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Computational materials screening studies require fast calculation of the properties of thousands of materials.
The calculations are often performed with density functional theory (DFT), but the necessary computer time
sets limitations for the investigated material space. Therefore, the development of machine-learning models
for prediction of DFT-calculated properties is currently of interest. A particular challenge for new materials is
that the atomic positions are generally not known. We present a machine-learning model for the prediction of
DFT-calculated formation energies based on Voronoi quotient graphs and local symmetry classification without
the need for detailed information about atomic positions. The model is implemented as a message passing neural
network and tested on the Open Quantum Materials Database (OQMD) and the Materials Project Database. The
test mean absolute error is 22 meV on the OQMD and 43 meV on Materials Project Database. The possibilities
for prediction in a realistic computational screening setting are investigated on a data set of 5976 ABSe3 selenides
with very limited overlap with the OQMD training set. Pretraining on OQMD and subsequent training on 100
selenides result in a mean absolute error below 0.1 eV for the formation energy of the selenides.

DOI: 10.1103/PhysRevB.100.104114

I. INTRODUCTION

Over the last decades, high-throughput computational
screening studies have been employed to identify new ma-
terials within different areas such as (photo)electrochemistry
[1–3], batteries [4,5], catalysis [6,7], and more [8–10]. Such
studies are typically based on density functional theory
[11,12] and because of computational requirements they are
usually limited to some thousands or tens of thousands of
materials. In order to investigate larger parts of the huge space
of possible materials, new methods are needed to perform
faster calculations or to guide the search in the material space
in a more informed way.

One way to circumvent the computationally demanding
DFT calculations is to use machine-learning (ML) techniques
to predict materials properties, and this approach has been ex-
plored intensively the last years. Several descriptors or finger-
prints to characterize the atomic structure of a material have
been suggested including the partial radial distribution func-
tion [13] and the Coulomb matrix [14]. More involved finger-
prints combining many atomic properties and crystal structure
attributes based on Voronoi graphs have also been developed
[15,16], along with graph representations, which are directly
mapped onto convolutional neural networks [17–19].

The use of ML to speed up DFT calculations may have sev-
eral goals in a computational screening setting. If the atomic
structure (i.e., the positions of all the atoms) of a material is
known, ML may in principle provide the same information
about the material as a DFT calculation would: structural
stability, phonon dispersion relations, elastic constants, etc.
It might even in principle provide data of a better quality
than standard (semi)local DFT calculations, comparable to
more advanced DFT calculations with hybrid functionals

or even higher-level methods as recently demonstrated for
molecules [20].

However, the atomic positions of new materials will gen-
erally not be known. If the atomic positions are known from
experiment, the material is not really new (even though many
of its properties might be unknown) and if the positions are
obtained from a DFT calculations there is no need to use a
ML prediction of already calculated properties.

Our focus here will be the prediction of properties of new
materials where the detailed atomic positions are unknown,
and since the most crucial property of a new material is
its stability we shall concentrate on prediction of formation
energies.

The obvious question of course then is, how we can de-
scribe or classify a crystalline material without knowing the
explicit positions of the atoms. The most fundamental prop-
erty of a material is its chemical composition, i.e., for a ternary
material AxByCz, the identity of the elements A, B, and C and
their relative appearance x : y : z. It turns out that based on
this information alone a number of predictions about material
stability can be made. Meredig et al. [21] demonstrated that
it is possible to predict thermodynamic stability of new com-
pounds with reasonable accuracy based on composition alone,
and a number of new compound compositions were predicted
and their structures subsequently determined. However, this
approach of course has its limitations as it cannot distinguish
between materials with the same composition but different
crystal structures.

A rigorous classification of a crystalline material comes
from its symmetry. Any periodic material belongs to one of
the 230 space groups, and this puts restrictions on the possible
atomic positions. In the simplest cases of, say, a unary material
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FIG. 1. Structure of BaSnO3. The unit cell contains one Ba atom
(green), one Sn atom (gray), and three O atoms (red).

with one atom in the unit cell with space group Fm-3m
(an fcc crystal), all atomic positions are determined up to a
scaling of the volume. Similarly, the fractional positions (i.e.,
relative to the unit cell) of the atoms in materials with several
elements can be determined entirely by symmetry as, for
example, shown for BaSnO3 in the cubic perovskite structure
in Fig. 1. More generally, scaled atomic positions may be fully
or partially determined depending on their symmetry, and
the symmetry properties can be expressed using the so-called
Wyckoff sites. This classification was recently used by Jain
and Bligaard [22] to build a machine-learning model based on
only composition and the Wyckoff positions, i.e., without any
detailed information about the atomic positions. They were
able to achieve a mean absolute error of about 0.07 eV/atom
on the prediction of the formation energy on a test data set of
more than 85 000 materials.

Here, we shall develop a machine-learning model, which
does not require knowledge of the detailed atomic positions.
However, unlike the model proposed by Jain and Bligaard, it
will be based on local information about interatomic bonds
and the symmetry of their environments. The bonds will be
identified using Voronoi graphs and the symmetry will be
classified using the Voronoi facets. The resulting model has
a mean absolute error on the heats of formation for the Open
Quantum Materials Database (OQMD) of only 22 meV and
for the ICSD part of OQMD it is 40 meV.

