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Effect of critical fluctuations on the spin transport in liquid 3He
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The contribution of pair fluctuations to the spin current in liquid 3He in isotropic aerogel near the critical
temperature of transition to the superfluid state is calculated.
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I. INTRODUCTION

The superfluid state of liquid 3He is formed by means
of the Cooper pairing with spin and orbital angular mo-
mentum equal to 1 [1]. Investigation of superfluid phases
in high porosity aerogel allows one to study the influence
of impurities on superfluidity with p pairing [2,3]. In the
normal state, the spin-diffusion coefficient of 3He in aerogel
is determined both by elastic and inelastic scattering of 3He
quasiparticles. At low temperatures the collisions between
the Fermi-liquid quasiparticles induce negligibly small cor-
rection to the spin diffusion due to the scattering on aerogel
strands [4,5]. The field theoretical approach to the calculation
of the spin-diffusion coefficient in the normal 3He in an
anisotropic aerogel has been developed in Ref. [6] in analogy
with the calculation of electric current in an isotropic metal
with randomly distributed impurities performed in Ref. [7].
Close to the superfluid transition temperature in line with
regular spin transport limited by scattering of quasiparticles
on the aerogel there is an additional mechanism determined
by the Cooper pair fluctuations accelerating spin transport
as the critical point is neared. The effects of fluctuations
on the thermodynamics and kinetics of a superconductor near
the transition point are well known [8]. The theoretical studies
of these phenomena have acquired a firm basis since the
publication of the seminal paper by Aslamazov and Larkin,
where the field theoretical approach to the problem has been
developed [9]. The corresponding theory in application to
d-wave pairing in layered metals has been developed in two
papers [10]. The low-temperature (quantum) limit has been
considered in Ref. [11]. In the present paper, I apply this
approach to calculation of the contribution of pair fluctuations
to the spin current density above the critical temperature in
normal 3He in isotropic aerogel.

To make easy comparison with calculation of paracon-
ductivity in superconductors with s pairing [9], I begin with
definition of the fluctuating propagator for p-wave superfluid.
An electric current presents a response to the em vector-
potential. Similarly a spin current is given by the response to
the nonuniform rotation of the spin space. This allows one to
perform the derivation of para spin diffusion in liquid 3He in
the same spirit as paraconductivity of a metal near transition
to the s-wave superconducting state.

II. SPIN DIFFUSION OF A FLUCTUATING PAIR

The order parameter of superfluid phases of 3He is given
[1] by the complex 3 × 3 matrix Aαi, where α and i are the
indices numerating the Cooper pair wave-function projections
on spin and orbital axes, respectively. The second-order term
in the Landau free-energy density is

F (2) =
{

1

3g
δrs−T

∑
n

∫
d3 p

(2π )3
Gp,εn G−p,−εn p̂r�

s
p,εn

}
A�

αrAαs,

(1)

where g is the constant of p-wave triplet pairing and p̂r is the
r component of the momentum unit vector p/|p|. Here,

Gp,εn = 1

iε̃n − ξp
(2)

is the normal-state quasiparticle Green’s function and �s
p,εn

is the vertex part. ξp = εp − μ is the quasiparticle energy
counted from the chemical potential, εn = πT (2n + 1) are the
fermion Matsubara frequencies, ε̃n = εn + 1

2τ
sgnεn, and τ is

the mean free time scattering of quasiparticles in an isotropic
aerogel. The Planck constant h̄ was everywhere set equal to 1.
Correspondingly the matrix of the fluctuation propagator is

Lrs(q,�k )

=
(

1

3g
δrs−T

∑
n

∫
d3 p

(2π )3
Gp,εn G−p+q,�k−εn p̂r�

s
p,q,εn

)−1

,

(3)

where �k = 2πT k are the boson Matsubara frequencies.
As it was pointed out in Ref. [9] the largest contribution

to the conductivity of a fluctuating pair is given by the
diagram shown in Fig. 1, where wavy lines are the fluctuating
propagators, the straight lines are the Green’s functions, and
the shaded triangles are the vertex parts. In contrast to s
pairing, due to momentum dependent pairing interaction, all
the vertices are not scalar but vector functions. To find the
corresponding analytic expression one must define the spin
current.

