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Residual entropy and spin fractionalizations in the mixed-spin Kitaev model
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We investigate the ground-state and finite-temperature properties of the mixed-spin (s, S) Kitaev model. When
one of the spins is a half integer and the other is an integer, we introduce two kinds of local symmetries,
which results in a macroscopic degeneracy in each energy level. Applying the exact diagonalization to several
clusters with (s, S) = (1/2, 1), we confirm the presence of this large degeneracy in the ground states, in contrast
to conventional Kitaev models. By means of the thermal pure quantum state technique, we calculate the
specific heat, entropy, and spin-spin correlations in the system. We find that in the mixed-spin Kitaev model
with (s, S) = (1/2, 1), at least, the double-peak structure appears in the specific heat and the plateau in the
entropy at intermediate temperatures, indicating the existence of spin fractionalization. Deducing the entropy
in the mixed-spin system with s, S � 2 systematically, we clarify that the smaller spin s is responsible for the
thermodynamic properties at higher temperatures.
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The Kitaev model [1] and its related models have at-
tracted much interest in condensed matter physics since the
possibility of direction-dependent Ising interactions has been
proposed in realistic materials [2]. Among them, the low-
temperature properties in candidate materials such as A2IrO3

(A = Na, K) [3–9] and α-RuCl3 [10–14] have been examined
extensively. To clarify the experimental results, the roles
of the Heisenberg interactions [15–17], off-diagonal interac-
tions [18,19], interlayer coupling [20–22], and the spin-orbit
couplings [23] have been theoretically investigated for both
ground-state and finite-temperature properties. One of the
important issues characteristic of the Kitaev models is the
fractionalization of the spin degree of freedom. In the Kitaev
model with S = 1/2 spins, the spins are exactly shown to be
fractionalized into itinerant Majorana fermions and localized
fluxes, which manifest themselves in the ground-state and
thermodynamic properties [24,25]. It has been observed as
half-quantized thermal quantum Hall effects, which is clear
evidence of Majorana quasiparticles fractionalized from quan-
tum spins [14]. Recently, the Kitaev model with larger spins
has theoretically been examined [26–31]. In the spin-S Kitaev
model, the specific heat exhibits a double-peak structure,
and a plateau appears in the temperature dependence of the
entropy [28]. This suggests the existence of fractionalization
even in this generalized Kitaev model. However, it is still
hard to explain how the spin degree of freedom is divided
in generalized Kitaev models beyond the exactly solvable
S = 1/2 case [1,24,25].

The key to understanding “fractionalization” in the spin-S
Kitaev model should be the multiple entropy release phe-
nomenon. Half of the spin entropy ∼ 1

2 ln(2S + 1) in higher
temperatures emerges with a broad peak in the specific heat.
Then, a question arises as to how the plateau structure appears
in the entropy in the Kitaev model composed of multiple kinds
of spins (the mixed-spin Kitaev model). In other words, how
is the many-body state realized in a system with decreasing

temperatures? The extension to mixed-spin models should be
a potential to exhibit an intriguing nature of the ground states.
In fact, a mixed-spin quantum Heisenberg model has been
examined [32–39], and the topological nature of the spins and
lattice plays an important role in stabilizing the nonmagnetic
ground states. Moreover, a mixed-spin Kitaev model can be
realized by replacing transition-metal ions with other ions in
the Kitaev candidate materials. Therefore, it is desired to study
this model to discuss the nature of spin fractionalization in the
Kitaev system.

In this Rapid Communication, we investigate the mixed-
spin Kitaev model, where two distinct spins (s, S) (s < S)
are periodically arranged on a honeycomb lattice (see Fig. 1).
First, we show the existence of Z2 symmetry in each plaque-
tte in the system. In addition, by considering another local
symmetry, we show that macroscopic degeneracy exists in
each energy level when one of the spins is a half integer
and the other an integer. The exact diagonalization (ED) in
the system with (s, S) = ( 1

2 , 1) reveals that the ground state
has a macroscopic degeneracy, which is consistent with the
presence of the two kinds of local symmetries. Using thermal
pure quantum (TPQ) state methods [40,41], we find that, at
least, the double-peak structure appears in the specific heat
and the plateau appears at intermediate temperatures in the
entropy, which are similar to those in the spin-S Kitaev models
[28]. From systematic calculations of mixed-spin systems
with s, S � 2, we clarify that the smaller spin s is responsi-
ble for the high-temperature properties. The deconfinement
picture to explain the “spin fractionalization” in the Kitaev
model is addressed.