In Sec. II we describe the proposed graph representation
based on quotient graphs and the classification of Voronoi
facet point symmetry and in Sec. III we investigate the re-
lation between quotient graphs and prototypes based on data
from OQMD. This is followed by an introduction of the
machine-learning model and the data sets in Secs. IV and V,
respectively. The numerical results are presented in Sec. VI
and followed by the conclusions in Sec. VII.

II. GRAPH REPRESENTATION

As representation for the machine-learning algorithm, we
use the quotient graph as introduced by [23] and also used

FIG. 2. Voronoi cells of BaSnO3. The cells have been displaced
for the visualization. The color of the facets corresponds to the
atomic species of the neighboring atom (green for Ba, gray for Sn,
and red for O neighbors).

in [19]. The quotient graph is a finite graph representation
of the infinite periodic network of atoms. Every atom in the
unit cell corresponds to a vertex of the quotient graph. We
denote the graph G and the set of N vertices {vi}N

i=1. When
two atoms are connected in the network, we draw an edge
between the atoms in the quotient graph. In this work we use
the Voronoi diagram to decide when two atoms are connected,
specifically a pair of atoms are connected if they share a facet
in the Voronoi diagram. Due to periodic boundary conditions
a pair of atoms may share several facets, and in this case there
will be several edges between the atoms. When interatomic
distances are available, the edges are labeled with the distance
between the atoms.

As an example, we look at BaSnO3 in the perovskite
structure as shown in Fig. 1. This material has five atoms in
the unit cell. After performing Voronoi tessellation we get a
Voronoi cell for each atom in the unit cell as shown in Fig. 2.
The Voronoi diagram defines the edges in the quotient graph
which is illustrated in Fig. 3.

An inherent problem with Voronoi graph construction
method is that small perturbations of the atom positions
may lead to different graphs. Classification of different types
of instabilities has even been used by Lazar et al. [24] to
characterize local structure. As shown by Reem [25], small

FIG. 3. Quotient graph for BaSnO3. The edge labels show the
point groups of the corresponding facets of the Voronoi diagram. For
this particular case, the repeated edges between vertices all have the
same point groups, but in general they could be different.
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FIG. 4. Each shape is the convex hull of the shape in the top left corner after the symmetry operations of each of the point groups have
been applied. The label above each shape denotes the point group and the symmetry measure for that group.

changes in the Voronoi sites lead to only small changes in
the Voronoi cell volume. However, small perturbations can
still lead to appearances of quite small facets. This is, for
example, often the case for structures with high symmetry,
where small displacements of the atoms introduce new facets.
To increase the stability, we remove these small facets and
the corresponding connections in the graph by introducing a
cutoff in the solid angle of the facet �cut. We use �cut = 0.2,
but as we shall see later the results are surprisingly stable
with regard to increasing this value. A more advanced method
for improving the stability of the Voronoi graph has been
proposed by Malins et al. [26].

The graph is annotated with the symmetry group of each of
the Voronoi facets. In the following section, we describe this
symmetry classification in more detail.

A. Symmetry-group classification

To characterize the symmetry of an atomic environment,
we classify the symmetry of each Voronoi facet into
the nine nontrivial two-dimensional point groups
(C2,C3,C4,C6, D1, D2, D3, D4, D6). The classification
method is inspired by the symmetry measure introduced
by Heijmans and Tuzikov [27]. Given the vertices of the
two-dimensional Voronoi facet, we go through the following
procedure:

(1) Compute centroid and center the shape.
(2) Search for mirror axis and align it with the x axis if it

exists.
(3) For each point symmetry group apply all elements of

the group and calculate the area of the convex hull of the
points generated by this procedure.

The symmetry measure is then the ratio between the area
of the original shape and the area defined by the convex hull
of the new vertices. When the symmetry measure for a given
group is close to unity, we label the facet as having this
symmetry. See Fig. 4 for an example shape and its symmetry
measure for each group. The search for mirror axis in step
2 is done by computing the moment of inertia and testing the
two principal axes for mirror symmetry. When the moments of
inertia are the same, for example when the shape is a regular
polygon, the principal axes are arbitrary and we fall back

to testing for mirror symmetry at all axes going through the
centroid and either a vertex or a midpoint of a line segment.
For a regular hexagon, these axes are illustrated in Fig. 5.

III. GRAPH REPRESENTATION AND PROTOTYPES

In many applications, prototypes are used as a descriptor
for the overall structure of a material and as part of a compu-
tational screening procedure some of the atoms of the proto-
types may be swapped with other elements. We want to assess
whether there is a correspondence between the prototypes and
Voronoi graphs, i.e., do two materials with the same prototype
have the same Voronoi graph and do two materials with the
same Voronoi graph have the same prototype? The question
cannot be ultimately answered because prototype naming is
not completely well defined: in some cases, several different
prototypes are used to describe the same material, and many
materials may not have prototypes attached to them. But, we
can show to which extent Voronoi graphs are aligned with the
use of prototypes.

For this analysis we use the OQMD database with the
prototypes assigned in the database. We note that this as-
signment is not generally unique. For example, an elemental
compound in the fcc structure may be labeled with either
“Cu” or “A1_Cu” in the database. In other cases, two clearly
different structures are classified with the same prototype.

