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Evolution of topological superconductivity by orbital-selective confinement in oxide nanowires

C. A. Perroni and V. Cataudella
CNR-SPIN and Physics Department “Ettore Pancini,” Università degli Studi di Napoli Federico II, Complesso Universitario Monte S.

Angelo, Via Cintia, I-80126 Napoli, Italy

M. Salluzzo
CNR-SPIN, Complesso Universitario Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy

M. Cuoco and R. Citro
CNR-SPIN and Physics Department “E. R. Caianiello,” Università degli Studi di Salerno, Via Giovanni Paolo II, 132,

I-84084 Fisciano (Sa), Italy

(Received 4 June 2019; revised manuscript received 10 September 2019; published 20 September 2019)

We determine the optimal conditions to achieve topological superconducting phases having spin-singlet
pairing for a planar nanowire with a finite lateral width in the presence of an in-plane external magnetic field.
We employ a microscopic description that is based on a three-band electronic model including both the atomic
spin-orbit coupling and the inversion asymmetric potential at the interface between oxide band-gap insulators.
We consider amplitudes of the pairing gap, spin-orbit interactions, and electronic parameters that are directly
applicable to nanowires of LaAlO3-SrTiO3. The lateral confinement introduces a splitting of the d orbitals that
alters the orbital energy hierarchy and significantly affects the electron filling dependence of the topological
phase diagram. Due to the orbital directionality of the t2g states, we find that in the regime of strong confinement
the onset of topological phases is pinned at electron filling where the quasiflat heavy bands start to get populated.
The increase of the nanowire thickness leads to a changeover from a sparse-to-dense distribution of topologically
nontrivial domains which occurs at the crossover associated with the orbital population inversion. These findings
are corroborated by a detailed analysis of the most favorable topological superconducting phases in the electron
doping–magnetic field plane highlighting the role of orbital-selective confinement.
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I. INTRODUCTION

In the last years there has been a growing interest in
topological superconducting phases both for fundamental
perspectives in theoretical physics and the potential impact
for achieving novel devices towards emergent technologies
[1–4]. Topological superconductors host new states of mat-
ter exhibiting topological order and topologically nontrivial
structures of electron pairing. Remarkably, boundaries or de-
fects of topological superconductors can lead to zero-energy
Majorana modes, whose formation and stability is ensured by
the topological nontrivial character of the ground state in the
bulk [5]. A key model for capturing the fundamental features
of topological superconductors is represented by the spinless
p-wave Kitaev model [4–6]. Apart from the nonstandard
physical phenomena arising in material platforms that host
Majorana zero modes, due to their non-Abelian character,
these materials have been indicated as fundamental building
blocks for designing systems in the field of topological quan-
tum computation [6,7].

Seminal theoretical proposals mostly focused on hybrid
superconductor-semiconductor nanowire junctions as promis-
ing platforms to achieve topological superconductors and
design Majorana bound states [8–11]. Signatures of topolog-
ical superconducting phases have been then experimentally

investigated in these heterostructures, using InSb and InAs
semiconductors [12–16]. Concerning the design of Majorana
states, there are three key elements which are recognized
to be fundamentally relevant. A first crucial ingredient to
generate topological superconductivity is the use of noncen-
trosymmetric materials with large Rashba spin-orbit coupling,
which results in the removal of the spin degeneracy of the
electronic bands in momentum space. The second ingredient
is the presence of a time-reversal symmetry breaking magnetic
field, which allows one to describe the system by effective
spinless degrees of freedom. The third one is superconducting
pairing acting on those electronic states. For instance, super-
conducting phases can be obtained by the proximity with a
standard spin-singlet superconductor. The pairing interaction
binds electrons which acquire a gap at all the momenta in the
reciprocal space. The transition from a trivial to topological
superconducting state then typically occurs at a finite ampli-
tude of the applied magnetic field.

Majorana edge modes have been predicted for nanowires
that are proximity coupled with an s-wave superconductor
not only in the case of a single electronic band, but also
for multiple subbands due to the lateral confinement of the
nanowire [17–21] and networks [22]. Indeed, in these sys-
tems, a nontrivial topological state can be realized when an
odd number of subbands is occupied (corresponding to a odd
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number of Fermi point pairs). Moreover, the occupation of
multiple bands may enhance the stability of superconducting
phases against disorder by increasing the carrier density.
However, the interband mixing due to the Rashba spin-orbit
term hybridizes Majorana pairs originating from different
transverse modes [23], which is against the stability of the
topological phase.

Additional materials and platforms have been further con-
sidered with the aim to search for topological superconductiv-
ity (TSC). One strategy has been to introduce a dopant into
a topological insulator [24], or to exploit the surface states
of iron-based superconductors [25]. Recently, the quasi-two-
dimensional electron gases (q2DEGs) formed at the interface
between LaAlO3 and SrTiO3 (LAO/STO) [26] have been the-
oretically proposed as possible candidates for the realization
of topological superconducting phases in two-dimensional
[27–30] and effective quasi-one-dimensional models [31–33].
Oxide q2DEGs, indeed, are characterized by the simultaneous
presence of strong spin-orbit coupling [34] and superconduc-
tivity [35], both widely tunable by an electric field effect
[34,36], while 2D magnetism, coexisting with superconduc-
tivity [37,38], can be induced by opportune atomic engineer-
ing of the heterostructures [39].

In this paper, we aim to investigate the emergence of topo-
logical superconducting phases in oxide nanowires with vari-
able lateral widths and different finite particle densities. We
employ a microscopic description that is well suited for the
low-energy electronic states of the Ti t2g orbitals close to the
Fermi level and includes the atomic spin-orbit and inversion
asymmetric potential associated with an orbital Rashba inter-
action. In addition, we consider a magnetic field lying into the
plane of the LAO/STO interface as a source of time-reversal
symmetry breaking and depairing, assuming conventional
intraorbital spin-singlet s-wave superconductivity. Due to
the presence of multibands and their reciprocal coupling, the
electronic spectrum is more intricate than that obtained in the
presence of spin Rashba coupling for quasi-one-dimensional
nanowires [23,40]. Indeed, we focus on the role played by the
lateral confinement emphasizing the distinctive marks of the
orbital degrees of freedom associated with the Ti t2g orbitals.
The finite lateral size of the nanowire introduces a splitting
of the d orbitals that alters the orbital energy hierarchy and
significantly affects the electron filling dependence of the
topological phase diagram. Due to the orbital directionality of
the t2g states, we find that in the regime of strong confinement
the onset of topological phases is pinned close to electron fill-
ing where the quasiflat (yz) heavy bands start to get populated.
The increase of the nanowire thickness, then, is able to drive
a changeover from the sparse-to-dense distribution of topo-
logically nontrivial domains which occurs at the crossover
associated with the orbital population inversion. These find-
ings are achieved by a detailed analysis of the most favorable
topological superconducting phases based on a self-consistent
computation of the order parameter within the nanowire in the
parameter space set by the electron filling and the amplitude of
the magnetic field. The investigation highlights the emergent
role of orbital-selective confinement in a microscopic regime
with amplitudes of the pairing gap, spin-orbit interactions, and
electronic parameters that are directly applicable to nanowires
of LAO/STO.

