same class.

On the other hand, the present paper demonstrates that
this dynamical stabilization can occur in the presence of a
rather general class of multiparticle interactions, for which
the many-body problem cannot be reduced to that of a single
collective degree of freedom. In this respect, the mechanism
investigated here is a bona-fide realization of the many-body
Kapitza pendulum. Moreover, we have shown that ordered
ferromagnetic phases can also be stabilized via periodic driv-
ing, in a way that has no counterpart in equilibrium.

We focused here on the physics of long-range interacting
spin chains because of their relevance for current experiments
with ion traps [17,18], which can be prepared in fully polar-
ized initial states and whose time evolution can be modeled
by Hamiltonians of the form (1). The phenomena that we
report are actually even more stable in higher-dimensional
systems [20,45] and/or with higher spins [46], where fluc-
tuations are less effective. In this respect, we emphasize that
the dynamically stabilized nonequilibrium phases studied in
this paper can be observed even in relatively small systems
with size N 2 16, accessible to exact numerical simulations
and well within the reach of state-of-the-art experiments, as
demonstrated in Fig. 6.

We expect that our analysis can be generalized to other
important phase transitions involving more complex symme-
tries, such as in the case of superconductors, providing access
to a number of nonequilibrium phases of matter. In addition,
our approach can be extended to account for the effects of
disorder and of external environments, further corroborating
the robustness of our findings.
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APPENDIX A: EFFECTIVE (FLOQUET) HAMILTONIAN

Whenever the time-dependent Hamiltonian of a system
has a period T, ie., H(t +T) = H(t), the resulting time-
evolution operator U (t,, t ) satisfies

Uty +nT,t0) =[U(to + T, 19)]" (A1)
for any integer n. Accordingly, it is convenient to define an
effective static Hamiltonian H.g [2,31],

. rtg+T .

Ully+T,19) = Te o 4TH® = gmiTHar, (A2)
usually referred to as the Floquet Hamiltonian. Its spectrum
is defined up to integer multiples of the frequency 2x /T
and it is independent of the choice of the reference time #,.
The state of the system at stroboscopic times ¢, = to + nT
is therefore entirely and unambiguously determined by the
Floquet Hamiltonian H.g. A series expansion of Heg in powers
of the period T, known as the Magnus expansion, can be
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written as

o0
He =Y HS. (A3)
n=0

with H e(;lf) proportional to T". Explicitly, the first terms read

fo+T d‘L’l
ny = [ Th, (Ad)
0]
Hy =5 /tOH dn [ dn [H(t1), H()],  (A5)
F — A~ I e T1), T )
eff 2 o T o T 1 2

with the higher-order terms involving an increasing number of
nested commutators of H at different times. This expansion
is convergent when T is smaller than the inverse maximal
extension of the spectrum of H(¢) [31].

We consider in the following the general class of sys-
tems defined in Eq. (1), which encompasses the long- and
infinite-range Ising chains subject to the effect of the periodic
driving in Eq. (2). In the simplest high-frequency limit 2 —
00, the effective evolution is governed by the time-averaged
Hamiltonian [cf. Eq. (A4)], since the system has no time to
react to variations of the external parameters much faster than
its characteristic dynamical timescales. Nevertheless, if the
modulation amplitude B is simultaneously increased with
fixed ¢ = 6B/, the effective dynamics becomes qualitatively
different from the former. Such qualitative changes involve
a resummation of the high-frequency expansion in Eq. (A3)
of the Floquet Hamiltonian [2]. In some cases, an analytic
solution in closed form can be obtained by performing a
convenient time-periodic change of coordinates [2]. Indeed,
by moving into the oscillating frame

o cos(2¢ sin(Qt))o/* + sin(2¢ sin(Q))o,”
oj | = | —sin(2¢ sin(Q1))o/* + cos(2¢ sin(Q))o,” |,
ot ol*

(A6)

the time-periodicity of the external magnetic field is elimi-
nated, and the proper equations of motion for 6’ are generated
by H (t), the static part of the Hamiltonian alone, which takes
the same form as Eq. (1) with o]0 replaced by

cos?(2¢ sin(Q))o/ o " + sin®(2¢ sin(Q#))o;” a]’,y

+ cos(2¢ sin(Q1)) sin(2¢ sin(Qt))(oi”‘a]’.y + ai/"'o_;").
(A7)

Crucially, the modulation 6 B now intervenes only via the finite
combination ¢. A standard high-frequency expansion for the
new time-periodic Hamiltonian H (¢) will then reproduce the
correct high-frequency effective Hamiltonian H.g. To lowest
order, time-averaging yields the XY model of Eq. (6) with an
engineered anisotropy parameter y = y () = Jo(4¢), where
Jo 1s the standard Bessel function of the first kind.