We consider the Kitaev model on a honeycomb lattice,
which is given by the following Hamiltonian as

H = −J
∑

〈i, j〉x

sx
i Sx

j − J
∑

〈i, j〉y

sy
i Sy

j − J
∑

〈i, j〉z

sz
i S

z
j, (1)
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FIG. 1. (a) Mixed-spin Kitaev model on a honeycomb lattice.
Solid (open) circles represent spin s (S). Red, blue, and green lines
denote x, y, and z bonds between nearest-neighbor sites, respectively.
(b) Plaquette with sites marked 1–6 is shown for the corresponding
operator Wp defined in Eq. (2).

where sα
i (Sα

i ) is the α (=x, y, z) component of a spin-s(S)
operator at the ith site. J is the exchange constant between
the nearest-neighbor spin pairs 〈i, j〉γ . The model is schemat-
ically shown in Fig. 1(a). We consider here the following local
Hermite operator defined on each plaquette p as

Wp = exp
[
iπ

(
Sx

1 + sy
2 + Sz

3 + sx
4 + Sy

5 + sz
6

) − iπη
]
, (2)

where η = [3(s + S)] is a phase factor. By using the following
relation for the spin operators, eiπSα

Sβe−iπSα = (2δαβ − 1)Sβ ,
we find [H,Wp] = 0 for each plaquette and W 2

p = 1. There-
fore, the mixed-spin Kitaev system has Z2 local symmetry.

It is known that this local Z2 symmetry is important to un-
derstand the ground-state properties in the Kitaev model. We
wish to note that the local operator Wp on a plaquette p com-
mutes with those on all other plaquettes in the spin-S Kitaev
models, while this commutation relation is not always satis-
fied in the present mixed-spin Kitaev model. In fact, we obtain
[Wp,Wq] ∝ [eiπ (sx

i +Sy
j ), eiπ (sy

i +Sx
j )] ∝ sin [π (sy

i − Sx
j )] when the

plaquettes p and q share the same z bond 〈i j〉z. This means that
the local operator does not commute with the adjacent ones in
the mixed-spin Kitaev model with one of the spins being a half
integer and the other an integer. Instead, we introduce another
local symmetry specific in this case. When either s or S is a
half integer and the other is an integer, the Hilbert space is
divided into subspaces specified by the set of the eigenvalues
wp (= ±1) of the Np (�N/6) local operators Wp defined on
the plaquettes p ∈ P, where P is a set of plaquettes whose
corners are not shared with each other. Now, we assume the
presence of the local operator Rp on a plaquette p (∈P) so as to
satisfy the conditions R2

p = 1 and the following commutation
relations [H, Rp] = 0, [Wp, Rq] = 0 (p �= q), and {Wp, Rp} =
0. In the case that half-integer and integer spins are mixed,
such an operator can be introduced so that the spins located
on its corners are inverted as S2i−1 → −S2i−1, s2i → −s2i

(i = 1, 2, 3) and the signs of the six exchange constants are
inverted on the bonds connecting between the plaquette p

TABLE I. Ground-state energy Eg and its degeneracy Nd in the
mixed-spin (s, S) Kitaev models with the 12-site clusters.