The paper is divided as follows. In Sec. II, the model
Hamiltonian for nanowires at the LAO/STO interface is in-
troduced and the methodology for the determination of the
topologically stable superconducting phase is presented. In
Sec. III, we provide a comparative study of the electronic
structure of the nanowire for different lateral confinements
and we present the most relevant aspects of the topologi-
cal phase diagram. Section IV is devoted to a discussion
and concluding remarks by also dealing with the compar-
ison between the properties of LAO/STO nanowires and
hybrid superconductor-semiconductor heterostructures em-
ploying semiconducting nanowires such as InSb and InAs.
Additional results of the topological phase diagram for the
single-chain nanowire are reported in Appendix A, while
details about the calculation of the topological invariant are
in Appendix B.

II. MODEL AND METHODOLOGY

To introduce the model of the examined nanowires, we start
by considering a confined two-dimensional (2D) electronic
system with broken out-of-plane inversion symmetry and
having only the t2g orbitals close to the Fermi level. Due to the
weak octahedral distortions, the transition metal (TM)-oxygen
(O) bond angle is almost ideal and thus the three t2g bands are
mainly directional and basically decoupled, e.g., an electron in
the dxy orbital can predominantly hop along the y or x direc-
tion through the intermediate px or py orbitals. Similarly, the
dyz and dzx bands are quasi-one-dimensional when considering
a 2D TM-O bonding network. Such a directional character of
the t2g is very relevant when one is also including the effects of
a lateral in-plane confinement as the confining potential acts
in a different way on the three t2g orbitals.

Concerning the inversion asymmetry, we consider micro-
scopic couplings that arise from the out-of-plane oxygen dis-
placements around the TM. Indeed, by breaking the reflection
symmetry with respect to the plane placed in between the TM-
O bond, a mixing of orbitals that are even and odd under such
a transformation is generated. Such crystal distortions are very
important in 2D electron gases forming at the interface of in-
sulating polar and nonpolar oxide materials or on their surface
and they result in the activation of an effective hybridization,
which is odd in space, of dxy and dyz or dzx orbitals along
the y or x directions, respectively. Such a type of interaction
is commonly dubbed orbital Rashba coupling. Indeed, the
inversion symmetry breaking is primarily affecting the orbital
degrees of freedom and then it is the atomic spin orbit that
transfers the inversion asymmetric potential into the spin
sector. The atomic spin-orbit (SO) interaction is then a crucial
term to be included into the electronic description and mixes
the spin-orbital degrees of the t2g states thus competing with
the quenching of the orbital angular momentum due to the
crystal potential. Since we are interested in the consequences
of time-reversal symmetry breaking due to an external mag-
netic field and in the conditions to achieve a topological
nontrivial superconducting phase, the model Hamiltonian is
also including a coupling of electron spin and orbital moments
to the magnetic field.

Thus, the model Hamiltonian, including the t2g hopping
connectivity, the atomic spin-orbit coupling, the inversion
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symmetry breaking term, and the external magnetic field can
be expressed as follows [41–43],

H =
∑

k

D̂(k)†H (k)D̂(k), (1)

H (k) = H0 + HSO + HZ + HM , (2)

where D̂†(k) = [c†
yz↑k, c†

zx↑k, c†
xy↑k, c†

yz↓k, c†
zx↓k, c†

xy↓k] is a vec-
tor whose components are associated with the electron cre-
ation operators for a given spin σ (σ = [↑,↓]), orbital α

(α = [xy, yz, zx]), and momentum k in the Brillouin zone.
In order to write down the various terms of the Hamilto-

nian, it is convenient to introduce the matrices l̂x, l̂y, and l̂z,
which are the projections of the L = 2 angular momentum
operator onto the t2g subspace, i.e.,

l̂x =
⎛
⎝

0 0 0
0 0 i
0 −i 0

⎞
⎠, (3)

l̂y =
⎛
⎝

0 0 −i
0 0 0
i 0 0

⎞
⎠, (4)

l̂z =
⎛
⎝

0 i 0
−i 0 0
0 0 0

⎞
⎠, (5)

assuming {dyz, dzx, dxy} as the orbital basis.
Then, including also the spin degrees of freedom, in the

spin-orbital basis, H0(k) is given by

H0 = ε̂k ⊗ σ̂0,

ε̂k =
⎛
⎝

εyz 0 0
0 εzx 0
0 0 εxy

⎞
⎠,

εyz = 2t1y(1 − cos ky) + 2t2x(1 − cos kx ),

εzx = 2t1x(1 − cos kx ) + 2t2y(1 − cos ky),

εxy = 4t1 − 2t1x cos kx − 2t1y cos ky + �t , (6)

where σ̂0 is the unit matrix in spin space. Here, we assume
that t1x = t1y = t1 and t2x = t2y = t2 are the orbital-dependent
hopping amplitudes. �t denotes the crystal field potential as
due to the symmetry lowering from cubic to tetragonal also
related to inequivalent in-plane and out-of-plane transition
metal–oxygen bond lengths. The symmetry reduction yields
a level splitting between the dxy orbital and dyz/dzx orbitals.
HSO denotes the atomic L · S spin-orbit coupling,

HSO = �SO[l̂x ⊗ σ̂x + l̂y ⊗ σ̂y + l̂z ⊗ σ̂z], (7)

with σ̂i(i = x, y, z) being the Pauli matrix in spin space.
As mentioned above, the breaking of the mirror plane in

between the TM-O bond, due to the out-of-plane oxygen
displacements, yields an inversion symmetry breaking term
HZ (k) of the type

HZ = γ [l̂y ⊗ σ̂0 sin kx − l̂x ⊗ σ̂0 sin ky]. (8)

This contribution gives an interorbital process, due to the
broken inversion symmetry, that mixes dxy and dyz or dzx along
x or y spatial directions.