APPENDIX B: FINITE-FREQUENCY CORRECTIONS

We discuss here the correction of order Q7! to the effective
Hamiltonian Eq. (3) within the Magnus expansion in the
oscillating frame (see Appendix A). By using Eq. (AS), a

straightforward calculation yields

8 J?
H) = QO [sz,yz(;)sxsysz — Kyy2($) S2S;
(B1)
2 By 2 2
+ Kxy,y? () SySz + _~Kz,xy(§) (Sy - Sx) s
2./() i
in terms of the dimensionless coefficients «
2 d . .
cep(©) = [ 55 B Ba)
? 0 27
2 d%‘ . .
Kxy,x2 (€)= / ~— (CA - AC),
0 27'[
(B2)
2 d%- . .
Kxy,y? &)= o Z (CB — BC),
2 d
Kz,xy(é‘) = / 2_%‘ C,
0 T

where the dots stand for derivatives with respect to the argu-
ment &, and

&
A(g)E/ ;l—" cos?(2¢ sinn),
0 T

&
B(&) 5/ dn sin?(2¢ sinn) = £ —A(E), (B3)
0 27 27

S dn o .
C¢é)= / — co0s(2¢ sinn) sin(2¢ sin ).
0 2

The classical Hamiltonian Hgf)f) + ’Hgf) , with 7—[222 given by

Eq. (3) and ’Hgf) by Eq. (B1), defines phase space trajec-
tories on the Bloch sphere which better approximate the
stroboscopic evolution of the collective spin at finite driving
frequency 2 compared to the high-frequency limit Eq. (3).
In particular, it is possible to determine the shift of the
boundaries in Fig. 1 to order ~!. We note that although
the Magnus expansion is divergent [2], its truncations provide
an increasingly accurate approximation of the regular orbits
(KAM tori) in phase space, and hence of the dynamically
stabilized phases.

APPENDIX C: TIME-DEPENDENT SPIN WAVE THEORY

We briefly outline here this method, developed in Ref. [32],
which provides a natural and viable approach to investigate
the equilibrium phases and the non-equilibrium evolution of a
wide class of spin models.

A time-dependent reference frame R = (}2 Y.2Z ) is intro-
duced, with its Z axis following the collective motion of S ).
The change of frame is implemented by a time-dependent
global rotation operator parameterized by the spherical angles
0(t) and ¢(¢), whose evolution will be self-consistently de-
termined in such a way that Sx () = Sy(t) =0. For « =0,
when H is a function of the total spin S only, this requirement
translates into a closed pair of ordinary differential equations
for the two angles, as in Fig. 2. For « > 0, the dependence of
the interactions on the distance renders H a function not only
of the total spin, i.e., the k = 0 Fourier mode of the spins, but
also of all the k¥ modes of the spins, which now contribute
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to the dynamics. To systematically take into account these
fluctuations, the G; spins’ deviations from the instantaneous
direction of the Z axis are mapped to bosonic variables g;, p;
via Holstein—Primakoff transformations. The nonequilibrium
dynamics of the system governed by the Hamiltonian Eq. (1)
with o # 0 involves quantum corrections to the classical
evolution of the total spin S(), which are expressed in terms
of the corresponding spin wave variables i, pi. Retaining up
to quadratic terms in the expansion (i.e., neglecting collisions
among spin waves), one finds the evolution equations

fl—f =4[Jo(1 — e(t)) — 8PP(t)] sin O cos ¢ sin ¢
+ 489 (t) cos 6 sin 6 cos® ¢,

‘;—f = —2B(1) + 4[Jo(1 — (1)) — 8%(1)] cos 0 cos® ¢
+ 4 89(1) sin ¢ cos ¢,

(ChH

where 8°0(t) =23, o i AYP /N with o, B € {p.q} is the
quantum “feedback” in terms of correlation functions of
the spin waves, Af?(r) = (i ()G« (¢)) and analogously A{”,
A;”. The evolution of AZB is ruled by a system of differential
equations involving 6(¢) and ¢(¢) [32,33]. The validity of the
quadratic approximation is controlled by the density of spin
waves, €(t) = ZI#O(AZ‘] + AP — 1)/N (with abuse of nota-
tion, here and in the main text we omit the brackets in denoting
the quantum expectation values (S(2)) and (€(7))). The length
of the collective spin |§(t)| =1 —€(t) is conserved by the
dynamics only when o = 0. The approximation is justified as
long as the density of excited spin waves is low, i.e., €(t) < 1.
Initially fully polarized, spin-coherent states, as considered in
Fig. 5, correspond to the initial data for Egs. (C1) 6(0) = 6,,
#(0) = ¢ with AT/(0) = A}’(0) = 1/2, and AJ(0) = 0. In
particular, €(0) = 0.