We investigate all unary, binary, and ternary compounds
in the database and for each of these sets we study the link
between graphs G and prototypes P, i.e., if we know that a
given structure has a specific prototype, do we then also know
which graph it has and vice versa. One way of measuring this

FIG. 5. Mirror axes of a hexagon.
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TABLE I. Correspondence between Voronoi graphs and prototypes in OQMD with and without symmetry labels. N denotes the number
of entries, |G| the number of unique Voronoi graphs, and |P| the number of different prototypes. H (G) and H (P) are the entropy of the
distribution of graphs and prototypes, respectively, while I (G; P) is the mutual information between the two distributions and U (G|P), U (P|G)
are the normalized mutual information. (a) For graphs without symmetry labels. (b) For graphs with symmetry labels.

(a)
N |G| |P| H (G) H (P) I (G; P) U (G|P) U (P|G)

Unary 1487 85 67 4.4 4.7 3.7 0.84 0.80
Unary ICSD 196 46 49 4.2 4.2 3.8 0.90 0.90
Binary 53528 1318 871 4.3 4.5 3.8 0.90 0.86
Binary ICSD 5862 1219 850 8.2 8.0 7.6 0.92 0.95
Ternary 339960 4006 1754 2.0 1.9 1.8 0.91 0.98
Ternary ICSD 11500 3487 1740 10.0 9.1 8.8 0.88 0.97

(b)
N |G| |P| H (G) H (P) I (G; P) U (G|P) U (P|G)

Unary 1487 222 67 6.1 4.7 4.3 0.70 0.91
Unary ICSD 196 68 49 4.8 4.2 4.0 0.84 0.96
Binary 53528 2040 871 4.7 4.5 4.0 0.84 0.90
Binary ICSD 5862 1742 850 8.8 8.0 7.8 0.89 0.97
Ternary 339960 5703 1754 2.1 1.9 1.8 0.88 0.99
Ternary ICSD 11500 4504 1740 10.5 9.1 9.0 0.85 0.99

is through the mutual information I (G; P) of G and P. The
mutual information is symmetric and can be computed as

I (G; P) = H (G) − H (G|P) (1)

= H (P) − H (P|G), (2)

where H denotes the entropy. The mutual information is
thus the average decrease in entropy we get from knowing
the other variable. We also compute the normalized mutual
information known as the uncertainty coefficient U (X |Y ) =
I (X ;Y )/H (X ) which can be seen as given Y what fraction
of bits of X can we predict. To compute these quantities, we
need the distribution over graphs and we obtain these distri-
butions approximately by comparing graph fingerprints.1 The
quantities for OQMD are shown for the unlabeled graph in
Table I(a) and for the graph labeled with rotation symmetries
in Table I(b).

The uncertainty coefficient is close to 90% in most cases
except for the unary compounds U (P|G). In this case, struc-
tures with different prototypes map to the same graph and we
may be discarding important structural information. Including
symmetry information increases the number of unique graphs
significantly, which implies that the uncertainty coefficient
U (G|P) decreases while U (P|G) increases.

IV. NEURAL MESSAGE PASSING MODEL

In this section we introduce the machine-learning model
which takes the labeled graph as input and outputs an energy

1The graph fingerprints are computed using the neural message
passing model with random weight initialization. We use two in-
stances of neural network weight initialization and six different
atomic embedding instances, thus having 12 models in total. The
fingerprint is then a vector where each entry is the scalar output of
one of these models.

prediction as a scalar. We describe the model as message pass-
ing on a graph following the notational framework introduced
by Gilmer et al. [28]. We follow the message passing notation,
but the model we are going to introduce can be seen as an
extension of the SchNet model [18], which can also be cast
into this framework as we have shown in prior work [29].

Denote the graph G with vertex features xv and edge
features εvw for an edge from vertex v to vertex w. Each vertex
has a hidden state ht

v at “time” (or layer) t and we denote the
edge hidden state et

vw. The hidden states of vertices and edges
are updated in a number of interaction steps T . In each step,
the hidden states of vertices are updated in parallel by receiv-
ing and aggregating messages from neighboring vertices. The
messages are computed by the message function Mt (·) and the
vertex state is updated by a state transition function St (·), i.e.,

mt+1
v =

∑
w∈N (v)

Mt
(
ht

v, ht
w, et

vw

)
, (3)

ht+1
v = St

(
ht

v, mt+1
v

)
, (4)

where N (v) denotes the neighborhood of v, i.e., the vertices
in the graph that has an edge to v. The edge hidden states are
also updated by an edge update function Et (·) that depends on
the previous edge state as well as the vertices that the edge
connects:

et+1
vw = Et

(
ht

v, ht
w, et

vw

)
. (5)

After T interaction steps the vertex hidden state represents
the atom type and its chemical environment. We then apply
a readout function R(·) which maps the set of vertex states to
a single entity

ŷ = R
({

hT
v ∈ G

})
. (6)

The readout function operates on the set of vertices and must
be invariant to the ordering of the set. This is often achieved
simply by summing over the vertices. In some architectures
the final edge states are also included as an argument to the
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readout function. The message function Mt (·), state transition
function St (·), edge update function Et (·), and readout func-
tion R(·) are implemented as neural networks with trainable
weight matrices. To fully define the model, we just need to
define these functions and a number of models can be cast
into this framework. We use different weight matrices for each
time step t , however, in some architectures the weights are
shared between layers to reduce the number of parameters.