Finally, we consider the effects of a magnetic field ly-
ing into the plane of the LAO/STO interface. The resulting

Hamiltonian is described by the term HM , which indicates
the coupling of the electron spin and orbital moments to the
magnetic field [44],

HM = Mx[l̂x ⊗ σ̂0 + l̂0 ⊗ σ̂x] + My[l̂y ⊗ σ̂0 + l̂0 ⊗ σ̂y], (9)

with l̂0 being the unit matrix in the orbital space. Therefore,
the magnetization examined in this work is nonlocal and in-
duced only by the external magnetic field. We remark that we
are analyzing the clean limit of the system, hence we are not
considering the coupling of itinerant electrons with magnetic
impurities [31]. Moreover, due to the spin-orbit coupling, the
presence of a magnetization in the spin channel sets also an
orbital polarization. The inclusion of the orbital coupling to
the field is only a correction which can be neglected in the
remaining part of the paper since the spin-orbit coupling is
typically larger than the strength of the applied magnetic field.

Concerning the superconducting pairing, we assume that
the interaction is local, with spin-singlet symmetry and active
only for electrons sharing the same orbital symmetry. Hence,
the superconducting term HP can be expressed as

HP = −U
∑
i,α

niα,↑niα,↓, (10)

where U is the pairing energy, and niα,σ = c†
i,α,σ ciα,σ is the

local spin-density operator for the σ polarization and the α

orbital, at a given position i = (ix, iy) in the square lattice
(with parameter a = 3.9 Å), with ix and iy the corresponding
coordinates along the x and y symmetry axes. Since we are
interested in the spatial profile of the superconducting order
parameter for the case of a nanostrip with a finite lateral
thickness in the xy plane, it is useful to introduce the supercon-
ducting order parameter in the real space. In order to get the
Bogoliubov–de Gennes equations, we then employ the usual
decoupling scheme for the pairing term using a mean-field
approach for the spatial and orbital degrees of freedom,

HP ≈ −
∑
i,α

�i,α[c†
i,α,↑c†

i,α,↓ + ci,α,↓ci,α,↑]

+U
∑
i,α

D2
i,α, (11)

with the pairing amplitude Di,α = 〈ci,α,↓ci,α,↑〉 and the order
parameter �i,α = UDi,α are taken in a gauge such as to have a
real amplitude. Here, 〈A〉 stands for the ground-state average
of any given operator A. The solutions due to this decoupling
correspond to a local s-wave pairing which is considered to
be one of the most favored superconducting instabilities in
the two-dimensional bulk [45–48]. In this paper, we have
used the mean-field Bogoliubov–de Gennes formalism at zero
temperature in the limit of a clean nanowire with infinite
length, therefore we have neglected effects due to phase
fluctuations. It has been shown that phase fluctuations in
single-chain models can dramatically change the properties of
the Majorana edge states [31], hence the mean-field formalism
is expected to be not so approximate to capture at least
qualitatively the topological phase transitions at not negligible
particle densities in the case of not small lateral nanowire
widths (the role of phase fluctuations will be further discussed
in the final section of the paper).
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FIG. 1. Sketch of the nanowire at the LAO/STO interface. The
nanowire length is indicated by Lx , and its width by Ly. The quan-
tities Bx and By indicate the Cartesian components of the in-plane
magnetic field. The red points highlight the Majorana edge modes
characteristic of the topological superconducting phases.

To assess the stability of the superconducting states in
the presence of an applied magnetic field, we solve the
Bogoliubov–de Gennes equations in a self-consistent way by
an iterative scheme of computation until the desired accuracy
is achieved. We point out that, apart from indications arising
through the determination of the topological invariant, the
quantum transition from trivial to topological superconduct-
ing states is also signaled by a rapid decrease of the order
parameter as a function of the magnetic energy (Mx or My).
Considering that in the two-dimensional bulk the order pa-
rameter � is of the order of 0.1 meV, one can derive a lower
bound for the superconducting coherence length ξ ,

ξ � at2
�

� 200a � 80 nm, (12)

which is in good agreement with experimental estimates [38].
Assuming the structure of the model Hamiltonian for the
uniform two-dimensional case, it is straightforward to obtain
the description for a nanowire with finite thickness along one
of the crystal symmetry directions (see Fig. 1 for a sketch of
the nanowire at the LAO/STO interface).

Before starting with the discussion of the results, it is useful
to set the energy scales for the various terms of the Hamilto-
nian taking into account the targeted materials. Concerning
the hopping amplitudes, we assume that t1 = 300 meV and
t2 = 20 meV [38,41,49]. These values in the limit of a small
momentum would lead to a light mass m1, associated with the
hopping t1, that turns out to be smaller than the free-electron
mass me,

m1 = h̄2

2t1a2
� 0.7me, (13)

and a heavy mass m2 corresponding to the hopping
amplitude t2,

m2 = h̄2

2t2a2
� 10me, (14)

with h̄ being the Planck constant.
The energies of the various orbitals in the t2g sector at the

� point are assumed to be split by the crystal field potential
�t that takes into account the lowering of the symmetry from
cubic to tetragonal. According to the ab initio estimates and

on the basis of spectroscopic studies [38,41,49], the crystal
field potential is larger than the spin-orbit coupling and the
inversion asymmetric potential. Here, we assume that the bare
�t = −50 meV. Slight variations of the electronic parameters
do not alter the qualitative outcomes of the achieved results.
Concerning the interaction due to the breaking of the inversion
symmetry, the strength of γ is assumed to be 20 meV [41].
The atomic spin-orbit coupling �SO is taken to be 10 meV
[41] according to the typical estimates employed for the Ti
element.

Concerning the value of the orbital Rashba coupling one
can observe that for electron filling corresponding to the
unique occupation of the xy band, due to the crystal field
splitting, one can derive an effective spin Rashba interaction
αR by performing a perturbation theory to the second order in
the spin-orbital interactions [41]. Hence, using the parameter
values fixed in the previous paragraph, one gets that a rough
estimate of αR is given by

αR � aγ�SO

|�t | � 1.6 meV nm, (15)

a value compatible with experimental measurements [34,38]
in the limit of low values of particle density.