APPENDIX D: COEXISTENCE OF KAPITZA
AND FERROMAGNETIC PHASES

We briefly discuss here the coexistence of a second dynam-
ically stabilized phase K and the ferromagnetic phases Fj | in
the periodically driven infinite-range Ising model (cf. Fig. 1),
and the instability of the former for o # 0.

For By < Jo(1 — |y (¢)]) (i.e., within the shaded region in
Fig. 1), the effective Hamiltonian Eq. (3) has a maximum at
the paramagnetic point in addition to the two ferromagnetic
minima in the xz or yz plane, depending on y being positive
or negative, respectively. The corresponding phase portraits
are shown in Fig. 7. Stable trajectories exist around the direc-
tion of both the ferromagnetic minima and the paramagnetic
configuration, which would be unstable in the absence of
driving.

Even though dynamical stabilization of the paramagnetic
configurations occurs for the collective k = 0 mode within
this region of the parameters, a subset of the remaining modes
with finite wavevectors k # 0 turn out to be unstable when
a > 0. In fact, within a linear stability analysis, the effective

FIG. 7. Schematic phase portraits of the effective Hamiltonian
Hesr in Eq. (3) on the sphere, with parameters belonging to the shaded
region of the nonequilibrium phase diagram in Fig. 1, corresponding
to the coexistence of a dynamically stabilized Kapitza phase and the
ferromagnetic phase Fj [(a), shaded blue in Fig. 1], or | [(b), shaded
orange in Fig. 1]. We emphasize that the paramagnetic configuration
is here associated with a maximum of H.g.

spectrum of excitations is given by
f = 4[By — (1 — y ()illBo — (1 + y ()i,

as obtained by expanding Eq. (6) in spin wave operators
around 6 = 0, and it features an interval of k in the Brillouin
zone with imaginary frequencies within the range of pa-
rameter values By < Jo(1 — |y (¢)]) under consideration, see
Fig. 8. The amplitude of this interval shrinks to zero when the
anisotropy y = Jp(4¢) approaches 0, i.e., when the driving
strength ¢ equals one of the zeros ¢, with n =1,2,... of
the Bessel function. Away from this discrete set of values, the

DD

m Undriven
m Driven
m Fine-tuned

FIG. 8. Effective spectrum of the quantum spin-wave excitations
around the unstable paramagnetic configuration for « = 1.5, N =
400, By/J, = 0.35, in the presence of a high-frequency drive with
8B/Q2 = 0 (red), 0.4023 (blue), and 0.6014 (green), corresponding to
effective anisotropy parameters y = 1, 0.45, and 0, respectively. The
blue and green points correspond to parameters within the shaded
region in Fig. 1, in which coexistence of Kapitza and ferromagnetic
phases occurs in the infinite-range model. Although the collective
k = 0 mode is dynamically stabilized, for @ # 0 an extended interval
in the Brillouin zone appears with modes characterized by imaginary
frequencies w? < 0, as shown, e.g., by the blue points. This insta-
bility disappears only at isotropic points ¢y, &, ... for which y =0
[corresponding to the zeros of the Bessel function, see after Eq. (3)],
as shown by the green points.
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Kapitza phase coexisting with the ferromagnetic phases turns
out to be destabilized by these finite-wavelength fluctuations,
at least at the level of linear stability, although the collective
k = 0 mode is dynamically stabilized.

It is interesting to note that when ¢ is tuned to an isotropic
point &,, the many-body Kapitza phase discussed above be-
comes stable in the high-frequency limit 2 — oo, and thus
approximately stable for € > Jy. The reason behind such
stability can be easily traced back to the stroboscopic con-
servation of S,: Indeed, if the system is initialized in a fully
polarized state with a small displacement 6, from the z axis,
the collective spin has to remain trapped in a neighborhood of
the otherwise unstable configuration 6 = 0, because S,(t, =
nT)~1-— 93 /2 cannot decrease.