In this work we use the model proposed in our prior work
[29]. The model is an extension of the SchNet model [18],
with the addition of an edge update network. The message
function is only a function of the sending vertex and can be
written as

Mt
(
ht

w, et
vw

) = (
W t

1 ht
w

) � g
(
W t

3 g
(
W t

2 et
vw

))
, (7)

where � is element-wise multiplication, the W ’s are weight
matrices, and g(x) is the activation function, more specifically
the shifted soft-plus function g(x) = ln(ex + 1) − ln(2). It can
be seen as a smooth version of the more popular rectified
linear unit. In this description we omit the bias terms to reduce
the notational clutter, but in the implementation a trainable
bias vector is added after each matrix-vector product, i.e.,
there is an appropriately sized bias vector for each of the W ’s.
As an edge update network we use a two-layer neural network
and the input is a concatenation of the sending and receiving
vertex states and the current edge state:

et+1
vw = Et

(
ht

v, ht
w, et

vw

) = g
(
W t

E2g
(
W t

E1

(
ht

v; ht
w; et

vw

)))
,

(8)

where (·; ·) denotes vector concatenation. This choice of edge
update network means that the edge state for each of the
two different directions between a pair of vertices becomes
different after the first update. This network is the only ar-
chitectural difference from the SchNet model [18], i.e., if we
set et+1

vw = et
vw the model we describe here would be identical

with the SchNet model. The state transition function is also a
two-layer neural network. It is applied to the sum of incoming
messages and the result is added to the current hidden state as
in residual networks [30]:

St
(
ht

v, mt+1
v

) = ht
v + W t

5 g
(
W t

4 mt+1
v

)
. (9)

After a number of interaction steps T we apply a readout
function for which we use a two-layer neural network that
maps the vertex hidden representation to a scalar and finally
we average over the contribution from each atom, i.e.,

R
({

hT
v ∈ G

}) = 1

N

∑
hT

v ∈G

W7g
(
W6hT

v

)
. (10)

In other words, an atom and its chemical environment are
mapped to an energy contribution.

A. Initial vertex and edge representation

The initial vertex hidden state h0
v depends on the atomic

number of the corresponding atom. The atomic number is
used to look up a vector representation for that atom. Using
a hidden representation of size 256 the initial hidden state
is thus the result of a lookup function �(x) : N → R256. The
weights in the vector representation are also trained during the
optimization.

We use the model on three different levels of available
information. In the most ignorant scenario, we have no labels
on the edges of the graph and in this case the edge update
function (8) just ignores the edge representation on the first
layer, i.e., e0

vw is a “vector” of length 0 and et
vw, t ∈ 1, . . . , T

are vectors of length 256. The next level of information is to
include the point-group information as described in Sec. II A.
There are nine nontrivial point groups and we encode this
information as an indicator vector of length 9, where 1
means that the corresponding facet belongs to the given point
group. Finally, we also run numerical experiments with the
full spatial information for which the edges of the quotient
graph are labeled with the interatomic distance. The distances
are encoded by expanding them in a series of exponentiated
quadratic functions as also done in [17,18,29]

(
e0
vw

)
k

= exp

(
− [dvw − (−μmin+k�)]2

2�2

)
, k = 0 . . . kmax

(11)

where μmin, �, and kmax are chosen such that the centers of
the functions cover the range of the input features. This can be
seen as a soft 1-hot-encoding of the distances, which makes it
easier for a neural network to learn a function where the input
distance is uncorrelated with the output. In the experiments
we use μmin = 0, � = 0.1, and kmax = 150.

V. DATA SETS

For the numerical experiments we use two publicly avail-
able data sets and one data set we generate.

a. Materials Project [31]. This data set contains geome-
tries and formation energies of 86680 inorganic compounds
with input structures primarily taken from the the Inorganic
Crystal Structure Database (ICSD) [32]. We use the latest
version of the database (version 2018.11). The number of
examples is reduced to 86579 after we exclude all materials
with noble gases (He, Ne, Ar, Kr, Xe) because they occur so
infrequently in the data set that we consider them as outliers.
This brings the number of different elements in the data set
down to 84.

b. Open Quantum Materials Database (OQMD) [33,34].
Is also a database of inorganic structures and we use the cur-
rently latest version (OQMD v1.2) available on the project’s
website. Again, we consider materials with noble gases as
outliers and we also exclude highly unstable materials with
a heat of formation of more than 5 eV/atom. Some entries
in the database are marked as duplicates and we filter them in
the following way: When a set of duplicates is encountered we
use the first entry of the database, but if the standard deviation
of the calculated heat of formation exceeds 0.05 eV/atom, we
discard the whole set of duplicates. This leaves us with a total
of 562134 entries.

For both data sets we split the entries into five parts of
equal size to be used for fivefold cross validation, where the
machine is trained on 4

5 of the data, and the remaining 1
5 is

used for testing. For OQMD we also distribute the entries
of OQMD that originate from ICSD equally between the five
folds.

c. Ternary selenides ABSe3. For further testing, we have
developed a third data set of selenides. The intention behind
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FIG. 6. Map of the most stable prototype for each composition ABSe3. The compositions that do not fulfill the valence rule have not been
studied and, thus, they are not colored.

this set is to test the ability of the model in a realistic
computational screening setting. This data set has only very
limited overlap with OQMD, and predictions are made ex-
clusively based on the symmetry-labeled graphs of the new
materials without any detailed information about the atomic
coordinates.

The data set contains the structures and formation energies
of 5976 ternary selenides with stoichiometries ABSe3, where
A and B are different transition metals in six different proto-
types.

