PHYSICAL REVIEW B 100, 104103 (2019)

Local Bayesian optimizer for atomic structures

Estefania Garijo del Rio

, Jens Jgrgen Mortensen

, and Karsten Wedel Jacobsen

CAMD, Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

® (Received 11 July 2019; published 5 September 2019)

A local optimization method based on Bayesian Gaussian processes is developed and applied to atomic
structures. The method is applied to a variety of systems including molecules, clusters, bulk materials, and
molecules at surfaces. The approach is seen to compare favorably to standard optimization algorithms like
the conjugate gradient or Broyden-Fletcher-Goldfarb-Shanno in all cases. The method relies on prediction
of surrogate potential energy surfaces, which are fast to optimize, and which are gradually improved as the
calculation proceeds. The method includes a few hyperparameters, the optimization of which may lead to further

improvements of the computational speed.

DOI: 10.1103/PhysRevB.100.104103

I. INTRODUCTION

One of the great successes of density functional theory
(DFT) [1,2] is its ability to predict ground-state atomic struc-
tures. By minimizing the total energy, the atomic positions
in solids or molecules at low temperatures can be obtained.
However, the optimization of atomic structures with density
functional theory or higher-level quantum chemistry methods
require substantial computer resources. It is therefore impor-
tant to develop new methods to perform the optimization
efficiently.

It is of key interest here that for a given atomic structure a
DFT calculation provides not only the total electronic energy
but also, at almost no additional computational cost, the forces
on the atoms, i.e., the derivatives of the energy with respect
to the atomic coordinates. This means that for a system with
N atoms in a particular configuration only a single energy
value is obtained while 3N derivatives are also calculated. It
is therefore essential to include the gradient information in an
efficient optimization.

A number of well-known function optimizers exploring
gradient information exist [3] and several are implemented in
standard libraries like the SciPy library [4] for use in Python.
Two much-used examples are the conjugate gradient (CG)
method and the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm. Both of these rely on line minimizations and per-
form particularly well for a nearly harmonic potential energy
surface (PES). In the CG method, a series of conjugated
search directions are calculated, while the BFGS method
gradually builds up information about the Hessian, i.e., the
second derivatives of the energy, to find appropriate search
directions.

The Gaussian process (GP) method that we are going
to present has the benefit that it produces smooth surrogate
potential energy surfaces (SPESs) even in regions of space
where the potential is nonharmonic. This leads to a generally
improved convergence. The number of algebraic operations
that has to be carried out in order to move from one atomic
structure to the next is much higher for the GP method than for
the CG or BFGS methods; however, this is not of concern for

2469-9950/2019/100(10)/104103(9)

104103-1

optimizing atomic structures with DFT, because the electronic
structure calculations themselves are so time consuming. For
more general optimization problems where the function eval-
uations are fast, the situation may be different.

Machine learning for PES modeling has recently attracted
the attention of the materials modeling community [5-18].
In particular, several methods have focused on fitting the
energies of electronic structure calculations to expressions of
the form

E(p) =) aik(p, p). (1

i=1

Here, {pV}_, are some descriptors of the n atomic config-
urations sampled, k(p”, p) is known as a kernel function,
and {«;}!_, are the coefficients to be determined in the fit.
Since there are n coefficients and n free parameters, the
SPES determined by this expression has the values of the
calculations at the configurations on the training set.

Here we note that expression (1) can easily be extended to

o, k(. p)
E(p) = Za, ko)D) B v)
i=1 j=1
where {r()}3N , represent the coordinates of the N atoms in

the ith conﬁguratlon. The new set of parameters f;; together
with ¢; can be adjusted so that not only the right energy of a
given configuration p¥) is predicted, but also the right forces.
This approach has two advantages with respect to the previous
one: (i) the information included in the model scales with the
dimensionality; (ii) the new model is smooth and has the right
gradients.

In the case of systems with many identical atoms or
similar local atomic structures it becomes advantageous to
construct SPESs based on descriptors or fingerprints char-
acterizing the local environment [5—11]. The descriptors can
then be constructed to obey basic principles as rotational and
translational symmetries and invariance under exchange of
identical atoms. Here we shall develop an approach based
on Gaussian processes which works directly with the atomic

©2019 American Physical Society

https://orcid.org/0000-0001-5434-6435
https://orcid.org/0000-0001-5090-6706
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.104103&domain=pdf&date_stamp=2019-09-05
https://doi.org/10.1103/PhysRevB.100.104103

GARIJO DEL RiO, MORTENSEN, AND JACOBSEN

PHYSICAL REVIEW B 100, 104103 (2019)

coordinates and effectively produces a surrogate PES of the
type Eq. (2) aimed at relaxing atomic structures. We note
that Gaussian processes with derivatives for PES modeling
are a field that is developing fast, with recent applications in
local optimization [19] and path determination in elastic band
calculations [13,20,21].

II. GAUSSIAN PROCESS REGRESSION

We use Gaussian process regression with derivative in-
formation to produce a combined model for the energy E
and the forces f of a configuration with atomic positions
X:(I‘],l‘z,...,l‘/\/)!

U(x) = (E(x), —f(x)) ~ GP(U,(x), K(x,x)), (3)

where U,(x) = (E,(x), VE,(x)) is a vector-valued function
which constitutes the prior model for the PES and K(x, x')
is a matrix-valued kernel function that models the correlation
between pairs of energy and force values as a function of the
configuration space.