The spin current in neutral Fermi liquid can be found
[12,13] as a response to the gradient of the angle of rotation
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FIG. 1. The Aslamazov-Larkin diagram.

of the spin space ωi = ∇iθ:

ji = − δH

δωi
, (4)

where

H = 1

2m

∫
d3r

(
Dαλ

i ψλ

)†
Dαμ

i ψμ + Hint, (5)

Dαβ
i = −iδαβ∇i + 1

2
σαβωi, (6)

σ = (σx, σy, σz ) are the Pauli matrices, and Hint includes the
Fermi-liquid interaction and the interaction with impurities.
The response to the gauge field ωi is calculated [6] in analogy
with the response to the usual vector potential Ai [7]. The
contribution of pair fluctuations to the spin current density
above the critical temperature corresponding to the diagram
shown in Fig. 1 is

ji(ων ) =
∫

d3q

(2π )3
T

∑
k

Blr
i,αβ (q,�k, ων )Lrs(q,�k )

× [
Bst

j,βα (q,�k, ων ) · ω j
]
Ltl (q,�k + ων ). (7)

Here, ων = 2πT ν are the boson Matsubara frequencies and
Lrs(q,�k ) is the fluctuation propagator. The triangle block

Blr
i,αβ (q,�k, ων )

= T
∑

n

∫
d3 p

(2π )3
viσαβ�l

p,q,εn+ων,�k−εn
�r�

p,q,εn,�k−εn

× Gp,εn+ων
Gp,εn Gq−p,�k−εn (8)

is expressed through three Green’s functions (2) and the
impurity vertex functions �l

q,εn,�k−εn
and �r�

q,εn,�k−εn
. The sign

of the complex conjugation in the second vertex function in
Eq. (8) corresponds to the opposite direction of the arrows
of the Green’s-function lines in Fig. 1 with respect to the
first vertex (time inversion). The impurity vertex functions are
determined by the integral equation

�l
p,q,εn,�k−εn

= p̂l + 1

2πNoτ

∫
d3k

(2π )3

× Gp,εn G−p+q,�k−εn�
l
p,q,εn,�k−εn

. (9)

Near critical temperature the main frequency dependence
arises from the fluctuation propagators L having the pole
structure. Due to this reason one can neglect the frequency
dependence of the blocks B and the vertices �. In the integral
Eq. (7) are essentially only small values of q. Then, the
solution Eq. (9) is

�l
p,q,εn

= p̂l + iqlvF sgn ε̃n

6|ε̃n|(1 − 2|ε̃n|τ )
+ q̂lO(q3), (10)

where vF is the Fermi velocity. The integral of the product
of three Green’s functions in the linear with respect to wave
vector q approximation is

N0

∫
dξGp,εn Gp,εn Gq−p,−εn

= −πN0

2

(
sgn ε̃n

ε̃2
n

+ (q · v)

|ε̃n|3
)

, (11)

where N0 is the density of states per one spin projection.
Substituting Eqs. (10) and (11) in Eq. (8) and performing the
integration over angles we obtain

Blr
i,αβ = − π

15
N0v

2
F (δil qr + δirql + δlrqi )σαβT

∑
n�0

1

ε̃3
n

= 1

60

N0v
2
F

(2πT )2
ψ ′′

(
1

2
+ 1

4πT τ

)
(δil qr + δirql+δlrqi )σαβ,

(12)

where ψ ′′(z) is the second derivative of the digamma function.
The matrix of the fluctuation propagator is given by

Eq. (3). The off-diagonal elements of this matrix can be
omitted because they are proportional to higher-order terms in
components of vector q: (δrs + bqrqs)−1 = δrs − bqrqs + . . . .
Performing integration over momenta in Eq. (3) we obtain at
small q and �

Lrs(q,�k ) = 3

N0

δrs

ε + a� + ξ 2q2
. (13)

Here,

ε = ln
T

Tc
. (14)

The critical temperature Tc is suppressed with respect to the
temperature Tc0 of the superfluid transition in pure helium and
determined from the equation

ln
Tc0

Tc
= ψ

(
1

2
+ 1

4πTcτ

)
− ψ

(
1

2

)
. (15)

The coefficient

a = πT

(2πT )2
ψ ′

(
1

2
+ 1

4πT τ

)

=
{ π

8T , 4πT τ � 1, |�| � 4πT,

τ, 4πT τ � 1, |�|τ � 1.
(16)

The first line here corresponds to the limit of weak scat-
tering when the critical temperature is slightly suppressed
by impurities (Tc0 − Tc)/Tc0 ≈ (π/8Tc0τ ) � 1 and the typi-
cal frequencies of fluctuations |�| ≈ (T − Tc) � T . This is
the quasistatic or classic fluctuation region. With respect to
the second line one must remark that impurities completely
suppress superfluidity at τc = γ

πTc0
, where γ ≈ 1.8 is the

Euler constant. Hence, 4πT τ >
4γ T
Tc0

and for fulfillment of
inequality 4πT τ � 1 the temperature must be at least 1/4γ

times lower than the critical temperature in pure helium. Still,
at such low temperatures there are two different situations.
First, this is again the region of classic fluctuations |�|τ �
4πT τ � 1. The second is the region of quantum fluctuations
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4πT τ � |�|τ � 1 when the frequencies of fluctuations ex-
ceed the temperature.