The procedure for generating this data set resembles the
one presented in [3]. We start by looking up the ABSe3 com-
pounds reported in ICSD [32], and selecting the six prototypes
that appear more than once: hexagonal P63/mmc structure of
BaNiO3, orthorhombic Pnma structure of NH4CdCl3/Sn2S3,
monoclinic C2/m FePS3, monoclinic Pc structure of PbPS3,
trigonal R3̄ structure of MnPSe3 and hexagonal P61 structure
of Al2S3.

These structures are then used as templates, and we substi-
tute the transition metal atoms A and B by 49 transition metals.
Here, we avoid for simplicity Cr, Mn, Fe, and Co, which
usually lead to structures with large magnetic moments. We
also limit ourselves to those combinations ABSe3 for which
the valences of cations and anions add up to zero. This leads to
a total of 512 ABSe3 compounds: 484 ternaries, which are then
studied in 12 structures (6 for the ABSe3 and 6 for the BASe3)
and 28 binaries, for which we study 6 different structures. A

map to the compositions and structures studied can be found
in Fig. 6.

The resulting 5976 structures have then been relaxed using
density functional theory (DFT) as implemented in the codes
ASE [35] and GPAW [36]. We perform two different kinds of
electronic structure calculations: a coarse-grained calculation
with the exchange-correlation functional PBESOL [37] for the
steps of the optimization and fined grained at the relaxed
structure with the PBE exchange-correlation functional [38].
The cutoff energy for the plane-wave basis set used to expand
the wave functions is 800 eV in both cases. For the sampling
of the Brillouin zone we use a Monkhorst-Pack mesh [39]
with a density of 5.0/(Å−1) k points in each direction for
the relaxation steps and of 8.0/(Å−1) k points for the refined
calculation at the relaxed structure. All structures have been
relaxed until the forces on the atoms are less than 0.05 eV/Å.

VI. NUMERICAL RESULTS AND DISCUSSION

To assess the loss in accuracy going from full spatial
information to unlabeled quotient graph we train/test the
model in three different settings, as mentioned in Sec. IV A.
In the most ignorant setting, the quotient graph has only
unlabeled edges. On the next level we label the edges with
the symmetry of the corresponding Voronoi facet. With full
spatial information, the edges of the quotient graph are labeled
with the distance between the atoms. The model is trained
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TABLE II. MAE in meV/atom of test set energy predictions
obtained through fivefold cross validation. The ICSD results are for
the model trained on OQMD and tested only on the ICSD part of
OQMD.

Data set Dist. Sym. No sym. V-RF

OQMD all 14 22 26 85
OQMD unary 58 110 128 85
OQMD binary 30 48 60 86
OQMD ternary 14 20 23 80
ICSD all 24 40 45 113
ICSD unary 56 75 119 72
ICSD binary 32 51 58 118
ICSD ternary 22 35 39 109
Matproj all 26 43 43 84
Matproj unary 96 149 179 127
Matproj binary 48 69 73 99
Matproj ternary 27 43 43 87

with the Adam optimizer [40] for up to 10 × 106 steps using
a batch size of 32. The initial learning rate is 1 × 10−4 and
it is decreased exponentially so at step s the learning rate
is 10−4 × 0.96

s
105 . When training on OQMD and materials

project we use 5000 examples from the training data for early
stopping. More specifically, this validation set is evaluated
every 50 000 steps and if the mean absolute error (MAE) has
not improved for 1 × 106 steps, the training is terminated.
When training on the ternary selenides ABSe3 data set the
10% of the training data is used as a validation set and the
validation set is evaluated every training epoch. In some of the
results we use a model that has been pretrained on OQMD. In
that case, the model is trained on four out of five OQMD folds
until the stopping criterion is met and the weights of the model
are then used as initialization for training on the selenides data
set. The implementation of the model as well as the code used
for generating the input graphs are available on GITHUB.2

2https://github.com/peterbjorgensen/msgnet; https://github.com/
peterbjorgensen/vorosym

A. OQMD

The mean absolute errors (MAE) and root-mean-squared
errors (RMSE) of the test set predictions are shown in Table II
and the MAE is further visualized in Fig. 7. As expected, the
lowest prediction errors are obtained with the model where
distance information is provided. If we focus on the OQMD,
the overall MAE is as low as 14 meV with distance informa-
tion. This is lower than the SchNet model [18] by almost a fac-
tor of 2 because of the edge updates as discussed in Ref. [29].
Two versions of the models without distance information are
also shown. In one of them, the symmetry information has not
been used, but in the other one the symmetry classification
of the Voronoi facets has been included as edge information.
These two models do of course have larger errors than the one
benefiting from the distance information, but still the error is
surprisingly small. The MAE is only 22 meV for the model
using symmetry information. For comparison, the results for
the model proposed by Ward et al. [15] are also shown in
the figures (labeled V-RF for Voronoi–random forest). This
model also builds on a Voronoi graph construction, but since
the fractional areas of the Voronoi cells are provided, infor-
mation about the distances is provided. Furthermore, many
other attributes are added as information to the random forest
algorithm applied. When this machine is applied to OQMD
(using the same fivefold splitting of the data as applied to the
other algorithms), the resulting error is considerably larger,
85 meV, for all of OQMD.

