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A theory of magnetization dynamics in ferrimagnetic materials with antiparallel aligned spin sublattices
under the action of spin-transfer torques (STTs) is developed. In contrast with antiferromagnets, the magnetic
sublattices in ferrimagnets are formed by different magnetic ions, which results in a symmetry breaking in the
dynamic equations for Néel’s vector. We demonstrate that this symmetry breaking becomes crucially essential
for the THz signal extraction in ferrimagnetic spin-torque oscillators. As an example, we consider magnetization
dynamics in GdFeCo layers in spin Hall and nanocontact spin-torque oscillator geometries. We demonstrate that
(i) the application of spin current leads to a conical precession of Néel’s vector with sub-THz frequencies, (ii) in
the spin Hall geometry, the conical precession leads to sub-THz oscillations of the Hall voltage, and (iii) in the
nanocontact geometry the Néel’s vector precession leads to sub-THz oscillations of the magnetoresistance.
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Introduction. Spin-transfer torques [1] (STTs) are widely
used to control and excite magnetization dynamics in ferro-
magnetic materials (FM). Under certain conditions, the STTs
can overcome damping and set the magnetization in a steady-
state precession [2–4]. The external magnetic field typically
defines the frequency of magnetization precession in FM and
experimentally achievable values usually lie in the GHz range
[5,6].

The action of STTs is not limited to ferromagnetic mate-
rials; STTs can act on any other magnetically ordered mate-
rials: antiferromagnets (AFMs) [7,8] and ferrimagnets (FiMs)
[9,10]. It has been theoretically predicted that the application
of spin current on AFM materials leads to a precessing Néel’s
vector with THz frequencies [11–16]. However, in AFMs
the ions forming the magnetic sublattices are of the same
type and located in equivalent crystallographic positions. This
symmetry dictates the properties of AFMs, which make the
extraction of the THz signal extremely difficult. Since the
magnetic sublattices in AFMs are formed by identical atoms,
partial conductivities for spin-polarized electrons are equal,
and therefore one can expect an absence of the giant mag-
netoresistance (GMR) in an FM/AFM spin-valve structure
[17]. At the same time, since the spin-angular momentum
of both sublattices is identical, spin current excites an 180◦
“flat” rotation of Néel’s vector, which does not lead to an AC
modulation of the spin Hall magnetoresistance in a spin Hall
geometry (see Refs. [14,15] and the discussion below).

In this Rapid Communication, we demonstrate that the use
of FiM as active layers in spin-torque oscillators provides a
straightforward way of THz signal readout. Our numerical and
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analytical solutions show that a small spin uncompensation
in FiM leads to three significant effects: (i) The frequency of
the precession can reach sub-THz frequencies, due to the ex-
change interaction between the sublattices; (ii) the precession
of the Néel’s vector becomes conical, instead of a flat rotation,
allowing a modulation of the spin Hall magnetoresistance
with THz frequencies; and (iii) the difference in partial spin
conductivities allows for a THz frequency modulation of the
GMR in a FiM-based spin-valve structure. As an example FiM
material, we consider GdFeCo and calculate expected gener-
ated threshold currents and the magnetoresistance modulation
depth.

The magnetization in magnetically ordered materials can
be controlled by spin currents, which results from the spin
Hall effect [3] or spin-polarized charge current [2]. In the first
case [see Fig. 1(a)], a charge current density j = jxx runs
through a Pt layer. A spin-current density jsh, produced via
the spin-orbit interaction in Pt, penetrates the FiM layer and
creates a torque with the polarization p acting on the magnetic
sublattices. As the same time, the precession of the magnetic
sublattices generates a spin current jsp in the spin-pumping
mechanism. Via the inverse spin Hall effect, this spin current
induces an electric field E = Ezz in the Pt, in the direction per-
pendicular to the charge current. The induced voltage can be
characterized by the Hall resistivity of the bilayer ρ⊥ = Ez/ jx.