The coefficient

ξ 2 = − 1

40

v2
F

(2πT )2
ψ ′′

(
1

2
+ 1

4πT τ

)

=
{

7ζ (3)
20

v2
F

(2πT )2 , 4πT τ � 1,
1

10v2
F τ 2, 4πT τ � 1.

(17)

It is convenient to rewrite these expressions in terms of zero-
temperature coherence length ξ0 = vF

2πTc
. Hence, at tempera-

tures near Tc

ξ �
{

0.65ξ0, 4πT τ � 1,

2Tcτξ0, 4πT τ � 1.
(18)

Thus, unlike the case of s-wave pairing [8], both in the clean
case and in the dirty enough Tcτ ≈ 1 case, ξ ≈ ξ0.

Using this notation Eq. (12) acquires the following form:

Blr
i,αβ = − 2

3 N0ξ
2(δil qr + δirql + δlrqi )σαβ. (19)

Substituting Eqs. (13) and (19) into Eq. (7) and making use
of the analytical continuation from the discrete frequencies to
the complex plane [9] we obtain the linear in frequency term
in the spin current:

ji(ω) = − ω

4π i

(
2

3
N0ξ

2

)2 ∫
d3q

(2π )3

×
∫

d�
(LR − LA)2

2T sinh2 �
2T

(9qiq j + 2q2δi j )ω j, (20)

where

LR/A(q,�k ) = 3

N0

1

ε ∓ ia� + ξ 2q2
(21)

are retarded and advanced fluctuation propagators. Perform-
ing the integration in the classic (static) (T − Tc) � T limit
we have

ji(ω) = iω
45

16ξ
√

ε
ωi. (22)

The quantum limit can be reached at low temperatures
when ε � T τ and the corresponding current expression is

ji(ω) = iω
5(τT )2

ξε3/2
ωi. (23)

Still, the temperature is limited from below by the critical
temperature Tc and the critical fluctuations in close vicinity
of critical temperature are always classical ε � T τ , to the
displeasure of fans of quantum phase transitions.

Making use the Larmor theorem

γ H = ∂θ

∂t
= −iωθ, (24)

where γ = 2μ is the gyromagnetic ratio and μ is the magnetic
moment of 3He atoms, one can rewrite Eq. (22) for the
fluctuation current as

jfl
i = − 45

8ξ
√

ε
μ∇iH. (25)

III. CONCLUSION

In conclusion it is reasonable to compare the spin current
due to the Cooper pair fluctuations with the diffusion current
[6] determined by impurity scattering. The latter in dimen-
sional units is

jdif
i = −h̄N0Dμ∇iH. (26)

Here, D = 1
3τv2

F is the spin-diffusion coefficient. Thus, the
ratio of two currents is

jfl

jdif
= 45

8h̄ξN0D

1√
ε
. (27)

In dense aerogel the diffusion coefficient can be small enough,
D ≈ 10−3 cm2/s [5]; the coherence length at ambient pressure
[4] is ξ0 = 2 × 10−6 cm; and the density of states at ambient
pressure [14] is N0 ≈ 0.5 (erg cm3)−1. Thus,

jfl

jdif
≈ 5 × 10−2 1√

ε
. (28)

With respect to experimental detection of fluctuation spin
current this result is not encouraging. However, it will be
perhaps useful for exact determination of the temperature of
transition at the measurement of the coefficient of diffusion
near the critical temperature.

The temperature dependence of spin-diffusion current in
3He due to pair fluctuations (25) turns out to be the same
as the temperature dependence of paraconductivity of a nor-
mal three-dimensional metal near transition to the s-wave
superconducting state [9]. This is not astonishing because
the structure of the theory is similar despite some particular
features typical for p-wave pairing. The temperature depen-
dence of the fluctuation spin-diffusion current in the quantum
limit (23) also coincides with the temperature dependence of
paraconductivity in d-wave superconductors in the quantum
limit found in Ref. [11].
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