To understand more about the behavior of the ML algo-
rithms investigated here, we have considered the test errors on
different subsets of OQMD and also on the material project
database [31]. Let us first note that the OQMD contains
two different types of structure sources. One type, which
gives rise to the largest number of materials, consists of a
number of fixed crystal structures or prototypes decorated
by the different chemical elements. There are 16 elemental
prototypes, 12 binary ones, and 3 ternary ones. For two of
the ternary ones, one of the elements is predefined to be
oxygen. This generates a very large number of materials of
varying composition and stability, but in a fairly small number
of different crystal structures. The other type of structures
comes from materials from the experimental ICSD database.
This group is characterized by a much greater variation in

FIG. 7. The figure shows the data in Table II.
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the crystal structures, but is naturally limited to mostly stable
materials since they have been experimentally synthesized.

We first consider the test error on the subsets of OQMD
consisting of the unary, binary, and ternary systems, and we
shall focus on the model where the symmetry information
is included, but the distances are not. As can be seen from
Table II, the test error is considerably larger on the unary
systems (110 meV) than on the database as a whole. This also
holds for the binary ones, but to a smaller degree (48 meV).
It is not clear to us at the moment exactly why this is so, but
we shall discuss some possible explanations. The unary and
binary systems only constitute a fairly small part of the total
database, and the weight of these systems during the training
is therefore also limited. Another factor may be that a large
fraction of the unary and binary systems belong to the group
of materials where the crystal structures are systematically
generated as mentioned above. This means that many rather
“artificial” and unstable materials are generated, where the
atoms are situated in environments, which do not occur in
reality, and the resulting energies may be far above more
stable structures. This could potentially be difficult for the
machine to learn.

B. ICSD/OQMD

Table II also shows the results for the ICSD subset of the
OQMD database. The results shown are for the model trained
on all of OQMD but tested only on the ICSD subset. The
overall MAE is seen to be roughly a factor of 2 larger than
for all of OQMD. This is probably due to the fact that the
ICSD is a subset with a large variation of structures, and this
makes prediction more difficult on average. We see the same
trend as for all of OQMD, that the error decreases going from
unary to binary to ternary systems. For the unary systems,
the test error is in fact lower for the ICSD subset than for
all of OQMD, which may be due to the fact that physically
artificial high-energy systems appear in OQMD but not in
ICSD. For the binary systems there is a balance: the ICSD
does not contain so many high-energy systems, which could
make predictions better, but on the other hand, the larger
variation of crystal structures is more difficult to predict.

C. Materials project database

The models have also been trained and tested on the Mate-
rials Project data set [31]. The overall error is fairly similar to
the one obtained for the ICSD subset of OQMD as might be
expected since the materials project is also based on mostly
materials from the ICSD. The errors for the unary and binary
subsets are somewhat larger for the materials project database.
This might be due to the fact that the machine trained on
OQMD benefits from the larger number of systematically
generated unary and binary systems in that database.

D. RMSE vs MAE

The root-mean-square errors are shown in Table III. In all
cases, the values are considerably higher than the MAE. This
is an indication that the distribution of the errors have heavier
tails than a Gaussian, and as we shall see in the following
examples that a significant number of outliers exist. The

TABLE III. RMSE in meV/atom of test set energy predictions
obtained through fivefold cross validation. The ICSD results are for
the model trained on OQMD and tested only on the ICSD part of
OQMD.

Data set Dist. Sym. No sym. V-RF

OQMD all 54 74 80 173
OQMD unary 184 269 342 190
OQMD binary 89 113 138 162
OQMD ternary 52 70 71 131
ICSD all 81 107 111 188
ICSD unary 262 227 353 180
ICSD binary 73 116 129 202
ICSD ternary 88 112 102 182
Matproj all 72 121 122 172
Matproj unary 246 341 467 289
Matproj binary 120 190 192 203
Matproj ternary 65 119 111 181

outliers might be due to limitations of the model, but could
also appear because of problematic entries in the database as
also discussed by Ward et al. [15].

E. Solid-angle cutoff of Voronoi facets

The above results are all calculated using a cutoff of the
Voronoi facet solid angle of �cut = 0.2. However, the results
are almost independent of the value as shown in Fig. 8,
where the MAE on all of OQMD is shown for the model
where symmetry but no distance information is included. We
see that the error decreases slightly when small facets are
removed with �cut = 0.2, and increases only slowly when
�cut is further increased. We take this as an indication that the
connectivity of the material is well described even when the
graph is reduced to essentially include only nearest-neighbor
bonds.

F. ABO3 materials in OQMD

We now consider the subset of all oxides in the OQMD
with the composition ABO3. We shall investigate to which
extent the model is able to predict the right ground-state
structure for a given composition. We first show the overall
prediction for the 12 935 materials of this type in OQMD in
Fig. 9. We again use the model with symmetry-labeled graphs

FIG. 8. Prediction error on OQMD test set vs Voronoi facet solid
angle cutoff �cut for the model using symmetry labels. The error
decreases slightly when removing small facets and increases only
slowly when �cut is further increased.
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FIG. 9. Test set predictions on 12 395 ABO3 structures of OQMD
(MAE=36, RMSE = 112 meV/atom) using fivefold cross valida-
tion, i.e., the plot is a collection of predictions from five different
models, each trained on 4

5 of the data and tested on the remaining 1
5 .

without distance information. The MAE is 36 meV, which is
about the same value as the one for the subset of ternaries
in ICSD (35 meV). The RMSE is again significantly higher
(112 meV) because of severe outliers as can be seen in the
plot.