APPENDIX E: NONEQUILIBRIUM PHASE
DIAGRAM FOR « > 0

Here we discuss the modification of the phase boundaries
in Fig. 1 when « increases from 0O to 2 and beyond, leading
to Fig. 4. These boundaries are determined by the critical
value By = B.;(¢) below which the high-frequency effective
Hamiltonian Eq. (6) develops ferromagnetic ordering, either
in the xz or in the yz plane depending on the anisotropy
y(¢) being positive or negative, respectively. Ferromagnetic
ordering arises as soon as tilted spin configurations, with
average orientation forming an angle 6 # 0 with the field
direction z, acquire a lower energy than the paramagnetic
states with 6 = 0.

In the infinite-range case o =0, the critical line
is determined by B(¢) =Jo(1+ |y(¢)]), in correspon-
dence of which the energy landscape Ec(0) = (Hefr)o, o
[with ¢* =0 or m/2 depending on y({) >0 or <O,
respectively] of the semiclassical collective spin S =
(sin 6 cos ¢, sin 6 sin ¢, cos ) changes from a single well for
By > B.(¢), with the minimum at 6* =0, to a symmet-
ric double well for By < B.(¢), with the minima at 6* =
=4 arccos(By /B (¢)).

In the presence of an interaction with o # 0, the quantum
fluctuations of all the spin degrees of freedom with Fourier
wave vector k # 0 modify the effective energy landscape
Eeir(0) of the collective spin, thereby shifting the critical value
of By to Be:(¢) = Jo(1 + v (&)]) + AB(¢). Within the spin-
wave treatment introduced in Refs. [32,33], we can compute
Eeir(6) and hence the shift AB..(¢) to lowest order in jk;g(),
via a variational approach. In particular, we consider the
expansion of H¢ to quadratic order in the spin-wave operators
around the direction in the xz or yz plane identified by the
angle 6, resulting in Eq. (4) with ¢ = 0 or 7 /2, respectively,
and we determine the energy landscape Eqs(0) = miny (Hefr) y
by computing the parametric spin-wave ground-state energy.
We obtain

Eert (0 21
eflf\f ):—Jo +|y|sin26—Boc059

1 (0)

a)k—a)k
FREL e (E1)
L

where

w? = 4Jo(1 + |y])sin® @ — Ji(1 + |y|) cos® 8 + By cos 0]
x [Jo(1+ y])sin®0 — Ji(1 — |y]) + Bocos 6] (E2)

and
o =2[Jo(1 + |y|)sin*6 + By cos 0] = el o (E3)

The last term in Eq. (E1) represents the zero-point contri-
bution of quantum fluctuations with arbitrary k. The energy
landscape E.(0) in Eq. (E1) can be expanded at small 6 as

92
Eett(0) = Eetr(0 = 0) + wetr(Bo) 5+ 0@6*), (E4)

and the critical value B, of By is determined by the equa-
tion wegr(By) = 0, corresponding to the transition from a
single (wesr > 0) to a double (wer < 0) well landscape. The
solution may be found by formally expanding By in pow-
ers of fk#, and equating both sides order by order. This
procedure yields

B ($) = Jo(1+ 1y (0)I)
X{] 2y @)l +3|y<c>|2[/" dk (@)2“
4(1+1y@))’ Ll 7 \Jo

+O(R). (ES)

which yields the negative quadratic correction AB,, reported
in Eq. (7). This implies that the quantum fluctuations desta-
bilize the ferromagnetic ordering, as expected on physical
grounds. Moreover, we observe that the shift AB. of the
critical value is maximal for y = 1 and vanishes at isotropic
points with y =0, as illustrated in Fig. 4. Note that this
result is valid for any type of spatial dependence Jj;_ ;| of the
interactions in Eq. (1).

We finally remark that in the opposite limit & = oo, the
system Eq. (1) reduces to the standard quantum Ising chain
with nearest-neighbor interactions (which has been studied
in Refs. [39,47]). In this case, the effective high-frequency
Hamiltonian Eq. (6) describes the XY quantum spin chain,
which is exactly solvable in terms of free fermions [48].
Correspondingly, the quantum critical point B, = J is inde-
pendent of y, and thus of the driving strength ¢. Accordingly,
it is natural to conjecture that the left boundary of the Kapitza
phase in Fig. 4 moves leftwards as « exceeds 1, and even-
tually approaches the straight vertical line B.(¢) = Jy when
a — oo. However, it is important to note that ferromagnetic
ordering cannot arise at finite energy density for « > 2. Thus,
in this case the equilibrium phase diagram of the effective
Hamiltonian does not straightforwardly provide information
on the dynamics in the presence of the driving.
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