Finally, in order to assess the topological character of the
superconducting phase for the nanowire, we observe that,
due to the applied magnetic field, the time-reversal symmetry
is broken. Thus, according to the Altland-Zirnbauer classi-
fication [1], the Hamiltonian is in the D symmetry class,
and, since the local spin-singlet pairing makes the spectrum
fully gapped, one can introduce the following Z2 topological
invariant, whose expression for translational invariance along
the x direction is given by

Q = sgn
[
P(kx = 0)P

(
kx = π

a

)]
, (16)

where sgn indicates the signum function and P(kx ) is the
Pfaffian of the skew-symmetric matrix derived from the
Bogoliubov–de Gennes Hamiltonian upon a transformation in
the Majorana basis evaluated in the particle-hole symmetric
points, i.e., at kx = 0 and kx = π/a [6]. The value Q = 1
marks a trivial superconducting state, while Q = −1 a topo-
logical state. Details about the calculation of the topological
invariant are provided in Appendix B.

III. ELECTRONIC STRUCTURE AND STABILITY OF
TOPOLOGICAL SUPERCONDUCTIVITY: ROLE OF

IN-PLANE CONFINEMENT

The key aim of the present analysis is to determine the
optimal conditions for setting a topological superconduct-
ing phase upon the application of an applied magnetic field
assuming that the electrons are confined in a planar oxide
nanowire with a finite width along one of the crystal symmetry
axis. The geometry of the nanostrip exhibits a confinement
due to the finite thickness in the y direction corresponding
with a length Ly = Nya, where Ny denotes the number of
chains. For mimicking the inhomogeneous effects of the
confining potential, we use open boundary conditions (OBCs)
along the y axis with hard wall confinement at y = 0 and
y = Ly. On the other hand, along the longitudinal x direction
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FIG. 2. Electronic structure of the oxide nanowire for the case
of (a) 2-chains (2C), and (b) 14-chains (14C) thickness. For the
2C nanostrip, the effect of the confinement is to push the xy and
yz bands above in energy with respect to the zx state (almost the
entire electronic spectrum is shown). For the 14C nanostrip, only the
low-energy electronic bands are plotted.

of the nanowire, translational invariance and periodic bound-
ary conditions (PBCs) are assumed when dealing with the
determination of the topological phase diagram.

We start by considering how the electronic structure in the
normal state is modified by changing the number of chains
of the nanowire and thus, effectively, the strength of the
confining potential along the transverse direction. In Fig. 2,
we report the zero-field electronic band dispersions for two
different configurations that are marked by an inequivalent
confining potential. In the case of only one chain, discussed
in Appendix A, and in the case of two-dimensional bulk [38],
the xy band is the lowest in energy and it exhibits a splitting
of the order of �t with the xz, yz states, that are in turn
separated in energy as a consequence of the atomic spin-orbit
coupling �SO.

Considering the nanostrip with Ny = 2 (indicated as 2C)
leads to a remarkable rearrangement of the energy spectrum
[see Fig. 2(a)]. The zero-field spectrum for the Ny = 2 presents
six doublets which are quite close in energy (around 1 eV).
The lowest two doublets do not show any sizable effective
Rashba splitting for small values of momentum kx ∼ 0 be-
cause they are coupled by second-order terms whose am-
plitude is a fraction of meV as due to processes that in-
volve the interchain splitting, i.e., ∼�SOγ

t1
. The highest-energy

configurations present a more pronounced double minimum
structure that is typical of an effective spin Rashba coupling.
In particular, since the xz bands are not so sensitive to the
confinement along the y direction, they correspond to the
low-energy doublet [Fig. 2(a)]. On the other hand, the xy
and yz bands (third/fifth and fourth/sixth, respectively) are
strongly influenced by the confinement along the y direction
which pushes them at higher energies. Specifically, the zx
bands are lowered with respect to the xy band by an energy
separation of the order of t1 (i.e., ∼300 meV).
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FIG. 3. Superconducting order parameters (in log scale) for yz-
like bands (upper panel), zx-like bands (middle panel), and xy-like
bands (lower panel) as a function of the position y (in units of the lat-
tice parameter a) of the lateral chains for different wire widths: black
circles for Ny = 2 (corresponding to pairing energy U = 60 meV),
red squares for Ny = 8 (pairing energy U = 100 meV), and blue
diamonds for Ny = 14 (pairing energy U = 130 meV). The chemical
potentials μ2C for Ny = 2 and μ14C for Ny = 14 are indicated in
Fig. 2.

As discussed above, one can clearly visualize the effect
of the confinement on the bands xy and yz which have a
large hopping amplitude along the transverse direction. Such
an orbital inversion with a lowering of the zx band holds
for thickness amplitudes that are below Ny = 10. Above this
threshold the dispersion of the dxy bands along the y direction
allows again to make them the lowest occupied in energy and
the corresponding subbands tend to reconstruct the electronic
spectrum of the two-dimensional bulk limit.

To directly visualize such a changeover of the subbands,
in Fig. 2(b) we report the zero-field band structure for a
representative length of intermediate confinement, i.e., Ny =
14 (indicated as 14C). At low energy, the first couples of
bands have a dxy origin and show conventional spin Rashba
effective coupling. However, with increasing energy, it is not
immediate to distinguish the character of the electronic states,
since higher subbands with xy character become closer in
energy with the lower subbands having yz and zx orbital
content and get mixed by the orbital Rashba and the spin-
orbit coupling. Indeed, in this regime, all the bands become
strongly interrelated with increasing energy and thus through
the electron doping, too.

At this point, it is useful and instructive to address the
stability of the superconducting phases with increasing the
number Ny of lateral chains in the absence of an applied
magnetic field. In Fig. 3, we report the superconducting order
parameters for yz-like, zx-like, and xy-like bands as a function
of the position y of the lateral chains. Indeed, following the
previous discussion, we have again considered the case Ny = 2
(very strong confinement) and Ny = 14 (weak confinement).
Moreover, as shown in Fig. 3, we analyze also the case Ny = 8
which represents the border between the regimes of strong and
weak confinement. In order to compare the results for different
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FIG. 4. (a) Normal-state density of states for the Ny = 2
nanowire. Dotted lines schematically indicate the filling regimes
for which a topological superconducting phase can be stabilized.
(b) Evolution of the orbital-dependent electron density as a function
of the energy. The lowest bands have a xz character upon reaching a
value of the chemical potential of the order of 250 meV whereas
the xy and yz electronic states start to get populated. (c) Phase
diagram at a given value of the band minimum chemical potential
[μ1 = μ0 defined in Eq. (17)] in terms of the electron filling offset
ε0 and the applied magnetic field Mx along the x direction of the
nanowire. TOP-SUP, TRI-SUP, and NOR-MET stand for topological
superconducting, trivial superconducting, and normal metallic phase,
respectively. (d) As in (c) but for a value of the band minimum
chemical potential which is given by μ2 = μ0 defined in Eq. (17)
as indicated in (a).

lateral sizes, we highlight that we have considered different
pairing energies U since, with increasing the lateral size, the
critical U for stabilizing superconductivity gets enhanced.
Moreover, with varying the lateral confinement, we change the
y length with respect to the x one which leads to asymmetry in
the behavior of the heavy xz and yz bands. Finally, the yz- and
zx-like bands are typically flatter than xy-like bands, therefore
they are characterized by higher values of the density of
states, implying an enhancement of their superconducting
order parameters.