In this work, we choose the constant function U,(x) =
(Ep, 0) as the prior function. For the kernel, we use the
squared-exponential covariance function to model the corre-
lation between the energy of different configurations:

k(X, X/) — aﬁe—llx—x/HZ/le’ (4)

where [is a typical scale of the problem and o is a parameter
describing the prior variance at any configuration x. The full
kernel K can be obtained by noting that [22,23]

cov(E(x), E(x)) = k(x,), 5
0E (X' k(x, x’
cov| E(x), &) = (. x) = Ji(x,X), (6)
ox; ox;
dE(x) OE(X 3%k(x, X’
ov (X) s (X) = (X’ X) = Hij(X, X/), (7)
ax; o’ 0x;0x’
and assembling these covariance functions in a matrix form:
k(x,x) Jx, X))
K(x,x')= . 8
(x.x) <J o e X,)) ®)

The expressions for the mean and the variance for the pos-
terior distribution follow the usual definitions incorporating
the additional matrix structure. Let X = {x?}?_, denote the
matrix containing n training inputs and let ¥ = {y®}"_, =
{(E(x?), —f(xP))}_, be the matrix containing the corre-
sponding training targets. By defining

K(x,X) = (Kx,x"), Kx,x?), ..., Kx,x") (9
and
(KX, X)); = K. x7), (10)
we get the following expressions for the mean,
U(x) = (E(x), —f(x))
=U,(x) + K(x, X\)K;' (Y — U,(X)), (11)
and the variance,

o’ (x) = K(x,x) — K(x, X)K;'K(X, x), (12)

of the prediction, where Ky = K(X, X) + 23. Here, we have
assumed an additive Gaussian noise term with covariance
matrix ¥, [22]. This term corrects only for the self-covariance
of the points in the training set, and thus, it is a diagonal matrix
that models the self-correlation of forces with a hyperparam-
eter o> and the self-correlation of energies with o> x 1. We
note that even for computational frameworks where the energy
and forces can be computed with very limited numerical
noise, small nonzero values of o, are advantageous since they
prevent the inversion of the covariance matrix K (X, X) from
being numerically ill conditioned [13].

In the following, we will refer to E(x) as defined in
Eq. (11) as the surrogate potential energy surface (SPES) and
distinguish it from the first-principles PES, E(x).

III. GAUSSIAN PROCESS MINIMIZER: GPMin

The GP framework can be used to build an optimization
algorithm. In this section, we introduce the main ideas behind
the proposed Gaussian process minimizer (denoted GPMin
from hereon). A more detailed description of the algorithm
can be found in the Appendix in the form of a pseudocode.

The GP regression provides a SPES that can be minimized
using a gradient-based local optimizer. For this purpose, we
have used the L-BFGS-B algorithm as implemented in SciPy
[24]. The prior value for the energy is initially set as the
energy of the initial configuration and then the expression
(11) is used to produce a SPES from that data point alone.
This model is then minimized, and the evaluation at the new
local minimum generates new data that is then fed into the
model to produce a new SPES that will have a different local
minimum. Before generating each new SPES the prior value
for the energy is updated to the maximum value of the energies
previously sampled. This step is important because it makes
the algorithm more stable. If a high-energy configuration is
sampled, the forces may be very large leading to a too large
new step. The increase of the prior value tends to dampen this
by effectively reducing the step size. The whole process is
then iterated until convergence is reached.

It is illustrative to consider in more detail the first step of
the algorithm. It is straightforward to show using Egs. (4)—
(11) that if only a single data point x") is known the SPES is
given by

Ex) = ED _ gD, (x — X(l))e*IIX*X‘”IIZ/le’ (13)

where E(and £ are the energy and forces of the SPES at
the point x!), respectively. We have here used that the prior
energy is set to the energy of the first configuration E("). One
can confirm that this is the prior energy by noting that points
far away from x"), where no information is available, take on
this value for the energy. It is seen that the initial force 1)
gives rise to a Gaussian depletion of the SPES. The first step
of the GPMin algorithm minimizes the SPES leading to a new
configuration,

£
[

The first step is thus in the direction of the force with a step
length of /. Considering the information available this is a very
natural choice.

x=x" 41

(14)

104103-2

LOCAL BAYESIAN OPTIMIZER FOR ATOMIC ...

PHYSICAL REVIEW B 100, 104103 (2019)

GPMin depends on a number of parameters: the length
scale [, the prior value of the energy E,, the energy width o/,
and the noise or regularization parameter o,. It can be seen
from expressions (4) and (11) that the prediction of the SPES
depends only on the ratio of oy and o, and not their individual
values.

The prior energy E), is, as explained above, taken initially
as the energy of the first configuration and then updated if
larger energies are encountered. It is important that the prior
value is not too low to avoid large steps, since the prior energy
is the value of the SPES for all configurations far away (on the
scale of /) from previously investigated structures.

The scale / is very important as it sets the distance over
which the SPES relaxes back to the prior value £, when mov-
ing away from the region of already explored configurations.
It therefore also effectively determines a step length in the
algorithm.

One interesting advantage of the Bayesian approach is
that it allows for update of parameters (usually termed hy-
perparameters) based on existing data. We investigate this
option by allowing the value of the length scale / to change.
Since the update procedure also depends on the width param-
eter oy, we update this as well. The updated hyperparame-
ters, @ = (I, o), are determined by maximizing the marginal
likelihood:

0 = arg mslx PY|X,%). (15)

The optimization may fail, for example if there is not
enough evidence and the marginal likelihood is very flat,
and if that happens, the previous scale is kept. The update
procedure allows the algorithm to find its own scale as it
collects more information, producing a model that self-adapts
to the problem at hand. In Sec. VI we shall consider in
more depth the adequate choices for the values of the hy-
perparameters and the different strategies for the update of
hyperparameters when the optimizers are applied to DFT
calculations.