N = 12a N = 12b

s S Eg/JN Nd Eg/JN Nd

1/2 1/2 −0.20417 4 −0.21102 1
1/2 1 −0.33533 8 −0.34235 8
1/2 3/2 −0.47208 4 −0.47389 1
1/2 2 −0.60214 8 −0.60260 8
1 1 −0.66487 1 −0.67421 1
1 3/2 −0.92855 8 −0.93437 8
1 2 −1.19271 1 −1.19567 1
3/2 3/2 −1.37169 4 −1.38840 1
3/2 2 −1.76901 8 −1.77691 8
2 2 −2.33449 1 −2.35306 1

and its outside sites, shown as the dashed lines in Fig. 1(b).
When a wave function for the energy level E is given by
the set of {wp} as |ψ〉 = |ψ ; {w1,w2, . . . ,wp, . . .}〉, we ob-
tain H|ψ ′〉 = E |ψ ′〉 with the wave function |ψ ′〉 = Rp|ψ〉 =
|ψ ; {w1,w2, . . . ,−wp, . . .}〉. Since the operators Rp for arbi-
trary plaquettes in P generate degenerate states, the presence
of Rp results in, at least, 2N/6-fold degenerate ground states.

This qualitative difference in the spin magnitudes s and
S can be confirmed in the small clusters. By using the ED
method, we obtain ground-state properties in the 12-site sys-
tems, as shown in Table I. As for the ground-state degeneracy,
the mixed-spin systems are naively expected to be divided
into three groups. When both spins s and S are integers,
the ground state is always a singlet. In the half-integer case,
the fourfold degenerate ground state is realized in the N =
12a system, while the singlet ground state is realized in the
N = 12b system. This feature is essentially the same as the
ground-state properties in the S = 1/2 Kitaev model, where
the ground-state degeneracy depends on the topology in the
boundary condition. By contrast, the eightfold degenerate
state is realized in the system with one of the spins being a half
integer and the other an integer, which suggests macroscopic
degeneracy in the thermodynamic limit.

To confirm this, we focus on the mixed-spin system with
(s, S) = (1/2, 1). By using the ED method, we obtain the
ground-state energies for several clusters up to 24 sites [see
Fig. 1(a)]. The obtained results are shown in Table II. It
is clarified that a finite-size effect slightly appears in the

TABLE II. Ground-state profile for several clusters in the Kitaev
model with (s, S) = (1/2, 1). Np is the number of plaquettes, where
the local operator Wp is diagonal in the basis set. Nd is the degeneracy
in the ground state.

N Np Eg/JN 	/J Nd N Np Eg/JN 	/J Nd

12a 1 −0.33981 0.0071 8 20a 2 −0.33550 0.0013 20
12b 2 −0.34235 0.0024 8 20b 3 −0.34210 0.0041 32
16a 2 −0.33543 0.0002 20 22 2 −0.33531 0.0016 20
16b 2 −0.33895 0.0019 16 24a 4 −0.33525 0.0031 64
18a 3 −0.33533 0.0018 8 24b 4 −0.33511 0.0010 64
18b 2 −0.33537 0.0015 40
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ground-state energy, and its value is deduced as Eg/JN =
−0.335. We also find that the ground state is Nd/2Np-fold
degenerate in each subspace and its energy is identical in
all subspaces except for the N = 18a system [42]. The large
ground-state degeneracy Nd � 2N/6 is consistent with the
above conclusion. We also find that the first excitation energy
	 is much smaller than the exchange constant J , as shown
in Table II. These imply the existence of multiple low-energy
states in the system.

Next, we consider thermodynamic properties in the Kitaev
model. It is known that there exist two energy scales in
the S = 1/2 Kitaev model [1], which clearly appear as a
double-peak structure in the specific heat and a plateau in
the entropy [24,25]. Similar behavior has been reported in
the spin-S Kitaev model [28]. These suggest the existence of
fractionalization in the generalized spin-S Kitaev model. An
important point is that the degrees of freedom for the high-
energy part depend on the magnitude of spins ∼(2S + 1)N/2.
On the other hand, in the mixed-spin case, it is unclear which
spin is responsible for the high-temperature properties.

