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As an inversely designed artificial device, meta-surface usually means densely arranged meta-atoms with
complex substructures. In acoustics, those meta-atoms are usually constructed by multifolded channels or
multiconnected cavities of a deep subwavelength feature, which limits their implementation in pragmatic
applications. We propose here a comprehensive concept of high-efficiency anomalous splitter based on an
acoustic meta-grating. The beam splitter is designed by etching only two or four straight-walled grooves per
period on a planar hard surface. Different from the recently reported reflectors or splitters, our device can split an
incident wave into different desired directions with arbitrary power flow partition. In addition, because ultrathin
substructures with thin walls and narrow channels are avoided in our design procedure, the proposed beam
splitter can be used for waves with much shorter wavelength compared to the previous suggested systems. The
design is established by rigorous formulas developed under the framework of the grating theory and a genetic
optimization algorithm. Numerical simulation and experimental evidence are provided to discuss the involved
physical mechanism and to give the proof of concept for the proposed high-efficiency anomalous acoustic splitter.
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I. INTRODUCTION

High-efficiency wave manipulation via artificial structures
is always strongly desired in materials physics and engineer-
ing communities. The design of a thin material which can
control the wave propagation in a desired manner is highly
intriguing, yet greatly challenging. Since 2011, the concept of
a meta-surface, namely, a two-dimensional (2D) thin artificial
material/structure, have been introduced first in an electro-
magnetic wave system [1] and extended into an acoustic one
[2,3]. This burgeoning field of rationally designed 2D materi-
als of subwavelength thickness opens a new degree of freedom
for sound wave manipulation. They provide unique func-
tionalities with large potential of engineering applications,
such as anomalous refraction and reflection [4–9], asymmetric
transmission [10,11], holograms [12,13], perfect absorptions
[14,15], retroreflection [16–18], and cloaking [19].

Acoustic meta-surfaces usually contain several kinds of
unit cells providing additional 2π span phase shifts (tangential
momentum). Then, a discrete phase profile can be constructed
using these individual unit cells by fitting a continuous phase
profile derived from a desired pressure field [20,21]. As a
result, the wave scattered from a meta-surface forms the
desired pattern. Because these phase profiles are usually com-
plex and have to consider the resolution in discretization, the
implemented unit cells, in general, possess a geometrical size
on a deep subwavelength scale with elaborated configurations.
This leads to the inevitable loss and deformation effects inside
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the unit cells along with a reduced efficiency. Meanwhile,
the design strategy implies that the unit cells are individually
conceived without considering the energy interchange among
them. Because the existing lateral energy interchange along
the surface in the anomalous reflection/refraction cannot be
included by such an individually designing strategy, it has
been proven to be the intrinsic origin of the unexpected side
lobes (higher orders of diffractions) [22–24]. To overcome
these drawbacks, high-efficiency meta-surfaces, such as the
structure with nonlocal units [24] and the so-named power
flow-conformal metamirror [23] for anomalous reflection as
well as bianisotropic metasurfaces [25–27] for anomalous re-
fraction, have been suggested. However, they still suffer from
the elaborated configurations of unit cells. As an alternative
solution, these drawbacks can also be solved by introducing
active materials into the structure [28,29], but the realization
of such kinds of units is still a challenge.

On the other hand, based on diffraction grating principles
[30,31], the configuration for acoustic anomalous reflection
can be greatly simplified as the composed substructures con-
tain only single or several meta-atoms per period [32,33].
This approach gives a new perspective to design a simple
and efficient anomalous reflective meta-surface. Indeed, in
this way, the restriction of the subwavelength cells/meta-
atoms is highly released along with the advantages of re-
duced intrinsic loss and easy fabrication. With a suitable
engineered arrangement of grooves, anomalous reflection and
retroflection have been theoretically demonstrated [33]. How-
ever, imperfect pressure distribution composed of dominantly
desired pattern with unexpected other orders of diffractions
has been obtained. It stems from this result that only the
propagating diffracting modes above the grating and only
the basic mode inside the grooves were considered and the
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interaction between the grooves within a period by which
a lateral power flow exchanging along the surface can be
fulfilled, was ignored.