As reported in Fig. 3, in the case Ny = 2, we consider
the superconducting phases corresponding to the chemical
potential μ2C shown in Fig. 2 (in Fig. 4 it will be coincident
with μ1). As discussed above, the less occupied band is
mainly xy-like, which, as shown in Fig. 4, has a a peak of
the density of states at μ1. Therefore, as shown in Fig. 3 in the
case Ny = 2, the superconducting instabilities mostly involve
the xy orbital. Moreover, as reported in Appendix A, the order
parameters necessary to stabilize the superconducting phase
are slightly larger than those of the single-chain wire: U =
60 meV is used in the figure compared with values smaller
than 20 meV for Ny = 1.

Next, we analyze the case Ny = 8 for a chemical potential
corresponding to the occupation of the first yz-like band
(μ8C will correspond to the chemical potential μ4 shown in
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FIG. 5. (a) Normal-state density of states for a nanowire with
Ny = 8. Dotted lines (red) schematically indicate the electron dop-
ing regimes for which a topological superconducting phase can be
stabilized. (b) Evolution of the orbital-dependent and total electron
density as a function of the energy. The lowest bands have a dominant
xz while the occupation of the xy and yz electronic states have
a different compressibility as measured by the derivative of the
electron density with respect to the chemical potential. (c) As in
(a) but for a nanowire with Ny = 14. (d) Electron density vs energy.
The low-energy electron density is dominated by xy bands. An orbital
inversion is obtained at a value of the chemical potential that is
∼0 meV.

Figs. 5 and 6). As reported in Fig. 3, the largest order param-
eters are only related to the yz character (U = 100 meV is
used in the plot to get a quite stable superconducting phase).
Actually, this case corresponds to a filling of a heavy band
with a large density of states. Therefore, the peak values of
the order parameter within the mean-field approach used in
this paper acquire values of a few tenths of meV. Although the
peak value of the superconducting gap is large with respect to
the corresponding bulk amplitudes, we observe that suitable
changes of the amplitude of the pairing strength U , variations
of the chemical potential, or quantum phase fluctuations can
effectively renormalize down their values. A reduction of the
pairing strength can lead to a superconducting phase with a
small xy order parameter. We also notice that the spatial be-
havior of the order parameters is nearly oscillating, therefore
it is quite dependent on the lateral boundary conditions.

Finally, in Fig. 3, we report the case Ny = 14 determining
the spatial profile of the order parameters for the chemical
potential μ14C shown in Fig. 2 (U = 130 meV is adopted
to stabilize the superconducting phase). At the chemical po-
tential μ14C close to 0 meV, the highest subbands shown in
the lower panel of Fig. 2 present a mixed yz/zx character,
therefore the order parameters are expected to be magnified
for these heavy subbands. Only in the center of the wire
(y close to zero), as shown in Fig. 3, the order parameters �yz

and �zx have a similar magnitude. Indeed, these two order
parameters have an amplitude in the center of the wire that is
comparable to that of the case Ny = 8, but show a different
behavior at the boundaries. Ultimately, we point out that, due
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FIG. 6. (a) Phase diagram at a given value of the band minimum
chemical potential [μ3 = μ0 defined in Eq. (17)] in terms of the
electron filling offset ε0 and the applied magnetic field Mx along the
x direction of the nanowire for Ny = 8. TOP-S, TRI-S, and NOR-M
stand for topological superconducting, trivial superconducting, and
normal metallic phase, respectively. (b) As in (a) but for a value of
the band minimum chemical potential which is given by μ4 = μ0

defined in Eq. (17) as indicated in (a). (c) Phase diagram in terms
of the pairing energy U and the chemical potential μ for Ny = 14. S
stands for superconductor, M for metal, respectively.

to the directionality of the t2g bands, there is a significant
orbital dependence of the superconducting order parameters
in the spatial profile. Indeed, in the limit of large Ny, we
have checked that, at a fixed value of U , the yz and zx order
parameters decrease and are equal in the two-dimensional
bulk (of the order of 0.1 meV for U = 130 meV), while the
order parameter xy increases due to the enhanced mixing of
the subbands (of the order of 0.05 meV for U = 130 meV).

We are ready to analyze the parameter regime for which a
topological superconductivity is achieved in the presence of
an in-plane magnetic field. We start from the case Ny = 2.
From the analysis of the normal-state spectrum and on the
basis of the correspondence between the Kitaev model and
that one described by a Rashba interaction in the presence
of an applied magnetic field, one expects to find a topolog-
ical superconducting state for values of the electron filling
that correspond to a chemical potential located nearby the
minimum of the bands belonging to the third up to the sixth
doublet. Here, due to the multiorbital electronic spectrum, it
is convenient to decompose the chemical potential μ as

μ = μ0 + ε0, (17)

where μ0 typically indicates the energy minimum of a given
band, while ε0 provides the effective energy offset that tunes
the filling of the corresponding state. Apart from the analysis
of the topological invariant introduced in Sec. II, the TSC
phase diagram can be also traced out by looking at a sharp
variation of the order parameter when a magnetic field is
switched on along the longitudinal direction (Mx 
= 0) as well
as by direct inspection of the band gap closing at kx = 0. In
Fig. 4 we report the topological phase diagram for Ny = 2

obtained by varying the filling energy ε0 for two different
values of the chemical potential (μ0 = μ1 = 250.356 meV
and μ0 = μ2 = 848.490 meV) corresponding to the bottom
of the third and fifth doublet of the bands discussed above in
Fig. 2. We notice that to get a topological superconductivity in
the upper band of xy character [see Fig. 4(d)] higher magnetic
fields are required. For the third pair of doublet of bands (μ0 =
μ1 = 250.356 meV), the value of Mx driving the topological
transition is of the order of 0.05 meV (thus about 1 T), with a
TSC phase that can be stabilized for an electron density of the
order of 1014 cm−2 which is then experimentally accessible
both by electric gating and application of an external magnetic
field. Let us note that the realization of TSC requires a fine
tuning of the parameters of the Hamiltonian since one has,
first, to stabilize the SC phase by fixing the chemical potential
close to the peaks of the density of states (DOS) and then vary
the magnetic field to achieve a gap closing at kx = 0.