IV. COMPUTATIONAL DETAILS

We illustrate and test the method on a variety of different
systems using two different calculation methods: An inter-
atomic effective medium theory potential (EMT) [25,26] as
implemented in ASE [27,28] and DFT. The DFT tests have
been performed using GPAW [29] with the local density
approximation (LDA) exchange-correlation functional and a
plane wave basis set with an energy cutoff at 340 eV. The
Brillouin zone has been sampled using the Monkhorst-Pack

scheme with a k-point density of 2.0/ (Ail) in all three direc-
tions. The PAW setup with one valence electron has been used
for the sodium cluster for simplicity. In addition to the default
convergence criteria for GPAW, we specify that the maximum
change in magnitude of the difference in force for each atom

o —1 .
should be smaller than 10™* eV A for the self-consistent
field iteration to terminate. This improves the convergence of
the forces. All systems have been relaxed until the maximum

force of the atoms was below 0.01 eV Afl.

250

I GPMin

[Updated GPMin
I Other optimizers

Wil

= = N
o v o
S o S

Number of energy evaluations

ul
o

«\Q?) «\QP‘ «\Q?’ oQb oQ{\ o&b %‘& Q(’%é\ *(/0 <&
S &
PO O N A S
§ & & & & & F KT v

Optimizer

FIG. 1. Statistics of the number of energy evaluations for 1000
relaxations of a 10-atom gold cluster. The initial conditions have
been randomly generated. The left-hand side of the plot shows the
distribution of the number of energy evaluations for GPMin in its
two variants for scales ranging from 0.3 to 0.8 A: keeping the scale
fixed or allowing it to be updated. The right-hand side shows the
performance of other widely used optimizers, which have been sorted
according to the average number of function evaluations.

V. EXAMPLE: GOLD CLUSTERS DESCRIBED IN
EFFECTIVE MEDIUM THEORY

In the first example GPMin is used to find the structure
of 10-atom gold clusters as described by the EMT potential,
and the efficiency is compared with other common optimizers.
For this purpose, we generate 1000 random configurations of
a 10-atom gold cluster. The configurations are constructed by
sequentially applying three uniform displacements for each
atom in a cubic box with side length 4.8 A and only keeping
those that lie farther than 1.7 times the atomic radius of gold
away from any of the other atoms already present in the
cluster. Each configuration is then optimized with different
choices of parameters for GPMin, and, for comparison, the
same structures are optimized with the ASE implementations
of FIRE [30] and BFGS Line Search, and the SciPy imple-
mentations of BFGS and the CG.

For the gold clusters, we have investigated the effect of
updating oy and [for six different initial scales between 0.3
and 0.8 A and initial or = 1.0 eV. Since the EMT potential
has very small numerical noise, we choose a small value

of 0,/0p =5 x 107 eV A for the regularization. In the
update version of the optimizer, we update the scale every fifth
iteration.

The statistics of the number of energy evaluations are
shown in Fig. 1. The GP optimizers are seen to be the
fastest on average, with the appropriate choice of the hy-
perparameters. For the initial scale of 0.5 A, for example,
the updated version of GPMin had relaxed the clusters after
42.1 £ 0.3 energy evaluations and the nonupdated one after
42.5 £ 0.3, as compared to 48.8 = 0.3 and 56.2 &+ 0.5 for the
BFGS implementations in SciPy and ASE, respectively. CG
exhibits an average number of steps of 79.7 & 0.7, and FIRE,
1229 £ 1.0.

104103-3

GARIJO DEL RiO, MORTENSEN, AND JACOBSEN

PHYSICAL REVIEW B 100, 104103 (2019)

Figure 1 shows the trend in the performance as the scale
is varied. For this system, / = 0.5 A has the lowest average
and variance for GPMin. The performance depends rather
sensitively on the scale parameter: reducing the scale results in
a more conservative algorithm where more but smaller steps
are needed. Increasing the scale leads to a more explorative
algorithm with longer steps that may fail to reduce the energy.
In the algorithm with updates, the scale is automatically
modified to compensate for a nonoptimal initial scale. The
update is particularly efficient for small scales where the
local environment is sufficiently explored. For larger scales
the sampling is less informative and it takes longer for the
algorithm to reduce the scale.

We note that under the appropriate choice of scale, both
GPMin with and without update are among the fastest for the
best-case scenario, with 18 evaluations for the regular GPMin
optimizer and 19 for the updated version with scale [= 0.5 A,
compared to 19 for ASE BFGS, 27 and 34 for the SciPy
implementations of BFGS and CG, respectively, and 70 for
FIRE. We further note that the updated version has by far the
best worst-case performance.

Of the total of 18 000 relaxations, only 17 failed to find a
local minimum. These 17 relaxations were all run with the
GPMin optimizer with / = 0.8 A without the updates. An
optimizer with a too long scale fails to build a successful
SPES: the minimum of the SPES often has a higher energy
than the previously evaluated point. Thus, we consider that the
optimization has failed if after 30 such catastrophic attempts,
the optimizer has still not been able to identify a point that
reduces the energy or if SciPy’s BFGS cannot successfully
optimize the predicted SPES.