In the present research, we provide a comprehensive con-
cept of a high-efficiency anomalous beam splitter based on a
simple-structured acoustic meta-grating, capable of splitting
a given acoustic wave with any incidence angle into two
directions with arbitrary power flow partition. Compared to
the previous meta-surfaces with complex configurations and
subwavelength units, only a sound hard surface containing
two or several grooves per period is employed to construct
the structure. By combining the general grating theory and
a genetic optimization algorithm, a desired meta-grating can
be easily created with feasible and practical design geometry.
We evidence that the split directions and the corresponding
power flow partition of the proposed splitter can be elegantly
designed. Almost 100% energy conversion from a normal
incident wave to a redirected reflection with an 88◦ angle
is validated. Experimental results also demonstrate that the
power flow partition of the proposed splitter with a 72◦ angle
is accurately allocated to be 0:1, 1:1, and

√
5:3, respectively,

for the wave with frequency as higher as 8000 Hz in air.
Benefiting from the simplicity of the structure in which ex-
treme thin walls and narrow channels in cells/meta-atoms can
be avoided, an acoustic beam splitter for the higher working
frequency can also be realized.

II. RESULTS

A. The structure of meta-grating

The structure we considered is schematically illustrated in
Fig. 1, which is the two-dimensional planar periodical sound
hard surface having pitch a in the x direction. In each period,
there are L rectangular shaped grooves (L = 2 in Fig. 1).
The width and depth of the lth(l = 1, . . . , N ) groove, and
the distance between the lth and the (l + 1)th(l = 1, . . . , N )
ones is denoted by tl , dl , and dxl , respectively. Because of
the periodicity of the structure, an incident wave from the −y
direction (surface normal) will be diffracted as 0th, ± 1st, and
±2nd, . . . order diffractive components. The purpose of our
design is to extinguish all the other propagation components
except the ones in the desired directions.

B. Grating theory for the structure

We first show that the diffractive field from such a structure
can be rigorously solved by the general grating theory. Ac-
cording to the latter, when the periodic structure is illuminated
by a planar pressure wave with incident angle θi, the total field
ps in the media above the surface can be expressed as [34,35]

ps(x, y) = A+
0 e− jk0x sin θi e jk0y cos θi

+
∑

n

A−
n e− j(k0 sin θi+Gn )xe− jkyGn y, (1)

where k0 is the wave number of the media, A+
0 is the amplitude

of the incident wave, and A−
n is the amplitude of the nth-order

harmonic component of the refractive wave. The symbol Gn =
n2π/a with n = 0,±1,±2, . . . ,±∞ is the nth reciprocal
vector, and kyGn =

√
k2

0 − (k0 sin θi + Gn)2 is the wave-vector

(a)

(b)

FIG. 1. (a) Schematic of the designed meta-grating, which con-
sists of a two-dimensional planar period sound hard surface with
etched rectangular grooves. The periodicity is along the x direction,
and the period is a. An incident wave from the negative y direction
(surface normal) will be scattered as 0th, ± 1st, ± 2nd, . . . order
diffractive components. (b) The cross section of the structure. The
depth and width of the grooves in each period are denoted as
tl , dl (l = 1, 2, . . .), and the relative distance between the lth and the
(l + 1)th grooves is denoted as dxl .

component in the y direction for the nth-order harmonic mode.
Notice that kyGn will be real only when k2

0 > (k0 sin θi + Gn)2.
The infinite summation on the right-hand side of the equation
includes only finite terms of propagation modes, and the total
number and the direction of those propagating modes are
controlled by period a of the structure.

To design an anomalous splitter that can reflect a wave
with incident angle θi into reflected directions with angles
θr and θ ′

r (θr > θ ′
r ), we first can set period a by the formula

k0 sin θr = k0 sin θi + Gn to make sure the mth-order refrac-
tive component is a propagating mode. This condition gives

a = m
2π

k0(sin θr − sin θi )
, (2)

where m takes a positive integer. However, because the condi-
tion k2

0 > (k0 sin θi + Gn)2 can be satisfied by a number of n
under such a setting, it means that a finite number of unwanted
propagation modes with directions other than θr will coexist
in the diffractive field. Therefore, those unwanted modes have
to be extinguished. We have found that this can be realized by
adjusting the relative positions and the geometric parameters
of the bottom-connected grooves.