Here, we calculate thermodynamic quantities for 12-site
clusters, by diagonalizing the corresponding Hamiltonian.
Furthermore, we apply the TPQ state method [40,41] to larger
clusters. In this calculation, the thermodynamic quantities
are deduced by the statistical average of the results obtained
from at least 25 independent TPQ states. Here, we calcu-
late the specific heat C(T ) = dE (T )/dT , entropy S (T ) =
S∞ − ∫ ∞

T C(T ′)/T ′dT ′, and the nearest-neighbor spin-spin
correlation on the α bond CS (T ) = 〈sα

i Sα
j 〉 = −2E (T )/(3J ),

where S∞ = 1
2 ln(2s + 1)(2S + 1) and E (T ) is the internal

energy per site.
The results for the mixed-spin systems with (s, S) =

(1/2, 1) are shown in Fig. 2. We clearly find the multiple-
peak structure in the specific heat. Note that finite-size effects
appear only at low temperatures. Therefore, our TPQ results
for the 24 sites appropriately capture the high-temperature
properties (T � 0.01J) in the thermodynamic limit. Then,
we find the broad peak around TH ∼ 0.6J , which is clearly
separated by the structure at low temperatures (T < 0.01J).
Now, we focus on the corresponding entropy, which is shown
in Fig. 2(b). This indicates that, by decreasing temperature,
the entropy monotonically decreases and the plateau structure
is found around T/J ∼ 0.1. The released entropy is ∼ 1

2 ln 2,
which is related to the smaller spin (s = 1/2). Therefore,
multiple temperature scales do not appear at high temper-
atures although the system is composed of two kinds of
spins (s, S). However, it does not imply that only smaller
spins are frozen and larger spins remain paramagnetic at the
temperature since the spin-spin correlations develop around
T ∼ TH and a quantum many-body spin state is formed,
as shown in Fig. 2(c). We have also confirmed that local
magnetic moments do not appear even in a wave function
constructed by the superposition of the ground states with
different configurations of {wp}.

By contrast, the value 1
2 ln 2 reminds us of the high-

temperature feature for itinerant Majorana fermions in the
spin-1/2 Kitaev model [24,25]. Then, one expects that, in the
mixed-spin (s, S) Kitaev model, higher-temperature proper-
ties are described by the smaller spin-s Kitaev model, where

FIG. 2. (a) Specific heat, (b) entropy, and (c) spin-spin corre-
lation as a function of temperatures. Shaded areas stand for the
standard deviation of the results obtained from the TPQ states.

degrees of freedom ∼(2s + 1)1/2 are frozen at each site [28].
In this case, a peak structure appears in the specific heat and
the plateau structure at ∼S∞ − ln(2s + 1)/2 in the entropy.
These interesting properties at higher temperatures will be
examined systematically. A further decrease of temperatures
decreases the entropy and finally S ∼ S∞ − ln 2 at lower
temperatures, as shown in Fig. 2(b). This may suggest that
thermodynamic properties in this mixed-spin Kitaev model
with (s, S) = (1/2, 1) are dominated by the degrees of free-
dom (2s + 1)N corresponding to the smaller spin s for all
sites including the larger spins, which are fractionalized into
two kinds of quasiparticles. In this case, the existence of
the remaining entropy S ∼ S∞ − ln 2 should be consistent
with macroscopic degeneracy in the ground state as discussed
before. However, our TPQ data have a large system size
dependence at low temperatures, and conclusive results could
not be obtained. Therefore, a systematic analysis is desired to
clarify the nature of the low-temperature properties.

To clarify the role of smaller spins in the mixed-spin Kitaev
models, we calculate the entropy in systems with s, S � 2 and
N = 12a by means of the TPQ state methods. The results are
shown in Fig. 3. The plateau structure is clearly observed in
the curve of the entropy in the mixed-spin Kitaev models. In
addition, we find that the plateau is located around S = S∞ −
1
2 ln(2s + 1), as expected above.