VI. DETERMINATION OF THE HYPERPARAMETERS

We now continue by considering the use of the GP opti-
mizers more generally for systems with PESs described by
DFT. Default values of the hyperparameters should be chosen
such that the algorithm performs well for a variety of atomic
systems. For this purpose, we have chosen a training set
consisting of two different structures: (i) a 10-atom sodium
cluster with random atomic positions and (ii) a carbon dioxide
molecule on a (111) surface with two layers of gold and a
2 x 2 unit cell. We have generated 10 slightly different initial
configurations for each of the training systems by adding
random numbers generated from a Gaussian distribution with
standard deviation 0.1 A. The training configurations are then
relaxed using DFT energies and forces.

For each pair of the hyperparameters (/, 0,/0), we relax
the training systems and average over the number of DFT
evaluations the optimizer needs to find a local minimum. The
results are shown in Fig. 2. The plot shows that the metallic
cluster benefits from relatively large scales, while the CO on
gold system with a tight CO bond requires a shorter scale.
A too long scale might even imply that the optimizer does
not converge. The set of hyperparameters / = 0.4 A, o, =

1 meV Afl, and oy = 1 eV seems to be a good compromise
between the two cases and these are the default values we shall
use in the following.

A similar procedure has been used to determine the default
values of the hyperparameters and their initial values in the

10 atoms Na cluster

0.025 PEYREERA LN 119 108 97 87 82 76
0.01 94 83 74 68 63 57 53

= 0005 83 73 65 61 56 50 47
% 0.0025 76 68 61 57 52 48 45
S o001 72 6354 49 46 43
0.0005 72 64 58 53 49 46 43
0.00025 73 64 58 53 49 46 43

1o ﬁb,b%yp‘j)&)%b

0.025 |99 90 84 78 79 98

0.01 | 67 55 48 47 48 46 68 111

0.005 | 56 47 41 41 43 44 65 79

0.0025 [50 42 37 38 40 45 48

36 42 49

37 39 41 49

70

Un/af (A_l)

0.001 |49 39 36
0.0005 [49 39 36

0.00025 |49 40 35 37 39 44 50

FIG. 2. Average number of potential energy evaluations needed
to relax 10 atomic structures as a function of the two hyperparam-
eters: the length scale /, and the regularization parameter o,. The
label NC (not converged) indicates that at least one of the relaxations
did not converge. The default choices for the hyperparameters are
indicated by circles.

updated versions of GPMin. Here, the hyperparameter o, /o
is kept fixed during the optimization, whereas / and o are
determined using expression (15). The value of 0,,/0 and the
initial values of the other hyperparameters are then determined
from the analysis of the performance of the optimizer on the
two systems in the training set. The evolution of the hyper-
parameters depends on the details of the optimization of the
marginal likelihood together with the frequency at which the
hyperparameters are optimized. Here, we explore three differ-
ent strategies: Unconstrained maximization of the marginal
log-likelihood every 5 energy evaluations (“GPMin-5"), and
two constrained optimization strategies, where the outcome
of the optimization is constrained to vary in the range +10%
and £20% of the value of the hyperparameter in the previous
step (“GPMin-10%" and “GPMin-20%,” respectively). In the
latter two cases we let the optimization take place whenever
new information is added to the sample. The algorithm used
to maximize the marginal log-likelihood is L-BFGS-B [24]
for all strategies.

We have relaxed the same 10 slightly different copies of the
two training set systems described before using these three
strategies for three different initial values of the scale (0.2,

104103-4

LOCAL BAYESIAN OPTIMIZER FOR ATOMIC ...

PHYSICAL REVIEW B 100, 104103 (2019)

0 90 - | Update method
S = GPMin 5
© GPMin 10%
L = 80 - . o
o o = GPMin 20%
H 2 GPMin
S 9704 Ll 1
2 « 40 1 .
3
IS 30-.§ O — T
=}
3 M
20 .
L T LRI | T LR | 1 L IR BRI | T — T T
55
%]
C
o
£ 50 -
=}
©
>
5 (0]
I 5% I
©® ¢
o “CI;) [
O © 40 A . 0
8 |
£ P,
=2 35 1 T
L T LRI | T LR | 1 L IR BRI | T — T T
1074 1073 1072 0.12 0.25 0.50 1.00 2.00 4.00

Un/Uf (A_l)

or (eV)

FIG. 3. Average number of energy evaluations needed to relax the two training set systems as a function of the hyperparameter o, /oy or
of the initial value of o, while the other one is kept fixed. The results are shown for the three different updating strategies and compared with
the result of running GPMin without update with the same choice of hyperparameters. The rectangles show the values of the hyperparameter
that have been chosen as default values. The value of o chosen in the right panels has been used in the relaxations shown in the left panels,
and similarly, the value of ,,/0 that has been found optimal in the left panel is the one that has been used in the relaxations in the right panel.

0.3, and 0.4 A), eight different initial values of o7, and seven
different values of the regularization parameter o,/0. An
overview of the full results can be found in the Supplemental
Material [31].

The average numbers of energy evaluations needed to relax
the training set for the different strategies and hyperparam-
eters are shown in Fig. 3. The initial value of the scale is
chosen as 0.3 A. The plot shows the variation of the average
number of energy evaluations with o, /0y when the initial
value of oy = 1.8 eV and the variation with oy when the

value of 0,/0; =2 x 1073 A™'. The performance of the
optimizers is seen to depend rather weakly on the parameter
values in particular for the sodium cluster. We shall therefore
in the following use the values oy = 1.8 ¢V and o,/0f =
2% 103 A7,

From the figure it can also be seen that the versions of
the optimizer with updates perform considerably better than
GPMin without updates for the sodium cluster, while for
the CO molecule on gold, the version without update works
slightly better than the three optimizers with updates.