The pressure wave field in the rectangular shaped grooves
can be written as the superposition of the waveguide modes as

pl
g =

∑
n

Hnl cos[αnl (x − xl )](e
jβnl y + e− jβnl (y+2dl ) ), (3)
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where pl
g means the pressure wave in the lth groove, Hnl

means the amplitude of the nth-order component of the

waveguide mode, and αnl = nπ
tl

and βnl =
√

k2
0 − α2

nl are the x

and y components, respectively, of the wave vector for the nth-
order mode in the lth groove. By using Eqs. (1) and (3) and
the continuum condition for the pressure and surface-normal
velocity field at the interface, we can get a linear equation set
about A+

0 , A−
n , and Hnl as

Q1A+
0 = Q2

[
A−
H

]
, (4)

where A− = (A−
1 , . . . , A−

N )T will be the N-order column vec-
tor when the summation of the harmonic modes in Eq. (1) is
truncated with N terms and H = (H1, . . . , Hl , . . . , HL )T with
Hl = (H1l , . . . , HMl )T , (l = 1, . . . , L) will be the LM-order
column vector when the summation of the waveguide modes
in Eq. (3) is truncated with M terms. A detailed derivation of
Eq. (4) and the elements of the matrices Q1 and Q2 can be
found in Appendix A.

By Eq. (4), the amplitudes A−
n (n = 1, . . . N ) can be solved

under the given period a, the incident angle θi, the total num-
ber L, and the geometric parameters of the grooves. However,
to obtain the suitable geometric parameters of the grooves
for the desired meta-surface, an optimization procedure with
a searching target is needed. For instance, when we need
to split the incident wave with θi = 0 into directions with
±θr as the ±1st-order refractive components and require the
power flow ratio between them to be I−1: I+1 = ν:(1 − ν), we
first can set m = 1 in Eq. (2) to get a = λ/ sin θr , where λ

is the working wavelength. Then, we start the optimization
algorithm to search the structure with targeted function f =
|ν − |A−

1

A+
0
|2| + |(1 − ν) − |A−

−1

A+
0

|
2
| → 0. In our calculation, the

genetic algorithm is chosen as the optimization algorithm.

C. Meta-grating with a mirror symmetric splitting angle

As a first demonstration, we choose to design the
meta-surfaces to reflect the normally incident waves into
extreme directions with θr = −81◦ and −88◦, respectively.
For these purposes, we set first a = λ/|sin θr | and then start
the searching procedure for I−1: I1 = 0:1. To guarantee the
convergence in the numerical calculation, the truncations
for the summations in Eqs. (1) and (3) are set as N = 101
and M = 10, respectively. In the optimization procedure, the
depth of the grooves is limited in the range of 0 � dl � 0.5λ.
To avoid an ultrathin substructure, both the width tl and
the neighbor distance dxl of the grooves are limited to be
greater than 0.05a. By performing the searching procedure
with two grooves per period (a detailed discussion about the
necessary number of total grooves can be found in Appendix
B), we get the structure with t1,2 = (0.500, 0.148)a, d1,2 =
(0.399, 0.121)λ, and dx1 = 0.111a for θr = −81◦, and the
structure with t1,2 = (0.085, 0.527)a, d1,2 = (0.419, 0.070)λ,
and dx1 = 0.101a for θr = −88◦. Both of the structures are
obtained under the condition with f < 10−8 in the searching
procedure. To check the obtained structures, we perform
a finite-element (FE) simulation based on the COMSOL

software. Details about the numerical simulation is given in
Appendix C. Shown in Figs. 2(a) and 2(b) are the

(a) (b)

(c) (d)

FIG. 2. Pressure field distribution obtained by the finite-element
method. Fast-Fourier-transform amplitude of the reflecting pressure
field from the meta-grating at y = 4a is present to check the effi-
ciency of the reflector. The insets show the real part of the pressure
field distribution (within the area 0 < x < a and y < 6a). (a) and
(b) are for the reflectors with desired angles θr = −81◦ and −88◦,
respectively; (c) and (d) are for the splitters with desired angles
θr = −72◦. The power flow ratios for (c) and (d) are I−1: I1 = √