We now ask the following question: given a composition
(A, B) the model predicts a ground-state structure GML. If we
are going to investigate this structure and other low-energy
structures with DFT, how high up in energy (as predicted
by the model) do we have to go before we find the DFT
ground-state structure GDFT? We only include entries for
which there is more than one structure (12 329/12 395) and
the average number of structures per composition is 4.7. The
energy difference �E = EML(GDFT) − EML(GML) of course
varies from system to system, and the distribution is shown
in Fig. 10. The mean absolute difference (MAD) of this

FIG. 10. Predicted energy difference between the DFT ground
state and the ML ground state: �E = EML(GDFT) − EML(GML) for
the ABO3 materials in OQMD. The total number of compositions is
2646. The peak at zero is much higher than shown in the graph. It
corresponds to the 2097 compositions, where the right ground state
is predicted. For the remaining 549 compositions, the mean absolute
difference is 44 meV/atom.

distribution is very small, only 9 meV, and the maximum error
is a clear outlier at 0.92 eV. The reason for the small MAD is
that for 2097 out of the 2646 compositions the correct ground
state is predicted, however, in many cases because only two
structures exist in the database for a given composition.
For comparison, the expected number of correctly predicted
ground-state structures with random guessing is 843. If we
only look at the 549 compositions for which the ML model
predicts the wrong ground state, the MAD is 44 meV/atom.
For comparison, the energy prediction for the ground-state
structures has an MAE of 29 meV/atom. The low MAD value
of 44 meV is promising for applications to computational
screening. It sets an energy scale for how many structures
have to be investigated by DFT to identify the DFT ground
state after the model predictions have been generated.

G. ABSe3 selenides

The last data set we shall consider consists of selenides
with the ABSe3 composition as discussed in the section about
the data sets. This data set is considerably more challenging
for two reasons. First, there is very little overlap between this
data set and the training data set OQMD. Only six materials
are shared between the two data sets, and the test predictions
for these are shown in Fig. 11(a). The MAE is 24 meV, and the
RMSE is also low, only 38 meV. The second challenge is that
we shall now use the model to make predictions based on the
initial graph before relaxations. The six different prototypes
in the data set each have a graph in the original material
giving rise to the naming of the prototype. For example, one of
the types is hexagonal P63/mmc structure of BaNiO3, so for
predictions in this structure we shall use the graph of BaNiO3.
Some of the prototype structures have a fair number of atoms
in the unit cell (up to 20) and a low symmetry (monoclinic),
which means that there are many free atomic coordinates
that are optimized during relaxation. This leads to frequent
modifications of the graph during relaxation.

Figure 11(b) shows the model predictions based on the ini-
tial prototype graphs versus the DFT energies of the resulting
optimized structures. The MAE is 176 meV, which is consid-
erably higher than the value for the oxides. Particularly large
deviations are seen for large and positive heats of formation.
In a computational screening setting this might not be an issue
because the high-energy materials are going to be excluded
anyway. The RMSE is only a factor 236/176 = 1.34 larger
than the MAE, which is due to the small number of outliers
compared to, for example, the oxides (Fig. 9).

The prediction quality can be significantly improved by
additional training on the selenide data set. Even a limited
number of data points have a considerable effect. This is to
be expected since the overlap between the selenide data set
and the OQMD is only six materials as mentioned above.
Figure 11(c) shows the model-DFT comparison if the model
is first trained on the OQMD data set and then subsequently
trained on 100 materials out of the 5976 selenides in the
database. The MAE is reduced from 176 to 95 meV bringing
the error down to a value comparable to the error between
DFT and experiment [34].

The effect of additional training on the selenide data set is
shown as a function of training set size on a logarithmic scale
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(a) (b) (c)

FIG. 11. Predictions on ABSe3 test set with model pretrained on OQMD. (a) Predicted energy for selenides in OQMD (MAE=24
RMSE=38 meV/atom). (b) Predicted energy for selenides (initial structures) using model trained on OQMD (MAE=176 RMSE=236
meV/atom). (c) Predicted energy for selenides (initial structures) using model pretrained on OQMD and then on 100 selenides (MAE=95
RMSE=129 meV/atom.

in Fig. 12. The points on the y axis correspond to the situation
without any additional training. As can be seen, a small
amount of additional training leads to significant reduction
of the prediction error. The solid curve with square markers
corresponds to the situation discussed above where the model
is first trained on OQMD, and then further trained on the
initial graphs (but relaxed energies) for part of the selenides.
For comparison, the solid curve with diamond markers shows
the prediction error, when the training and prediction is based
on the final graph. Using the initial graphs instead of the
final graphs gives rise to only a slightly higher MAE. This
is encouraging for the potential use of the approach in compu-
tational screening studies, where predictions have to be based

FIG. 12. Predictions on ABSe3 structures with increasing number
of ABSe3 training samples. The solid lines correspond to models that
have been pretrained on OQMD and then on the ABSe3 data set. The
unconnected points correspond to the model only trained on OQMD
final structures, i.e., the pretrained model. The parameter T denotes
the number of interaction steps and initial/final structures refer to
whether the model input is the graph derived from the prototype
structure or the DFT-relaxed structure. KRR denotes a kernel ridge
regression baseline model using only composition and prototype as
input.

on the initial prototype structures to avoid the computationally
costly DFT calculations.