In order to further investigate the consequences of the
lateral confinement in setting the topological superconducting
phases, we consider nanowires with increasing thickness.
We find that the number of stability spots for topological
superconductivity increases with Ny. In Fig. 5, we show the
DOS for quasi-one-dimensional nanowires up having Ny equal
to 8 and 14 indicating with red dashed lines the electron filling
regions where TSC takes place.

The results for large values of Ny are quite interesting.
As discussed in the beginning of this section, in the normal
state, starting from Ny = 10, the bands with xy character are
at lower energies than the xz and yz as it occurs in the two-
dimensional bulk. Therefore, the subbands are not isolated,
and, as a consequence, fully coupled. We have checked by
calculating the invariant Q that all the minima of the subbands
become spots for topological superconductivity. Therefore, as
shown in Fig. 5(c) for Ny = 14, there are a lot of spots in the
energy window between 0 and the maximum of the DOS close
to 80 meV. We remark that this maximum is close to the van
Hove singularity of the two-dimensional bulk [41]. Moreover,
as shown in Fig. 5(d), for this range of energies, the particle
density is of the order of 1013 cm−2, which corresponds to the
optimal doping value for the bulk superconductivity. A further
scaling of the nanowire thickness confirms the stability of
the topological superconducting phases in the middle energy
range, where the sparse distribution of islands (spots) with
nontrivial topological ground states is quite stable and reliable
up to a length of the order of the superconducting coherence
length [in Eq. (12) ξ has been estimated to be of the order
of 80 nm] where the system retains its quasi-one-dimensional
character.

It is interesting to analyze the phase diagrams of magnetic
field (Mx)-filling (ε0) for larger numbers of lateral chains. In
Fig. 6, we consider the case Ny = 8 showing the phase dia-
grams corresponding to two chemical potentials, μ3 and μ4,
reported in Fig. 5. As discussed above, the chemical potential
μ3 marks the minimum of a band with prominent xy character.
Therefore, in Fig. 6(a), the phase diagram bears a strong
resemblance with the diagram presented in Fig. 4(c), where
the same xy band is occupied in the case of two chains. More
interesting is the plot shown in Fig. 6(b). Here, the heavy band
yz is occupied, therefore, the stability of the superconducting
phases gets enhanced. Indeed, there is a marked increase
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of the filling energy where the superconductivity is stable.
However, the transition to the topological superconducting
phase requires a larger value of the magnetic field. Indeed, as
shown in Fig. 6(b), the topological phase becomes accessible
only by applying a huge magnetic field. Ultimately, we have
checked that, in most cases where the band with yz or zx
character are the highest to be occupied, one enforces the
superconducting phase, but one needs very large magnetic
fields to enter the topological regime.

Finally, we discuss the effect of the magnitude of the pair-
ing energy U on the stability of superconducting phases and
the topological transition. Actually, starting from nanowires
with few chains, the topological superconducting phase is
achieved when the pairing energy is not large compared to
the magnetic energy scale. Actually, U does not have to be
small otherwise the superconducting phase does not have an
energy smaller than the normal state. On the other hand, U
does not have to be very large otherwise the gap energies
overwhelm the magnetic energy hindering the topological
regime. As shown in many phase diagrams discussed in this
paper, the magnetic energy is typically comparable with the
filling energy which, on the other hand, affects the stability of
superconducting phases. There is quite often an intermediate
regime of values for U where the topological regime becomes
accessible. For the systems analyzed in this paper, the order
of magnitude of U is around 100 meV. In particular, we
analyze the case Ny = 14, where, as shown in Fig. 5, there
are a lot of topological spots in the energy window close
to zero. In this window, as shown in Fig. 6(c) for a small
value of the magnetic field, we have analyzed the stability of
the superconducting phases for values of U between 120 and
200 meV. We find that, with increasing the value of the mag-
netic field, the topological regime is maintained for values of
U smaller than 200 meV, a value where the superconducting
phases by different spots start merging. We have found that
this merging turns out to be often detrimental for the stability
of the topological phases.

IV. DISCUSSIONS AND CONCLUSIONS

In this paper, we have studied the formation and stability of
topological superconducting phases in quasi-one-dimensional
LAO/STO nanowires. We have self-consistently solved the
Bogoliubov–de Gennes equations for a multiband electronic
model including atomic spin-orbit and orbital Rashba interac-
tions in the presence of a magnetic field lying in the interface
plane by evaluating the role of the in-plane confinement due
to the finite thickness of the nanowire.

One of the main results of this paper has been to show
that the changeover from a sparse-to-dense distribution of
topologically nontrivial domains depends on the multiband
electronic structure and the confinement potential. Accord-
ing to the analysis performed in the previous sections, the
lateral confinement can completely alter the energy splitting
of the Ti t2g states and consequently influences the electron
doping distribution of the topological phases. In the regime
of strong confinement, the topological states are rare and
sparse, exhibiting a number of regions which are related to the
number of chains forming the nanowire. In any case, in this
confinement regime (up to ten lateral chains), the number of

topological domains is smaller than the number of subbands.
In fact, the topological phase cannot be achieved in the
lowest-energy orbital band which is insensitive to the lateral
confinement. This is due to the fact that the effective spin
Rashba coupling is very tiny in those states as it is obtained
by virtual interband processes which require one to overcome
a gap of the order of the interchain hopping. Once the xy
band and the quasiflat yz bands start to get populated, then
a more robust topological phase can be settled. Actually, the
increase of the nanowire thickness drives a transition at low
energy with an orbital population inversion with the xy band
being the lowest in the energy occupied orbital configuration.
As discussed in this paper, such a regime is obtained for
LAO-STO nanowires having a thickness of the order of 10 nm.
Actually, in the regime of weak confinement (more than ten
lateral chains), the number of topological domains scales with
the number of subbands. By the way, LAO-STO nanowires
have recently been fabricated with lateral lengths starting from
5 nm [50]. Finally, we stress that all the results are valid
for quasi-one-dimensional nanowires, therefore up to lateral
widths of the order of the superconducting coherence length.