5 : 3
and 1:1, respectively. For all of them, the incident plane wave is along
the y direction (not shown in the figure).

fast-Fourier-transform (FFT) amplitudes of the obtained
reflective fields at the distance away from y = 4a. The
diffractive pressure distributions (real part) in one period are
shown also as insets in the same figure, respectively. It can
be clearly seen from the figures that the diffractive field from
the structures is almost completely in the desired directions.
We also find that, for both cases, the amplitude of the field in
and out of the grooves is definitely in the same order, which
means that they are not resonating.

Similarly, to split the waves into the mirror symmetric
directions with different power flows, we can design the
structure by first setting a = λ/|sin θr | and then setting I−1:I1

to be the desired value in the target function. Here, we choose
to design two splitters with θr = ±72◦, I−1: I1 = √

5 : 3, and

1:1 (the corresponding amplitude ratios are |A−
−1

A−
1

| = 5:3 and
1:1), respectively. The optimization procedure shows that a
structure with t1,2 = (0.159, 0.230)a, d1,2 = (0.229, 0.170)λ,
and dx1 = 0.176a can realize the former target, whereas a
structure with t1,2 = (0.094, 0.229)a, d1,2 = (0.207, 0.205)λ,
and dx1 = 0.206a can realize the latter one. We present in
Figs. 2(c) and 2(d) the FFT results and the real part of the pres-
sure field distributions of the reflecting waves. From Fig. 2(c),
we can obtain the amplitude ratio as |A−

−1

A−
1

| = 1.5431
0.9216 ≈ 5:3,

and from Fig. 2(d), we can obtain the amplitude ratio as
|A−

−1

A−
1

| = 1.2719
1.2729 ≈ 1:1.

D. Power flow redistribution by the grooves effect

The perfect structure allows investigating and discussing
the underlying physics of the meta-surface. Without losing
generalities, as an example, we have chosen to study the

104104-3



NI, FANG, HOU, LI, AND ASSOUAR PHYSICAL REVIEW B 100, 104104 (2019)

(a)

(b)

(c)
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FIG. 3. (a) The phase profile of the diffractive pressure wave,
(b) the y-directional power flow of the diffractive wave at y = 0 in
one period in the x direction (the positions where the grooves are
connected are shown by green boxes), and (c) the local intensity
vector distribution for the total field in the structure with θr = −81◦.
The incident plane wave is along the y direction.

meta-structure with the reflected beam at θr = −81◦ [shown
in Fig. 2(a)]. By inserting the structure parameters into Eq. (4),
we can obtain the total pressure pt , the total velocity along y
direction vyt , and the outgoing pressure waves pout, respec-
tively. With these values, the phase profile Ps = angle(pout )
and the y-directional power flow Iy0 = Re[pt (vyt )∗]/2 at the
surface (y = 0) are calculated. The values in one period in
the x direction are shown in Figs. 3(a) and 3(b), respectively.
From the figure, we see that the phase curve increases almost
linearly with slope 2π/a from Ps = θ0 to θ0 + 2π with θ0

as an initial phase. This indicates the linear gradient-phase
profile along the surface, implying that the basic requirement
in the gradient-phase meta-surfaces is satisfied. As for the Iy0

curve, it is fluctuated around zero in the whole period. In de-
tail, it rapidly fluctuates with very small amplitude in the area

without grooves, whereas in the area with connected grooves,
the curve symmetrically turns from positive to negative values
with large amplitude (for groove 1) or vice versa (for groove
2). This means that the power flow is conserved in the period
but redistributed along the surface by the grooves effect.