To understand this behavior further we consider in Fig. 4
the evolution of the length scale / as it is being up-
dated. The scale is initially set at three different values [=
0.2,0.3,0.4 A. For the sodium cluster the update procedure
quickly leads to a much longer length scale around 1.5 A.

For GPMin-5 the length scale is raised dramatically already
at the first update after five energy evaluations, while for
GPMin-10% and GPMin-20% the length scale increases grad-
ually because of the constraint built into the methods. The
advantage of a longer length scale is in agreement with the
results above for the gold cluster described with the EMT
interatomic interactions, where a long length scale also led to
faster convergence. The situation is different for the CO/Au
system, where the update leads first to a significant decrease in
the scale and later to an increase saturating at a value around
0.3 A. This result was to be expected from the one shown
in Fig. 2 for the performance of GPMin without the hyper-
parameter update. We interpret the variation of the scale for
the CO/Au system as being due to the different length scales
present in the system, where the CO bond is short and strong
while the metallic bonds are much longer. In the first part of
the optimization the CO configuration is modified requiring a
short scale, while the later stages involve the CO-metal and
metal-metal distances. Overall the update of the scale does
not provide an advantage over the GPMin without updates
where the scale is kept fixed at [= 0.4 A. It can be seen
that the final scales obtained, for example in the case of the
sodium cluster optimized with GPMin-10%, vary by about
30%, where the variation depends on the particular system
being optimized and not on the initial value for the length
scale.

104103-5

GARIJO DEL RiO, MORTENSEN, AND JACOBSEN

PHYSICAL REVIEW B 100, 104103 (2019)

GPMin 10%

GPMin 20%

GPMin 5

Na cluster
A

CO@Au
)

iteration

iteration

iteration

FIG. 4. Evolution of the length scale / with iteration for the three optimizers with update GPMin-5, GPMin-10%, and GPMin-20%. The
upper panel in each case shows the results for the sodium cluster, while the lower panel shows the evolution for the CO/Au system. In all cases
three different values [= 0.2, 0.3, 0.4 A for the initial scale have been considered. For the sodium cluster the length scale is seen to increase
significantly, while in the case of the CO/Au system, the length scale first decreases and then subsequently increases. The final length scale
varies by about 30% dependent on the particular initial structure of the systems.

In the following we shall use / = 0.3 A as the initial scale
for the optimizers with updates. As shown in Figs. S1, S2,
and S3 in the Supplemental Material [31], the results do not
depend very much on the initial scale in the range 0.2-0.4 A.
Furthermore, the results for the EMT gold cluster indicate
that long length scales should be avoided: it is easier for the
algorithm to increase the length scale than to decrease it.

To summarize, we select the following default (initial)
values of the hyperparameters for the updated versions of

GPMin: [=0.3 A, oy =2.0 eV, and 0, = 0.004 eVA ™'
(on/0f = 0.002 Afl). These values are used in the rest of this
paper.

VII. RESULTS

To test the Bayesian optimizers we have investigated their
performance for seven different systems with DFT: a CO
molecule on a Ag(111) surface, a C adsorbate on a Cu(100)
surface, a distorted Cu(111) surface, bulk copper with random
displacements of the atoms with Gaussian distribution and
width 0.1 A, an aluminum cluster with 13 atoms in a configu-
ration close to fcc, the H, molecule, and the pentane molecule.
All surfaces are represented by two-layer slabs with a 2 x 2
unit cell and periodic boundary conditions along the slab.
The bulk structure is represented by a 2 x 2 x 2 supercell
with periodic boundary conditions along the three unit cell
vectors. For each of the systems we have generated ten slightly
different initial configurations by rattling the atoms by 0.1
A. The resulting configurations are then relaxed using the
ASE and SciPy optimizers, together with the different GPMin
optimizers.

It should be noted that in a few cases an optimizer fails to
find a local minimum: an atomic configuration is suggested
for which GPAW raises an error when it attempts to compute
the energy, because two atoms are too close. This happens for

SciPy’s BFGS for one of the CO/Ag configurations and for
SciPy’s conjugate gradient method for one of the hydrogen
molecule configurations.

The results are collected in Fig. 5. For the sake of clarity,
ASE FIRE has been excluded from the plot, since it takes
about a factor of three more steps than the fastest optimizer
for all systems. The average number of DFT evaluations for
the relaxation of the systems in the test set with the implemen-
tation of FIRE in ASE is 122 £+ 4 for CO/Ag, 91 £ 5 for the
pentane molecule, 58 & 4 for C/Cu, 85 £ 3 for the aluminum
cluster, 62 = 2 for the Cu slab, 53 & 1 for Cu bulk, and 30 £+ 3
for the H, molecule.

The GP optimizers are seen to compare favorably or on
par with the best one of the other optimizers in all cases.
GPMin without update is on average faster than the other
optimizers for 6 of the 7 systems. For the bulk Cu system,
it is only slightly slower than the ASE-BFGS algorithm. The
updated GP optimizers perform even better with one excep-
tion: GPMin-5 is clearly worse than the other GP optimizers
and ASE BFGS for the copper bulk system. Since the atomic
displacements from the perfect crystal structure are quite
small (~0.1 A), this system is probably within the harmonic
regime and requires only a few (~10) iterations to converge.
The ASE BFGS can therefore be expected to perform well,
which is also what is observed in Fig. 5. GPMin-5 does not
update the scale for the first 5 iterations, and when it does
so, the new scale does not lead to immediate convergence.
The plain GPMin and the two other optimizers with updates
perform on par with ASE BFGS.