An alternative scenario is realized in a spin-valve geometry
[see Fig. 1(b)]. Here, the spin-polarized charge current is
generated in the “fixed” polarizer layer with polarization p.
Then the spin-polarized current flows into the FiM and creates
a spin-transfer torque [1] acting on the magnetization. At the
same time the resistivity of the contact depends on the mutual
orientation of the magnetization in FiM and the polarizer:
ρ = ρ0 + �ρ l · p. We note here that in FiM the magnetic
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ẑ
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FIG. 1. Sketches showing the geometry of a ferrimagnetic
(a) spin Hall oscillator and (b) spin-transfer torque (spin-valve)
oscillator. “Pol.” stands for polarizer.

sublattices are formed by different magnetic ions, and there-
fore their partial spin conductivities are different [18].

Besides different physical mechanisms involved in the
spin Hall and spin-valve geometries, the magnetic dynamics
in both cases can be considered in a unified framework.
Magnetization dynamics in FiM is governed by two coupled
Landau-Lifshitz equations [19],

h̄
dSi

dt
=

(
Si × δW

δSi
+ 1

Si
Si × Si × Ri

)
, (1)

where i = 1, 2 is the sublattice index, Si is the effective spin
of each sublattice, W is the free energy per spin of the
ferrimagnet, and Ri is the nonconservative term. For uniaxial
anisotropy the energy can be written as W = 1

2WexS1 · S2 +∑
i=1,2 Wa(Si · na)2, where Wex is the exchange energy be-

tween two sublattices, Wa is the anisotropy energy, and na

is an anisotropy axis. The nonconservative term can be writ-
ten as Ri = αGδW/δSi − h̄σ j p. Here, σ is the spin-current
polarization efficiency, which depends on the particular spin-
current generation mechanism [3,4], j is the charge current
density and αG is the Gilbert damping constant.

Here, we solve the coupled equations (1) both analytically
and numerically. For the analytical solution we formulate a
σ model, where we substitute the variables Si with Néel’s
and total spin vectors: l = (S1 − S2)/(S1 + S2) and s = (S1 +
S2)/(S1 + S2) (see Fig. 2). We also assume that |s| � |l |,
which is true in ferrimagnets with antiferromagnetically or-
dered but unequal sublattices near a compensation point,
i.e., S1/S2 ∼ 1. Introducing a spherical coordinate system,

x̂
ŷ

ẑ

S1

S1 + S2
S2

S1 + S2
l

φ

θ
p θp

FIG. 2. Schematic representation of Néel’s vector l rotation in
a ferrimagnetic with uncompensated spins S1 and S2 under spin-
transfer torque p.

l=x cos φ sin θ+y sin φ sin θ+z cos θ and p=p cos θpz + pIP
(see Fig. 2), we can rewrite the dynamical equations in a form
[20,21]

−νθ̇ sin θ+ θ̇ φ̇

ωex
sin 2θ+sin2 θ

(
φ̈

ωex
+ αGφ̇ − τz

)
= 0, (2a)

νφ̇ sin θ+ θ̈

ωex
+αGθ̇ − sin 2θ

2

(
φ̇2

ωex
+ ωa

)
= 0, (2b)

where the dot stands for a time derivative, ν = |(S1 −
S2)/(S1 + S2)| � 1 is the spin-uncompensation constant,
h̄ωex = Wex, h̄ωa = Wa, and τz = σ j cos θp. Here, ωa > 0
corresponds to an easy-plane (xy) and ωa < 0 easy-axis
(z) anisotropy. The generalized equations (2) transfer to the
σ -model equation for antiferromagnets if ν = 0 and to the
Landau-Lifshitz equation for ferromagnets, if S2 → 0 and
ωex → ∞.

A steady solution to this system of equations can be
found as φ = ωrt , cos θ = νωrωex/(ω2

r + ωaωex), and ωr =
σ j cos θp/αG. As one can see from this solution, Néel’s
vector l rotates around the STT direction, as in the AFM
case [12,14,15], but for ν �= 0 the azimuthal angle θ �= π/2,
thus Néel’s vector never fully lies in the x, y plane. We can
rewrite the relationship between the angle and the rotational
frequency in a form

cos θ = ν̃
ω̃

ω̃2 + sgn(ωa)
, (3)

where ω̃ = ωr/ωafmr, ωafmr = √
ωex|ωa|, and ν̃ = ν

√
ωex/|ωa|

is the effective uncompensation parameter. We note here that
ν � 1 is the small parameter of the model, however, ν̃ can be
larger than 1.

Equation (3) is the central analytical result of this work: It
connects the precession angle θ with the rotational frequency
ωr . Ultimately, one can calculate the AC resistivities in spin
Hall and spin-valve geometries.