To further understand this phenomenon, we have checked
the local intensity vector distribution

−→
It = Ix

−→x + Iy
−→y in

and above the grooves, where Ii(i = x, y) can be calculated
by Ii = Re[pt (vit )∗]/2 from the obtained field, and vit is the
i-directional component of the total velocity field. The result
within y < 0.8a in the y direction and one period in the x
direction is shown in Fig. 3(c) in which the amplitude of
the local intensity vectors is shown by the length of the
arrows, and its direction is shown by the arrows. It can be
found from the figure that, except some distortions near the
interface y ≈ 0, the arrows show a regular pattern in a certain
distance away from the surface. This means that there is a
lateral energy exchanging along the surface. In terms of the
physical mechanism, this lateral energy exchanging is fulfilled
by the high-order evanescent harmonic modes reshaped by
the grooves. More interestingly, unlike the narrower groove
on the right-hand side in Fig. 3(c), which distorts the vector’s
intensity only in a small region in the lateral direction, the
wider groove on the left-hand side makes the energy exchang-
ing happen in a wide lateral area. This effect is finished by
a vortex-shaped flow inside the groove. It can be seen that,
by this vortex, the desired local intensity vector pattern above
the surface is fitted by arrows leading the flow in and then
out of the groove from the left-hand to the right-hand side.
Note that to form such a vortex in the groove, higher-order
real (rather than evanescent) waveguide modes than the 0th
order is needed.

E. Experimental measurements

To verify the numerical result, we select three structures
under θr = ±72◦ with I−1: I1 = 0:1, 1:1, and

√
5:3 for experi-

ment. Geometrical parameters for the structures with I−1: I1 =√
5:3 and 1:1 have been listed above [the same as the ones for

Figs. 3(c) and 3(d)]. Parameters for the one with I−1: I1 = 0:1
are obtained by the optimization algorithm. It gives t1,2 =
(0.182, 0.480)a, d1,2 = (0.182, 0.480)λ, and dx1 = 0.071a.
In our experiment, we choose the air as the working medium
and the working frequency as f = 8000 Hz (λ = 42.88 mm).
Under this frequency, the narrowest groove and the thinnest
wall in all three samples is about 4 mm (for the structure with
I−1: I1 = 1:1) and 3.2 mm (for the structure with I−1: I1 =
0:1), respectively. This means that the additional effects of
friction and wall deformation caused by the narrow channel
and thin wall can be neglected. This frequency is much higher
than the one (usually about 3000 Hz) used for structures
suggested in previous literature. We point out that, because
narrow channels and thin walls (compared to the working
wavelength) have to be used in the structures suggested in
previous works, it is very difficult to push their working
frequency into the region as high as 8000 Hz. The details
for the experimental setup and measurement are given in
Appendix D.

We show, in Figs. 4(a)–4(c), the pressure field distribution
for structures with I−1: I1 = 0:1, 1:1, and

√
5:3, respectively.
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FIG. 4. Pressure wave distribution of the diffraction wave from
the structure for θr = ±72◦. The structures contain totally 20 periods.
(a)–(c) are for structures with desired power flow ratios I−1:I1 =
0:1, 1:1, and

√
5:3, respectively. The left panels are results simulated

by finite-element method, and the right panels are the measured data
in the areas marked by the red boxes in the corresponding left panels.
The insets in the right panels are the photographs of the samples
(three periods are shown). For all of them, the incident wave along
the y direction is the beam with finite width and uniform amplitude
in the x direction. (d) and (e) are the measured data extracted along
the dashed lines marked in (b) and (c), respectively. The lateral axes
in (d) and (e) are defined as D(θ ) = Re(pθ /pmax) with θ as the angle
between the x axis and the line from the central of the incident beam
to the measured point.

The left panels present the simulated results, and the right
panels present the corresponding experimental ones measured
in the areas marked by red boxes in the left panel. A good
agreement between the simulation and the experimental re-
sults are obtained. Note that the incident beam is not shown
for clear eyesight.

To clearly show the power flow partition in Figs. 4(b) and
4(c), measured value of the pressure field along y = 115mm
away from the surface (marked by the dashed lines in the right
panels of the figures) is extracted out and plotted in Figs. 4(d)
and 4(e), respectively. In the latter, the lateral axes are defined
as D(θ ) = Re(pθ /pmax) with θ as the angle between the x
axis and the line from the center of the incident beam to the
measured point. The amplitude ratio around 1:1 in Fig. 4(d)
and 5:3 in Fig. 4(e) can be verified.