Generally, the updated optimizers perform better than GP-
Min without updates, and both GPMin-10% and GPMin-20%
with constrained update perform consistently very well. The
updated optimizers are clearly better than the plain GPMin for
the Al cluster, similarly to the behavior for the Na cluster used
in the determination of hyperparameters. For the other training
system, the CO/Au system, GPMin was seen to perform

104103-6

LOCAL BAYESIAN OPTIMIZER FOR ATOMIC ...

PHYSICAL REVIEW B 100, 104103 (2019)

Number of DFT evaluations

| | |

| | | |

GPMin A
GPMin 5 H
GPMin 20%
GPMin 10% -
SciPy BFGS - g . * L 4 ° o °
SciPy CG - ° --- ° - - ° ---
Line Search B i e B . h [
0O 20 40 60 0 25 50 75 0 8 16 24 0 15 30 450 8 16 240 8 16 240 4 8 12
CO@Ag Pentane C@Cu Al cluster Cu slab Cu bulk H>

FIG. 5. Number of DFT evaluations required to optimize a given structure. For each structure 10 different initial configurations are
generated and optimized. The vertical line represents the average number of steps of GPMin without parameter updates. The error bar represents
the error on the average. A different color has been used to highlight the optimizers of the GPMin family.

better than all the updated optimizers. However, in Fig. 3 the
scale was chosen to be [= 0.3 A, which is superior for that
particular system. This behavior does not appear for any of the
test systems including the CO/Ag system, which otherwise
could be expected to be somewhat similar.

VIII. DISCUSSION

We ascribe the overall good performance of the GP op-
timizers to their ability to predict smooth potential energy
surfaces covering both harmonic and anharmonic regions of
the energy landscape. Since the Gaussian functions applied in
the construction of the SPES all have the scale [, the SPES
will be harmonic at scales much smaller than this around the
minimum configuration. If the initial configuration is in this
regime the performance of the optimizer can be expected to
be comparable to BFGS, which is optimal for a harmonic
PES, and this is what is for example observed for the Cu bulk
system. We believe that the relatively worse performance of
the SciPy implementation of BFGS can be attributed to an
initial guess of the Hessian that is too far from the correct
one.

Given the performance on both the training and test sets,
GPMin-10% seems to be a good choice. It should be noted
that updating the hyperparameters require iteration over the
marginal log-likelihood leading to an increased computational
cost. However, this is not a problem at least for systems
comparable in size to the ones considered here.

The current version of the algorithm still has room for
improvement. For example, different strategies for the update
of hyperparameters may be introduced. Another, maybe even
more interesting, possibility is to use more advanced prior
models of the PES than just a constant. The prior model to the
PES could for example be obtained from fast lower-quality
methods. Somewhat along these lines there have been recent
attempts to use previously known semiempirical potentials

for preconditioning more traditional gradient-based optimiz-
ers [32,33]. This approach might be combined with the GP
framework suggested here.

We also note that the choice of the Gaussian kernel,
even though encouraged by the characteristics of the result-
ing potential [22] and its previously reported success for
similar problems [13], is to some extent arbitrary. It would
be worthwhile to test its performance against other kernel
functions, for example the Matérn kernel, which has been
reported to achieve better performance in different contexts
[19,34,35]. The kernels used in the work here are also limited
to considering only one length scale. More flexible kernels
allowing for different length scales for different types of bonds
would be interesting to explore.

The probabilistic aspect, including the uncertainty as ex-
pressed in Eq. (12), is presently used only in the update of
the hyperparameters. It could potentially lead to a further
reduction of the number of function evaluations [13]. The
uncertainty provides a measure of how much a region of
configuration space has been explored and can thereby guide
the search also in global optimization problems [16,34,36].

Finally, a note on the limitations of the present version
of the optimizer. The construction of the SPES involves the
inversion of a matrix [Eq. (11)] which is a square matrix,
where the number of columns is equal to n = N.(3N + 1),
where N is the number of atoms in the system and N, the
number of previously visited configurations. This is not a
problem for moderately sized systems, but for large systems,
where the optimization also requires many steps, the matrix
inversion can be very computationally time consuming, and
the current version of the method will only be efficient if this
time is still short compared to the time to perform the DFT
calculations. In addition, this can also result in a memory issue
for large systems where the relaxation takes many steps. These
issues may be addressed by considering only a subset of the
data points or other sparsification techniques. Recently, Wang

104103-7

GARIJO DEL RiO, MORTENSEN, AND JACOBSEN

PHYSICAL REVIEW B 100, 104103 (2019)

et al. [37] showed that by using the black-box matrix-matrix
multiplication algorithm it is possible to reduce the cost of
training from O(n?) to O(n?) and then by using distributed
memory and 8 GPUs they were able to train a Gaussian
process of n ~ 4 x 10* (this would correspond to about 100
steps for 150 atoms with no constraints) in 50 seconds. This
time is negligible compared to the time for DFT calculations
of systems of this size.

The GPMin optimizers are implemented in Python and
available in ASE [27].

ACKNOWLEDGMENTS

We appreciate fruitful conversations with P. Bjgrn
Jgrgensen. This work was supported by Grant No. 9455 from
VILLUM FONDEN.