Spin Hall geometry. A steady rotation of Néel’s vector in
the spin Hall geometry (see Fig. 1) generates a spin current
jsp via the spin-pumping mechanism [22],

jsp = h̄gr

2π
l × dl

dt

= h̄gr

2π
ωr[z sin2 θ − sin θ cos θ (x + iy )e−iωr t ]. (4)

Here, we omitted the spin-pumping component coming from
the magnetic order [23], because in the case of interest,
almost-compensated FiM, the net magnetization is very small
comparing to each sublattice magnetization. Using (4) and (3)
one can compute the output spin current jsp as a function of
the electric current j. The x component of the spin current
jsp generates an AC electric field in the Pt layer across the
z direction via the inverse spin Hall effect (ISHE), EAC

z =
ρ⊥ je−iωr t = ρθSH jsp · xe−iωr t , where ρ is Pt resistivity and ρ⊥
is the Hall resistivity (see Fig. 1), which can be computed as

ρ⊥/ρ = θSH
h̄gr

2π

σ

αG
sin θ cos θ, (5)

where σ = θSH/(2eST dm), e is the elementary charge, ST is
the total volume spin density of all sublattices, dm is the
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magnetic material thickness, and θSH is the effective spin Hall
angle [14,24]. This simple expression does not take into ac-
count a finite spin-scattering length in Pt and current shunting
through the FiM layer [25,26]. Importantly, the spin-sublattice
equivalence in the AFM dictates θ = π/2 [15], which results
into an absence of AC spin Hall magnetoresistance (5).

Spin-valve geometry. As we mentioned above, the spin-
polarized current flowing into the FiM can be scattered pre-
dominantly by one species of atoms, which makes the GMR
effect possible in FM/FiM structures shown in Fig. 1(b). In
this case, the AC part of the longitudinal resistivity can be
expressed as

ρ‖/ρ ≈ (�ρ/ρ) sin θ sin θp, (6)

where �ρ is spin-valve efficiency. We again note here that
due to the inversion symmetry the GMR is not possible in
compensated AFMs.

To illustrate the application of our theory we study
a spin Hall geometry for a bilayer of Pt and ferrimag-
netic GdFeCo. For our calculations we use the follow-
ing parameters [19,24,27]: θSH = 0.1, gr = 5 × 1018 m−2,
αG = 10−2, ST = Ms/(geμB) = 5.4 × 1028 m−3, ωex/(2π ) =
3.34 THz, ωa/(2π ) = 12.6 GHz. The spin-uncompensation
parameter in GdFeCo varies with the temperature [27,28] and
mutual Gd/FeCo concentrations [29,30]. Especially, GdFeCo
can be grown in two configurations, easy plane and easy
axis, so here we consider two cases: (i) The easy plane is
perpendicular to the interface (xy), and (ii) the easy axis is
in the interface plane and along the z axis.

Easy plane. For a case of an easy-plane anisotropy, the
ground state of Néel’s vector is θ = π/2 and φ is arbitrary. An
application of STT induces an instability, and Néel’s vector
starts a rotational motion around the z axis with the frequency
ωr = σ j/αG. Since we do not consider in-plane anisotropy,
this process does not have a current threshold [14].

At the same time, Néel’s vector raises above the xy plane.
The dependence of the angle of precession (altitude angle)
θ as a function of the rotational frequency ωr is plotted in
Fig. 3(a), calculated using formula (3) and by numerically
solving (1). The analytical and numerical solutions demon-
strate practically no discrepancy. For small values of STT,
σ j < αGωafmr, the angle of precession approaches zero as
the torque increases, since the uncompensated moment tries
to align with the torque polarization, and this behavior can
be described as FM-like. For large values of torque, σ j >

αGωafmr, the precession angle rebounds and tends back to π/2
as the value of the torque continues to increase. In this regime,
the AFM-like dynamics prevail. Remarkably, that for the
small values of ν̃ the position of the maximum out-of-plane
inclination (minimum θ ) does not depend on ν̃, ωr = ωafmr.
The precession angle reaches a minimum θmin = arccos(ν̃/2).