F. Meta-grating with different splitting angles

Finally, we would like to show that the splitters can
also be designed to steer the reflective waves into two

FIG. 5. Finite-element-method result of the pressure field dis-
tribution for the splitter designed to steer the reflective waves into
two different directions with θ = 81◦ and θ ′ = −28.4◦ and equal
power flow partition, respectively. FFT amplitude of the reflecting
pressure field from the meta-grating at y = 4a is presented to check
the efficiency of the reflector. The insets show the real part of the
pressure field distribution (within the areas 0 < x < a and y < 6a).
The amplitude of the +2nd- and −1st-order modes can be read as
A−

2 = 1.7883 and A−
−1 = 0.7562, respectively. The incident plane

wave is along the y direction with A+
0 = 1 (not shown in the figure).

different directions with arbitrary power flow partition.
As an example, we chose to design a splitter that can
steer the normally incident wave into directions with
θr = 81◦ and θ ′

r = − arcsin (sin θr
2 ) = −28.4◦ with equally

distributed power flow. To design such a structure, we
first need to set the period by letting m = 2 in Eq. (2),
which gives a = 2λ/|sin θr |. For such a structure, there
will be totally five propagating modes in the refractive
field. The refractive angles for the ±2nd- and ±1st-order
components are ±θr and ±θ ′

r = ± arcsin (sin θr
2 ), respectively.

With period a, we search the optimization structure by

minimizing the target function f = |cos θr |A−
−1

A+
0

|
2
− 0.5| +

|cos θ ′
r |A−

−2

A+
0

|
2
− 0.5|. Under these settings, a structure

with four grooves per period having the detailed
parameters: t1 ∼ t4 = (0.101, 0.107, 0.101, 0.104)a, d1 ∼
d4 = (0.186, 0.321, 0.126, 0.254)λ, and dx1 ∼ dx3 =
(0.105, 0.101, 0.101)a is obtained.

To check the obtained structure, we perform a FE simu-
lation based on the COMSOL software. We show, in Fig. 5,
the FFT amplitude of the obtained reflective field at the
distance away from y = 4a, and the diffractive pressure dis-
tribution (real part) in one period is shown in the inset
of the same figure. From the figure, we can read the am-
plitude of the +2nd- and −1st-order modes, respectively,
as A−

2 = 1.7883 and A−
−1 = 0.7562 for A+

0 = 1. The corre-
sponding power flow ratio between them can be calculated
as [cos θ |A−

2 |2]: [cos θ ′|A−
−1|2] = 0.5003:0.5030, which is the

expected value.
To intuitively show the effect and to verify the numerical

result, we have constructed a finite structure with 15a in width
(a = 8.68 cm for f = 8000 Hz) and illuminate it from the y
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FIG. 6. (a) Diffractive pressure field distribution (real part) of the
structure illuminated by an equal-amplitude beam with frequency
f = 8000 Hz along the -y direction. The structure contains totally
15 periods (about 1300 mm). The incident beam is 410 mm in width
with a uniform amplitude in the x direction. White arrows show
schematically the directions of the incident and the deflecting beams.
(b) Measured data in the areas marked by red boxes in (a).

direction by a beam with finite width and uniform amplitude
in the x direction. (see Appendix D for details). The FE result
of the diffractive pressure field distribution (real part) and
the corresponding measured data are shown in Figs. 6(a) and
6(b), respectively. It can be seen from the figure that, the
beam splitting effect is obvious, and the agreement between
the numerical and the experimental results is as well. It can
be found that the measured pressure field in the left marked
region is weaker than the corresponded simulation result. This
is resulted from the influence by the second reflection from the
speaker array.