APPENDIX

The optimization algorithm can be represented in
pseudocode as follows:

Input:

Initial structure: x© = (r;, 15, ..., ry)
Hyperparameters: /, o,

Tolerance: fiax

E© fO « CALCULATOR(x®)
E, < E©
while max; |fl.<0)| > finaxdo
X,Y < UpPDATE(xY, E© £©)
E, < maxYg
x « L-BFGS-B(GP(X, Y), start_from = x©)
ED® £ « CALCULATOR(x()
while EV > E@do
X,Y < UpPDATE(xD, ED, £(D)
E, < maxYg
x « L-BFGS-B(GP(X, Y), start_from = x©)
EM® D « CaLcuLATOR(xD)
if max; |fl.(l)| > fmaxthen break
end if
end while
X, EO_§O xO) pa) g
end while
Output: x©, E®

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[2] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[3] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes: The Art of Scientific Computing,
3rd ed. (Cambridge University Press, New York, 2007).
[4] E. Jones, T. Oliphant, and P. Peterson, SciPy: Open source
scientific tools for Python, http://www.scipy.org.
[5] A. P. Bartdk, S. De, C. Poelking, N. Bernstein, J. R. Kermode,
G. Csényi, and M. Ceriotti, Sci. Adv. 3, 1701816 (2017).
[6] B. Huang and O. A. von Lilienfeld, arXiv:1707.04146.
[7] A. Glielmo, C. Zeni, and A. De Vita, Phys. Rev. B 97, 184307
(2018).
[8] J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007).
[9] M. Rupp, A. Tkatchenko, K.-R. Miiller, and O. A. von
Lilienfeld, Phys. Rev. Lett. 108, 058301 (2012).
[10] G. Csdnyi, T. Albaret, M. C. Payne, and A. De Vita, Phys. Rev.
Lett. 93, 175503 (2004).
[11] A. Khorshidi and A. A. Peterson, Comput. Phys. Commun. 207,
310 (2016).
[12] T. Yamashita, N. Sato, H. Kino, T. Miyake, K. Tsuda, and T.
Oguchi, Phys. Rev. Mater. 2, 013803 (2018).
[13] O.-P. Koistinen, F. B. Dagbjartsdéttir, V. Asgeirsson, A. Vehtari,
and H. Jénsson, J. Chem. Phys. 147, 152720 (2017).
[14] T. L. Jacobsen, M. S. Jgrgensen, and B. Hammer, Phys. Rev.
Lett. 120, 026102 (2018).
[15] M. Todorovi¢, M. U. Gutmann, J. Corander, and P. Rinke, npj
Comput. Mater. 5, 35 (2019).
[16] M. S. Jgrgensen, U. F. Larsen, K. W. Jacobsen, and B. Hammer,
J. Phys. Chem. A 122, 1504 (2018).
[17] E. V. Podryabinkin and A. V. Shapeev, Comput. Mater. Sci. 140,
171 (2017).
[18] K. Gubaev, E. V. Podryabinkin, G. L. Hart, and A. V. Shapeev,
Comput. Mater. Sci. 156, 148 (2019).

[19] A. Denzel and J. Kistner, J. Chem. Phys. 148, 094114
(2018).

[20] O.-P. Koistinen, V. Asgeirsson, A. Vehtari, and H. Jénsson,
ChemRxiv (2019), doi:10.26434/chemrxiv.8850440.v1.

[21]1J. A. Garrido Torres, P. C. Jennings, M. H. Hansen,
J. R. Boes, and T. Bligaard, Phys. Rev. Lett. 122, 156001
(2019).

[22] C. E. Rasmussen and C. K. Williams, Gaussian Processes for
Machine Learning (MIT, Cambridge, Massachusetts, 2006).

[23] J. Wu, M. Poloczek, A. G. Wilson, and P. Frazier, in Advances
in Neural Information Processing Systems 30, edited by I.
Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S.
Vishwanathan, and R. Garnett (Curran Associates, Inc., 2017),
pp- 5267-5278.

[24] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, SIAM J. Sci. Comput.
16, 1190 (1995).

[25] K. W. Jacobsen, J. K. Ngrskov, and M. J. Puska, Phys. Rev. B
35, 7423 (1987).

[26] K. W. Jacobsen, P. Stoltze, and J. K. Ngrskov, Surf. Sci. 366,
394 (1996).

[27] Atomic Simulation Environment (ASE), https://wiki.fysik.dtu.
dk/ase.

[28] A. H. Larsen, J. J. Mortensen et al., J. Phys.: Condens. Matter
29, 273002 (2017).

[29] J. Enkovaara, C. Rostgaard, J. J. Mortensen et al., J. Phys.:
Condens. Matter 22, 253202 (2010).

[30] E. Bitzek, P. Koskinen, F. Gihler, M. Moseler, and P. Gumbsch,
Phys. Rev. Lett. 97, 170201 (2006).

[31] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.100.104103 for a full overview of the aver-
age number of DFT calculations needed to relax the structures
in the training set with different hyperparameters and strategies
for GPMin with updates.