As a baseline, we also show the results of the model if it
is trained exclusively on the selenide data set (dashed curve
with cross markers). As expected, the MAE is much larger
than for the pretrained model for small amounts of data. For
larger training sets, the MAE drops gradually and with a data
set size of about 500 materials, the prediction error is com-
parable to the one for the OQMD-pretrained model, which is
trained on an additional 50 selenides. We ascribe the rather
successful performance of the model without pretraining at
large training set sizes to the systematic character of the data
set: only six different crystal structures are represented and
they are systematically decorated with a particular subset of
atoms. The last model (dashed curve with circle markers)
is again only trained on the selenide data set, but now only
one interaction step (T = 1) is performed in the message
passing neural network in contrast to the three iterations used
otherwise. The performance is seen to be rather similar to
the model with T = 3 up to a training data set size of 300.
With only one iteration in the network information about
the identity of neighboring atoms is exchanged, and this is
apparently sufficient to roughly characterize the six crystal
structures. At larger training set sizes, where the prediction
error is smaller, the network with three iterations outperforms
the one with only one iteration.

We also include an even simpler baseline model that uses
only the composition and the prototype as input and is only
trained on the ABSe3 data set. For this baseline the input
vector representation consists of a 1-hot-encoding for the
atom type of the A atom, a 1-hot-encoding for the B atom,
and a 1-hot-encoding for the prototype. We use kernel ridge
regression (KRR) as implemented by SCIKIT-LEARN using the
RBF kernel and using 10-fold cross validation to choose
the hyperparameters α (�2-penalty weight) and γ (kernel
length scale) on the grid α ∈ [1, 0.1, 0.01, 0.001] and γ ∈
[0.01, 0.1, 1.0, 10.0, 100.0]. The prediction error is similar to
the other baseline model that uses only one interaction step.

Figure 13 shows the distribution of the predicted en-
ergy difference between the DFT ground-state structure and
the ML-predicted ground-state structure �E = EML(GDFT) −
EML(GML) for the selenide data set. Only in 104 out of
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FIG. 13. Energy difference between the ML-predicted ground
state and the true ground state �E = EML(GDFT) − EML(GML) for
the selenide data set. The mean absolute difference is 70 meV/atom.

the 512 compositions, the model predicts the DFT ground
state. This is not particularly impressive since random pre-
diction of a structure would give roughly 512/12 ≈ 43 cor-
rect predictions. However, the data set has many low-lying
energy structures, where even full DFT calculations cannot
be expected to necessarily predict the correct ground-state
structure. This was investigated in more detail in a similarly
generated data set of ABS3 sulfides used for computational
screening of water-splitting materials [3]. The mean absolute
difference is only 70 meV/atom with a maximum error of 0.3
eV/atom. The low mean value is clearly promising for future
applications to computational materials screening.

VII. CONCLUSIONS

In summary, we have proposed a ML model for the pre-
diction of the formation energy of crystalline materials based
on Voronoi quotient graphs and a local symmetry description.
It uses a message passing neural network with edge updates.
The model is independent of the detailed atomic positions and
can therefore be used to predict the formation energy of new
materials, where the detailed structure is unknown.

The model test MAE is very small (22 meV) on the OQMD
data set, and a factor of 2 larger (40 meV) on the ICSD subset
of OQMD. To test the model in a realistic materials screening
setting, we created a data set of 6000 selenides with very small
overlap with the OQMD. The model pretrained on OQMD
and applied to the selenides shows an MAE of 176 meV. This
value can be lowered to 95 meV with an additional training on
100 selenides. Further training can lower the MAE to below
50 meV.

Based on the results, we conclude that is possible to
develop ML models with position independent descriptors,

which are useful for realistic materials screening studies.
However, extrapolation from OQMD to other data sets is
challenging. One reason for this may be, as pointed out
before, that the OQMD is composed of materials of two types:
some are generated systematically in rather few predefined
crystal structures while others come from ICSD. (There is
of course a significant overlap between the two types.) The
first type is characterized by a large variation in stability, but
low variation in crystal structures, while the second type is
the opposite: the experimentally observed materials in ICSD
exhibit a large variation in crystal structures, but they are
all (except for some high-pressure entries) stable low-energy
materials. This bias might limit the extrapolation to data sets
which contain structures weakly represented in OQMD and
with element combinations, which are far from stable. One
way forward could be to create data sets with less bias so
that unstable materials are represented in a greater variety of
structures.

We see a number of potential improvements of the pro-
posed model. More symmetry information could be included
using, for example, Wyckoff positions [22] or additional
graph edges describing symmetry relations. Furthermore, it is
possible to label the quotient graphs with crystal translation
information so that the infinite graph can be reconstructed
[41]. This would make the crystal description more unique.

Perhaps the model could also learn the atomic posi-
tions from the graph representation. The latest developments
in generative models have succeeded in generating small
molecules in three-dimensional (3D) space [42]. By combin-
ing this kind of model with the restrictions imposed by the
connectivity and symmetries described by the quotient graph
(see, for example, [43,44]), it might be possible to directly
predict the atomic positions without running DFT relaxations.

Another useful extension would be to model uncertainties
in the prediction. Even though the data sets used here have
a relatively high number of entries, they only contain a tiny
fraction of the chemical space. If the model could learn
what it does not know, it would be very useful in an active
learning setting where DFT calculations could be launched
by the model to explore areas of the chemical space with
high uncertainty. A promising direction for uncertainty mod-
eling is to use ensembles of neural networks where different
techniques can be considered to ensure diversity between
ensemble members [45–48].
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