III. CONCLUSION

We developed a numerical approach to solve the diffraction
problem for the sound hard surface with periodically etched
grooves. By using this approach and an optimization algo-
rithm, meta-gratings which can split the incident wave into
desired directions with an arbitrary power flow partition are
theoretically and experimentally demonstrated. The predicted
structures are verified by the finite-element simulation and
experiment. The developed method can be easily extended
to design meta-surfaces for other purposes. In contrast to the
classical meta-surfaces which usually having many arranged
subwavelength meta-atoms, the structures provided and de-
signed by our method have only two or four straight-walled
grooves per period. Because thin walls and narrow channels
in the meta-atoms design are avoided, the additional friction
and wall deformation can be suppressed. This means that the
working frequency of our concept can be much higher than
the ones suggested in previous literature.
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APPENDIX A: DERIVATION OF EQ. (4) AND THE MATRIX
ELEMENT IN THE FORMULA

The continuum condition of the field at the interface can be
written as

ps = pl
g, xl < x < xl + tl for l = 1, . . . , L,

vs
y =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v1
yg, x1 < x < x1 + t1,

...
...

vl
yg, xl < x < xl + tl ,

...
...

vL
yg xL < x < xL + tL,

0, else,

(A1)

where vs
y and vl

yg, which can be calculated from Eqs. (1) and

(3) by the relation vy = 1
− jρω

∂ p
∂y , represents the y-directional

velocity above and in the grooves, respectively, where ρ and
ω are the mass density of the media and the angular frequency
of the wave, respectively.

By substituting Eqs. (1) and (3) into the first item of
Eq. (A1) and using the orthogonal relationship of the waveg-
uide modes, we can obtain total L × M equations as⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1
1

...

Ml
1

...

ML
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

A+
0 +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1
2

...

Ml
2

...

ML
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

A−

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M1
3 0 · · · · · · 0

0
. . . 0 · · · ...

... 0 Ml
3 0

...
... · · · 0

. . . 0

0 · · · · · · 0 ML
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

H1

...

Hl

...

HL

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A2)

where

Ml
1(k) = 1

tl

∫ xl +tl

xl

e− jk0 sin θix cos αkl (x − xl )dx, (A3)

and

Ml
2(k, n) = 1

tl

∫ xl +tl

xl

e− j(k0 sin θi+Gn )x cos αkl (x − xl ), (A4)

with l = 1, . . . , L and k = 1, . . . , K , and

Ml
3(k1, k2) = (1 + e− jβk1 l dl )

1

tl

∫ xl +tl

xl

cos αk1l (x − xl )

× cos αk2l (x − xl )dx, (A5)

with k1,2 = 1, . . . , K .
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Similarly, by substituting the corresponding y-component
velocities into the second item of Eq. (A2) and using the
orthogonal relationship of the plane-wave harmonic modes,
we can obtain total N equations as

N1A+
0 + N2A− = [

N1
3 · · · Nl

3 · · · NL
3

]

⎡
⎢⎢⎢⎢⎢⎢⎣

H1

...
Hl

...
HL

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A6)

where

N1( j) = −k0 cos θi

a

∫ a

0
e− jk0 sin θixe jGj xdx, (A7)

and

N2(i, j) = kyGi

a

∫ a

0
e− j(Gi−Gj )xdx, (A8)

with i, j = 0,±1, . . . ,±(N − 1)/2, and

Nl
3( j, k)=−βkl

a
(1−e− j2αkl dl )

∫ xl +tl

xl

e jGj x cos αkl (x − xl )dx,

(A9)

with j = 0,±1, . . . ,±(N − 1)/2 and k = 1, . . . , K .
By rewriting (A2) and (A6) in the form as

M1A+
0 + M2A− = M3H, (A10)

and

N1A+
0 + N2A− = N3H, (A11)

we finally get

Q1A+
0 = Q2

[
A−
H

]
, (A12)

with

Q1 =
(

M1

N1

)
, Q2 =

(−M2 M3

−N2 N3

)
. (A13)

APPENDIX B: A DISCUSSION ABOUT THE MINIMUM
NUMBER OF THE GROOVES NEEDS TO BE USED FOR

THE PERFECT META-GRATING

A discussion about the minimum number of the element
needs for the perfect electromagnetic anomalous reflector can
be found in the Supplemental Material of Ref. [31]. The
conclusion was also used directly in Ref. [33], that is: The
minimum number of grooves should be M − 1 for the grating
with totally M propagating diffractive modes. Here, we repeat
the derivation because it is also helpful for our designing.