This may be explained by the deconfined-spin picture in
the Kitaev model. In this picture, each spin S is divided into
two kinds of quasiparticles with distinct energy scales: 2S
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(a)

(b)

FIG. 3. (a) S − S∞ in the generalized (s, S) Kitaev model at
higher temperatures. Squares with lines represent data for the S =
1/2 Kitaev model obtained from the Monte Carlo simulations
[24,25]. Circles, triangles, and diamonds with lines represent the
TPQ data for the S = 1, 3/2, and 2 cases [28]. (b) (S − S∞)/ ln(2s +
1) and Cs/(sS) as a function of T/JS.

L-quasiparticles and 2S H-quasiparticles, which are dominant
at lower and higher temperatures, respectively. In the exactly
solvable S = 1/2 Kitaev model, H- (L-)quasiparticles are
identical to itinerant Majorana fermions (localized fluxes).
In addition, this should explain the double-peak structure in
the specific heat of the spin-S Kitaev model, each of which
corresponds to the half-entropy release [28]. In our mixed-
spin (s, S) system, the entropy release at higher temperatures
can be interpreted as follows: The thermodynamic properties
are governed by the smaller spin s and the portion of the larger
spin S corresponding to the spin-s degree of freedom. Namely,
the dominant degree of freedom is interpreted as a spin s
on both smaller- and larger-spin sites. This “effective” spin
s for each site is fractionalized into H- and L-quasiparticles,
where the former exhibit energy scales of ∼J with the two-
dimensional network and the latter possess a smaller energy

scale than J . On the other hand, the remaining degree of
freedom at the site with larger spin S is localized and does not
contribute to the thermodynamic properties. This is expected
from Fig. 2(b), but the low-temperature entropy release is
difficult to be discussed in the larger spin cases as shown in
Fig. 3(a). Therefore, the low-temperature properties remain as
a future issue.

Interestingly, the temperature T ∗ characteristic of the
plateau in the entropy, which may be defined such that
S (T ∗) = S∞ − 1

2 ln(2s + 1), depends on the magnitude of the
larger spin. In fact, we find that T ∗ should be scaled by the
larger spin T ∗ ∼ JS, which is shown in Fig. 3(b). Namely, the
peak temperature in the specific heat TH ∼ JS (not shown).
This is in contrast to the conventional temperature scale
T ∗∗ ∼ J

√
s(s + 1)S(S + 1), which is derived from the high-

temperature expansion. This discrepancy is common to the
spin-S Kitaev model [28], implying that quantum fluctuations
are essential even in this temperature range in the mixed-spin
Kitaev models. As for the spin-spin correlation, by decreasing
temperatures, it develops around T/JS ∼ 1 and is almost
saturated around T ∗, as shown in Fig. 3(b). This means that
the many-body spin state is indeed realized at the temperature.
We also find that at low temperatures, the normalized spin-
spin correlation Cs/(sS) ∼ 0.4 is less than unity when s and
S are large. This suggests that the quantum spin-liquid state
is, in general, realized in the generalized mixed-spin Kitaev
model, which is consistent with the presence of magnetic
fluctuations even in the classical limit [27].

In summary, we have studied the mixed-spin Kitaev model.
First, we have clarified the existence of the local Z2 symmetry
at each plaquette. Using the TPQ state methods for several
clusters, we have found a double-peak structure in the specific
heat and plateau in the entropy, which suggests the existence
of fractionalization in the mixed-spin system. Deducing the
entropy in the mixed-spin system with s, S � 2 systemati-
cally, we have clarified that the smaller spin plays a crucial
role in the thermodynamic properties at higher temperatures.
We expect that the present mixed-spin Kitaev systems are
realizable in real materials by substituting the magnetic ions in
the Kitaev candidate materials with other magnetic ions with
larger spins, and therefore the present work should stimulate
material research for mixed-spin Kitaev systems.

Parts of the numerical calculations were performed in the
supercomputing systems in ISSP, the University of Tokyo.
This work was supported by Grant-in-Aid for Scientific Re-
search from JSPS, KAKENHI Grants No. JP18K04678, No.
JP17K05536 (A.K.), No. JP16K17747, No. JP16H02206, and
No. JP18H04223 (J.N.).
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