At this point it is valuable to compare the microscopic
conditions related to the topological superconducting phase
in LAO/STO nanowires and that one obtained in InSb or
InAs semiconductors. The charge carrier mass in LAO/STO
is at least one order of magnitude larger than the effective
mass m∗ of the above-mentioned semiconductors [16]. This
is important when multiple subbands are formed due to the
lateral confinement. Indeed, for smaller effective masses, one
would expect a larger energy separation between the sub-
bands. Therefore, as found in experiments with semiconduc-
tors, the limit of a single subband is reachable. Moreover, even
if the Rashba coupling constants are different, the Rashba
energies are of the same order of magnitude in these systems.
Another relevant difference between these systems is in the
amplitude of the g-factor. The large gyromagnetic factor in
semiconductors allows one to open a large Zeeman gap using
in-plane magnetic fields quite below the critical field of the
superconductor. Even if the g-factor in LAO/STO is of the
order of 2, the self-consistent analysis made in this paper has
shown that the in-plane magnetic fields for the topological
transition can be of the order of 1 T, which is still smaller
than the critical field of the superconducting phase at optimal
doping [51].

Summarizing, some of the characteristics of LAO/STO,
such as the g-factor and the effective mass, are less favorable
for obtaining one-dimensional topological superconductivity.
However, beside some disadvantages, according to known
electronic and superconducting properties of the LAO/STO
system, there are also important advantages over complex
hybrid superconducting/semiconducting technology. First of
all, LAO/STO is a 2D superconductor characterized by large
spin-orbit coupling. Thus, in LAO/STO there is no need
to interface the material with other superconductors to get
proximity-effect-induced topological superconductivity. This
is a clear technological advantage, together with the related
possibility to realize, with a top-down approach, complex
device geometries. Additionally, LAO/STO is extremely sen-
sitive to gate voltages. The system can locally be tuned from
a superconducting to a metallic and even insulating state with
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small gate voltages. Moreover, as discussed in the paper, due
to the 3d-orbital degree of freedom and the fact that the
spin-orbit coupling can deviate from the Rashba coupling, it is
important to understand which type of topological supercon-
ductivity takes place.

Finally, it is worth pointing out that the orientation of the
magnetic field in the interface plane plays a crucial role in the
stability of the topological phase diagram. We have verified
that the application of a magnetic field along the transverse
direction of the nanowire is generally detrimental for the oc-
currence of topological states in the parameter space because
it is collinear to the spin polarization induced by the effective
Rashba coupling. In this paper, we have always considered the
effects of homogeneous magnetic fields on a clean system.
Indeed, the study of one-dimensional phenomena due to the
coupling of itinerant electrons with magnetic impurities [32]
or the presence of a superconductor/ferromagnet interface
[52] is out of the scope of this paper.

The focus of this paper has been on quasi-one-dimensional
nanowires with a multiband electronic structure analyzing the
superconducting properties with increasing the lateral width.
The mean-field approach used in this paper has allowed us to
analyze the topological phase transitions and the stability of
superconducting topological phases in wide nanowires with
different finite particle densities. Actually, many topological
superconducting phases are found to be stable in a parameter
regime where the particle density is not low. We have used
a mean-field Bogoliubov–de Gennes formalism at zero tem-
perature in the limit of infinite nanowire length neglecting
the effects due to quantum phase fluctuations. In the strict
one-dimensional case, it has been shown that the effect of
phase fluctuations can be relevant on the Majorana excitations
at the edges [31]. In particular, the degeneracy of the edge
states can be split due to phase slips having a magnitude
that scales as a power law of the system size. This implies
that, in the regime of strong confinement, one has to include
the spatial dependence of the phase of the order parameters
especially when considering the stability and the braiding of
the Majorana modes. Here, with respect to the results in the
literature [31], the presence of multiorbital degrees of freedom
can even lead to more intricate scenarios, therefore studies
along this direction are left for future investigation. On the
other hand, the effects of fluctuations beyond the mean field
should be attenuated going towards lateral sizes exceeding
the superconducting coherence length, therefore for wide
nanowires. Since, experimentally, a nanowire can be patterned
in a LAO/STO two-dimensional plane, the nanochannel can
be surrounded by a superconducting bulk, thus the supercon-
ducting phase stiffens, providing an alternative mitigation of
phase fluctuation effects.
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FIG. 7. Electronic structure of the oxide nanowire for the case of
1-chain (1C).

APPENDIX A: ONE-CHAIN NANOWIRE

In this Appendix we present the evolution of the order
parameter for a single-chain nanowire and the correspond-
ing topological phase diagram. Although in the single-chain
limit there are no subbands due to the lateral confinement,
the solution for the order parameter is representative of the
general trend that one obtains when considering the effect of
the magnetic field.

Even in the one-dimensional limit, the spectrum of the
normal state is characterized by several bands which can-
not be easily compared with those in nanowires with only
Rashba coupling or in nanostructures of topological insulators
[40,53–56]. Actually, the case with only one chain represents
a limiting configuration with a vanishing interchain charge
transfer (see Fig. 7). In this case, the xy band is the lowest
in energy and it exhibits a splitting of the order of �t with
the zx, yz states, that are in turn separated in energy as a
consequence of the atomic spin-orbit coupling �SO. For the
single chain, the dispersion along the x direction is the same
that one would have obtained for the bulk along the high-
symmetry line from the center of the Brillouin zone (� =
[0, 0]) to the zone boundary (X = [π, 0]). This occurs because
the electronic structure has only nearest-neighbor hopping
along the x-y directions and inversion asymmetric terms with
sin[kxa] and sin[kya] dependence. Since for the �-X scan,
ky = 0, then the corresponding contribution is just a constant
shift/offset for the energy and, thus, it does not affect the dis-
persion. Therefore, on one hand, the single-chain case is not
physically realizable, and on the other it is useful for the sake
of comparison with the more physical quasi-1D case. Finally,
we note that the lateral confining potential acts to renormalize
the energy position of the yz and xy bands. Since this effect
can be also mimicked by a suitable renormalization of the
lateral hopping, one can directly predict the consequences of
the lateral potential on the basis of the obtained results.