As given in Eq. (1) in our main text, the scattering wave
(the surface normal component of the velocity field, for exam-
ple) from the surface of the grating (at y = 0) can be written
as

vscat (x) =
∑

n

Ane− jknx, (B1)

with kn = k0 sin θi + Gn, where k0, θi, and Gn have the same
meaning as the ones given in the main text and An is the

amplitude of the nth diffractive mode. As has been pointed out
in Ref. [31] from the principle of discrete Fourier transform
(DFT), to determine totally M propagating modes on the right-
hand side of (B1), we need, at least, M degrees of the freedom
(DOFs) of the field values on the left-hand side. For example,
to design a meta-surface which can deflect the normally inci-
dent plane wave into the direction with angle θr , we can set the
period of the meta-surface to be a = λ0/ sin θr so that only the
0th and ±1st diffractive modes are propagating branches. This
means there are, at least, three terms on the right-hand side of
(B1) that should be included and determined. According to the
principle of DFT, we need then, at least, three DOFs to adjust
the value of vscat on the left-hand side in (B1). Because we
use only rectangular-shaped grooves as elements, the value
of vscat can be adjusted by changing the widths, depths, and
the intervals between grooves, which means the requirement
can be satisfied by, at least, two grooves per period (because
one groove can only supply two DOFs, i.e., the width and
depth).

It has also been pointed out in the same reference that,
to let more evanescent modes enter into the equation, which
is a basic requirement in the perfect anomalous meta-surface
when lateral power flow along surface is needed, the individ-
ual element needs further a finite bandwidth of the spectral
profile. We find that, as the deflecting angle θr becomes larger
and larger, more and more high-order spectra are needed
in the expansion (B1). This requirement can be satisfied by
including more high-order waveguide modes in Eq. (3) in the
main text.

APPENDIX C: DETAILED SETTING IN
NUMERICAL SIMULATION

The full wave simulations based on finite-element analysis
are performed using the COMSOL multiphysics pressure acous-
tics module. For the left panels in Figs. 2(a)–2(d) and 5, the
plane wave along the -y direction is chosen as an incident
wave. The perfectly matched layers with thickness 2a are
added at the top regions (not shown in the figure) to reduce the
reflection on the boundaries. The Floquet periodic boundary
condition is added on the left and right boundaries. For the left
panels of Figs. 4(a)–4(c) and 6(a), the plane-wave radiation
boundary condition on the top, left, and right boundaries are
used. To coincide with the sources used in experiments, we
use beams with finite width and uniform amplitude in the x
direction as an incident wave in the simulation. For Fig. 4(a),
the width of the incident beam is set to be 80 cm, for Figs. 4(b)
and 4(c), the width of the incident beam is set to be 25.4 cm,
whereas for Fig. 6(a), the incident beam width is chosen to be
41 cm.

APPENDIX D: DETAILS FOR THE EXPERIMENTAL
SETUP AND MEASUREMENT

The samples are fabricated using the stereo lithography
apparatus with photosensitive resin. The molding thickness
of each layer during printing is 0.1 mm. Organic glass plates
are added on the top and bottom of the samples to form a
two-dimensional waveguide for measurement. Foams are dis-
tributed on sides of the waveguide to absorb the sound wave
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with a frequency above 3000 Hz. For Fig. 4, the width for
all the samples is 20 periods in the x direction. For Fig. 4(a),
an array of 22 loudspeakers with an 80-cm span is used as a
source, and for Figs. 4(b) and 4(c), an array of 7 loudspeakers
with a 25.4-cm span is used for the same purpose. The
loudspeakers are controlled by the generator with the same
amplitude at f = 8000 Hz. Signals are collected by Brüel &
Kjær data-acquisition hardware (LAN-XI, type 3160-A-042).

The probe is a 1/8-in. microphone (Brüel & Kjær type 2670).
The field in the areas marked by red boxes [see the left panels
in Figs. 4(a)–4(c)] is scanned using a moving probe with a step
of 5 mm. The measured area is 300 × 250 mm2 for Fig. 4(a)
and 250 × 250 mm2 for Figs. 4(b) and 4(c), respectively. For
Fig. 6(b), an array of 11 loudspeakers with a 410-mm span is
used as the source. Both of the measuring areas [marked by
red boxes in Fig. 6(a)] are 300 × 200 mm2.
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