If the effective uncompensation constant is large, i.e.,
ν̃ > 2 (note that ν is still very small), the precession angle
can reach the zenith for current densities jth

1,ep < j < jth
2,ep,

jth
(1,2),ep = αGωafmr/(2σ )(ν̃ ∓ √

ν̃2 − 4). In this situation, all
dynamics stops and Néel’s vector fully aligns with p, similarly
to the ferromagnetic case. However, by increasing the values
of the STT one can find a point of the AFM-like instability
jth
2,ep after which the dynamics resumes.
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FIG. 3. (a) Altitude angle θ as a function of rotational frequency
ωr for various values of the effective spin-uncompensation parame-
ter ν̃ for the easy-plane anisotropy. Lines—analytical solution (3);
dots—numerical solution of (1). (b) DC to AC Hall resistance as
function of the electric current density in the Pt layer and the
rotational frequency ωr .

The induced Hall resistivity is plotted in Fig. 3(b). Formula
(5) suggests that the maximum output voltage occurs for
θ = π/4, thus it is desirable to have ν̃ ≈ √

2. However, our
calculations show that the value of the Hall resistivity is quite
robust against varying ν̃: A decrease of ν̃ from the “ideal
value” leads of a gradual reduction of ρ⊥, although an increase
of ν̃ leads to reducing the bandwidth where the Hall resistance
is maximized.

Easy axis. In the easy-axis configuration Néel’s vector
has two ground states θ = 0, π . In a compensated AFM
case (ν = 0) these states are fully equivalent. However, the
spin uncompensation removes this degeneracy and leads to a
different behavior of Néel’s vector for opposite directions of
the STT. In contrast with the AFM and FM cases, two types
of instabilities may exist. One type of instability leads to a
FM-like 180◦ revolution (switching) of Néel’s vector from one
static equilibrium to another. Another type of instability leads
to a steady AFM-like rotation of Néel’s vector.

Analyzing (2) we find the thresholds of these instabilities,

jth
± = αGωafmr

2σ
(±

√
4 + ν̃2 + lzν̃). (7)

The dependence of the azimuthal angle for different regimes
for the ground state lz = −1 is illustrated in Fig. 4(a). Under
a large negative current density j < jth

− , Néel’s vector experi-
ences an stationary conical precession with angle θ defined by
(3). In contrast, if the current density is jth

+ < j < − jth
− , Néel’s

vector switches its ground-state orientation from lz = −1 to
lz = 1. Further, if the current density overcomes j > − jth

− ,
Néel’s vector starts a precessional motion again.
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FIG. 4. (a) Equilibrium values of the altitude angle θ as a func-
tion of the rotational frequency ωr for an initial state lz = −1 and the
easy-axis anisotropy. Lines—analytical solution; dots—numerical
solution of (1). Hatching denotes the region of current densities
for which the ground state lz = −1 is stable, calculated from (7).
To get the same diagram for lz = 1 one should apply ωr → −ωr

and θ → π − θ (b) DC to AC Hall resistance as function of the
electric current density in the Pt layer and the rotational frequency ωr .
(c) Phase diagram of instabilities in an easy-axis ferrimagnet under
spin-transfer torques as a function of the spin uncompensation and
the current density for the lz = −1 ground state.

The values of threshold current densities strongly depend
on the uncompensation constant. The “phase diagram” of the
switching and generation instabilities is shown in Fig. 4(c).
The spin uncompensation increases the “generation thresh-
old” jth

− and decreases the “switching threshold” jth
+ . There-

fore, for the generation regime, the FiM should be mostly
compensated. However, a small uncompensation is necessary
for the conical precession of Néel’s vector for a nonzero
spin Hall resistance [see Fig. 4(b)]. Thus, for the easy-axis
anisotropy, one should choose a compromise between the gen-
eration threshold current and the bandwidth of the generation.
We also note that for an AFM (ν = 0) the generation threshold
equals | jth

±| = αGσ−1ωafmr, which was found in Refs. [11,15]
for an easy-axis AFM.

In conclusion, we developed a theory of ferrimagnetic
dynamics under a spin-transfer torque. We demonstrated that
the precession of Néel’s vector in ferrimagnets is conical and,
in contrast with the antiferromagnetic case, this precession
generates a nonzero AC spin current. We have shown that in a
case of small noncompensation, it is possible to achieve sub-
THz frequency precession in a typical GdFeCo ferrimagnetic
alloy in both cases of easy-plane and easy-axis anisotropy.
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