The density of states in the absence of superconductivity is
reported in Fig. 8(a). The dotted lines in Fig. 8(a) indicate that,
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FIG. 8. (a) Normal-state density of states for the Ny = 1
nanowire. Dotted lines schematically indicate the filling regimes
for which a topological superconducting phase can be stabilized.
(b) Evolution of the orbital-dependent electron density as a function
of the energy. The lowest bands have a xt character whereas the xz
and yz electronic states start to get populated above a given energy
which is set by the crystal field potential �t . (c) Evolution of the su-
perconducting order parameter as a function of the applied magnetic
field along the nanowire long axis direction for different values of the
offset energy ε0 for the intraband filling control. (d) Phase diagram
at a given value of the band minimum chemical potential in terms of
the electron filling offset ε0 and the applied magnetic field Mx along
the x direction of the nanowire. TOP-SUP, TRI-SUP, and NOR-MET
stand for topological superconducting, trivial superconducting, and
normal metallic phase, respectively. The results discussed in (c) and
(d) are obtained for the pairing energy U = 12 meV.

for a single-chain wire, a topological superconducting phase
can be stabilized only at low energies where the electronic
states are described by xy-like bands. In Fig. 8(c), we report
the evolution of the order parameter obtained by a self-
consistent iterative procedure. The self-consistent calculation
of �xy points out that the order parameter is nearly flat before
and after the transition, it exhibits a jump of 0.025 meV at
the transition (Mx = 0.0456 meV in Fig. 4), and, finally, it
decreases towards zero at larger magnetic fields. Therefore,
the fingerprint of the transition is already found in the behavior
of the order parameter confirming that Rashba and magnetic
energies are of the same order of magnitude [57]. In order to
induce the transition into the topological state, not only the
gap but also the energy ε0 has to be small. Actually, if one
defines the critical energy Mc3 as

Mc3 =
√

�2
xy + ε2

0 , (A1)

the topological transition takes place when the magnetic en-
ergy Mx overcomes Mc3 [11].

In order to pursue the analysis in the regime of low density,
we study the range of energies ε0 where topological supercon-
ductivity is observed. Actually, they have to be smaller than
the gap for experimentally accessible values of the magnetic
energies Mx. As shown Fig. 8(c), we have studied the order
parameter �xy as a function of the magnetic energy Mx for

different values of ε0. We point out that, as expected for
one-dimensional systems where the van Hove singularity in
the DOS is at the bottom of the band, an increase of the
density induces a weakening of the superconducting phase.
Therefore, the magnitude of the order parameter decreases
with increasing the filling energy ε0 for all the values of the
magnetic energy Mx. However, we point out the rapid decrease
of the order parameter at the transition for larger values of
the filling energy ε0. Moreover, the energy position of the
topological transition is practically constant with varying ε0

[Mx close to 0.05 meV in Fig. 8(c)]. Therefore, as shown in
Fig. 8(d), the transition line between trivial and topological su-
perconductivity is straight. Furthermore, in the phase diagram,
we notice a range of higher densities where the transition
from the superconductor to the normal metal occurs directly
from the trivial superconducting state. The general trend is a
reduction of the superconductivity with increasing the density
in the regime where the pairing energies are not large.

APPENDIX B: DETERMINATION OF THE TOPOLOGICAL
INVARIANT

In this Appendix, we provide some details to calculate the
Pfaffian invariant Q defined in Eq. (16). For simplicity, we
consider the case of one-dimensional wires. As discussed in
previous sections, the same calculation procedure for Q will
be also used in the case of quasi-one-dimensional nanowires.

First, one needs to introduce the couple γkx,r,σ,a and γkx,r,σ,b

of Majorana fermions at fixed wave vector kx, band index r,
and spin σ ,

ckx,r,σ = 1
2

(
γkx,r,σ,a − iγkx,r,σ,b

)
,

c†
−kx,r,σ

= 1
2

(
γkx,r,σ,a + iγkx,r,σ,b

)
, (B1)

where ckx,r,σ (c†
−kx,r,σ

) indicates the annihilation (creation)
operator of electrons with spin σ relative to the orbital r at
the wave vector kx (−kx). The spinor ψ

kx
with 12 electronic

operators can be transformed in terms of the spinor γ
kx

defined
in terms of 12 Majorana fermions such that

ψ
kx

= C · γ
kx
, (B2)

with C the following 12 × 12 matrix,

C =
⎛
⎝

C1,1 C1,2 C1,3

C2,1 C2,2 C2,3

C3,1 C3,2 C3,3

⎞
⎠,

where the 4 × 4 submatrices Ci, j , with i, j = 1, 2, 3, are the
following,

Ci,i = 1

2

⎛
⎜⎝

1 −i 0 0
0 0 1 −i
1 i 0 0
0 0 1 i

⎞
⎟⎠,

with 0 = C1,2 = C2,1 = C1,3 = C3,1 = C2,3 = C3,2. Finally,
one can define the real 12 × 12 matrix B(kx ) such that

iB(kx ) = C† · KBdG(kx ) · C, (B3)

with KBdG(kx ) the Bogoliubov–de Gennes matrix used for the
definition of the Hamiltonian operator at the mean-field level.
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For the calculation of the Pfaffian invariant defined in Eq. (16),
one has to calculate the Pfaffian of the skew-symmetric matrix
B(kx ) at kx = 0 and kx = π/a. In the one-dimensional case,
the calculation of the Pfaffian of a 12 × 12 matrix can be made
directly from its definition. However, in order to calculate the
Pfaffian also in the case of quasi-one-dimensional wires, we
implement its numerical calculation by using the Hessenberg
decomposition of the matrix B(kx ),

B(kx ) = U (kx )F (kx )U (kx )T , (B4)

where U (kx ) is orthogonal and F (kx ) is an upper Hessenberg
matrix, meaning that it has zeros below the first subdiagonal
[58]. In the case of kx = 0 and kx = π/a, the upper Hes-
senberg matrix F is not only skew symmetric, but it is also
tridiagonal. Therefore, one can use the following property of
the Pfaffian under orthogonal transformations,

P
[
B
(

kx = 0
/π

a

)]
= det[U (kx )]P

[
F

(
kx = 0

/π

a

)]
, (B5)

where the determinant of U (kx ) is 1 or −1. The calculation of
the Pfaffian of F (kx = 0/π/a) is simple, since it is given by
the product of the odd elements of the first upper subdiagonal.
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