104103-8

https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
http://www.scipy.org
https://doi.org/10.1126/sciadv.1701816
https://doi.org/10.1126/sciadv.1701816
https://doi.org/10.1126/sciadv.1701816
https://doi.org/10.1126/sciadv.1701816
http://arxiv.org/abs/arXiv:1707.04146
https://doi.org/10.1103/PhysRevB.97.184307
https://doi.org/10.1103/PhysRevB.97.184307
https://doi.org/10.1103/PhysRevB.97.184307
https://doi.org/10.1103/PhysRevB.97.184307
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.98.146401
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1103/PhysRevLett.108.058301
https://doi.org/10.1103/PhysRevLett.93.175503
https://doi.org/10.1103/PhysRevLett.93.175503
https://doi.org/10.1103/PhysRevLett.93.175503
https://doi.org/10.1103/PhysRevLett.93.175503
https://doi.org/10.1016/j.cpc.2016.05.010
https://doi.org/10.1016/j.cpc.2016.05.010
https://doi.org/10.1016/j.cpc.2016.05.010
https://doi.org/10.1016/j.cpc.2016.05.010
https://doi.org/10.1103/PhysRevMaterials.2.013803
https://doi.org/10.1103/PhysRevMaterials.2.013803
https://doi.org/10.1103/PhysRevMaterials.2.013803
https://doi.org/10.1103/PhysRevMaterials.2.013803
https://doi.org/10.1063/1.4986787
https://doi.org/10.1063/1.4986787
https://doi.org/10.1063/1.4986787
https://doi.org/10.1063/1.4986787
https://doi.org/10.1103/PhysRevLett.120.026102
https://doi.org/10.1103/PhysRevLett.120.026102
https://doi.org/10.1103/PhysRevLett.120.026102
https://doi.org/10.1103/PhysRevLett.120.026102
https://doi.org/10.1038/s41524-019-0175-2
https://doi.org/10.1038/s41524-019-0175-2
https://doi.org/10.1038/s41524-019-0175-2
https://doi.org/10.1038/s41524-019-0175-2
https://doi.org/10.1021/acs.jpca.8b00160
https://doi.org/10.1021/acs.jpca.8b00160
https://doi.org/10.1021/acs.jpca.8b00160
https://doi.org/10.1021/acs.jpca.8b00160
https://doi.org/10.1016/j.commatsci.2017.08.031
https://doi.org/10.1016/j.commatsci.2017.08.031
https://doi.org/10.1016/j.commatsci.2017.08.031
https://doi.org/10.1016/j.commatsci.2017.08.031
https://doi.org/10.1016/j.commatsci.2018.09.031
https://doi.org/10.1016/j.commatsci.2018.09.031
https://doi.org/10.1016/j.commatsci.2018.09.031
https://doi.org/10.1016/j.commatsci.2018.09.031
https://doi.org/10.1063/1.5017103
https://doi.org/10.1063/1.5017103
https://doi.org/10.1063/1.5017103
https://doi.org/10.1063/1.5017103
https://doi.org/10.26434/chemrxiv.8850440.v1
https://doi.org/10.26434/chemrxiv.8850440.v1
https://doi.org/10.26434/chemrxiv.8850440.v1
https://doi.org/10.1103/PhysRevLett.122.156001
https://doi.org/10.1103/PhysRevLett.122.156001
https://doi.org/10.1103/PhysRevLett.122.156001
https://doi.org/10.1103/PhysRevLett.122.156001
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
https://doi.org/10.1137/0916069
https://doi.org/10.1103/PhysRevB.35.7423
https://doi.org/10.1103/PhysRevB.35.7423
https://doi.org/10.1103/PhysRevB.35.7423
https://doi.org/10.1103/PhysRevB.35.7423
https://doi.org/10.1016/0039-6028(96)00816-3
https://doi.org/10.1016/0039-6028(96)00816-3
https://doi.org/10.1016/0039-6028(96)00816-3
https://doi.org/10.1016/0039-6028(96)00816-3
https://wiki.fysik.dtu.dk/ase
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1088/1361-648X/aa680e
https://doi.org/10.1088/0953-8984/22/25/253202
https://doi.org/10.1088/0953-8984/22/25/253202
https://doi.org/10.1088/0953-8984/22/25/253202
https://doi.org/10.1088/0953-8984/22/25/253202
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1103/PhysRevLett.97.170201
https://doi.org/10.1103/PhysRevLett.97.170201
http://link.aps.org/supplemental/10.1103/PhysRevB.100.104103

LOCAL BAYESIAN OPTIMIZER FOR ATOMIC ...

PHYSICAL REVIEW B 100, 104103 (2019)

[32] J. O. B. Tempkin, B. Qi, M. G. Saunders, B. Roux, A. R. Dinner,
and J. Weare, J. Chem. Phys. 140, 184114 (2014).

[33] L. Mones, C. Ortner, and G. Csdnyi, Sci. Rep. 8, 13991
(2018).

[34] D. J. Lizotte, Practical Bayesian optimization, Ph.D. thesis,
University of Alberta, 2008.

[35] G. Schmitz and O. Christiansen, J. Chem. Phys. 148, 241704
(2018).

[36] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de
Freitas, Proc. IEEE 104, 148 (2016).

[37] K. A. Wang, G. Pleiss, J. R. Gardner, S. Tyree, K. Q.
Weinberger, and A. G. Wilson, arXiv:1903.08114.

104103-9

https://doi.org/10.1063/1.4872021
https://doi.org/10.1063/1.4872021
https://doi.org/10.1063/1.4872021
https://doi.org/10.1063/1.4872021
https://doi.org/10.1038/s41598-018-32105-x
https://doi.org/10.1038/s41598-018-32105-x
https://doi.org/10.1038/s41598-018-32105-x
https://doi.org/10.1038/s41598-018-32105-x
https://doi.org/10.1063/1.5009347
https://doi.org/10.1063/1.5009347
https://doi.org/10.1063/1.5009347
https://doi.org/10.1063/1.5009347
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218
https://doi.org/10.1109/JPROC.2015.2494218
http://arxiv.org/abs/arXiv:1903.08114

