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Topological crystalline superconductivity in Dirac semimetal phase of iron-based superconductors
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In iron-based superconductors, band inversion of d and p orbitals yields Dirac semimetallic states. We
theoretically investigate their topological properties in normal and superconducting phases based on the tight-
binding model involving full symmetry of the materials. We demonstrate that a Cooper pair between electrons
with d and p orbitals relevant to the band structure yields odd-parity superconductivity. Moreover, we present
the typical surface states by solving the Bogoliubov–de Gennes equation and characterize them by topological
invariants defined with crystal symmetry. It is found that there appear various types of Majorana fermions such
as surface flat band, Majorana quartet, and Möbius twisted surface states. Our theoretical results show that
iron-based superconductors are promising platforms to realize rich topological crystalline phases.
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I. INTRODUCTION

Superconductivity in topological insulators [1–3] and
semimetals [4] has attracted considerable attention recently
because it can potentially achieve topological supercon-
ductivity hosting Majorana quasiparticle zero-energy exci-
tation [5–18]. Topological insulators and semimetals are
realized via band inversion of opposite-parity bands at the
time-reversal-invariant momenta [19,20]. These two bands
strongly mix with each other at generic points in the Brillouin
zone. If the mixed band forms the Fermi surfaces under carrier
doping, Cooper pairs between opposite-parity electrons are
possible. This type of pairing supports topological supercon-
ductivity [9–12,21].

Recent important progress in the search for topological
superconductivity is theoretical prediction and experimental
observation of topological states in iron-based superconduc-
tors [22–39]. In the normal state of these materials, band in-
versions between the pz orbital of p-block elements and three
d orbitals of iron can occur. The band inversion with one of
three d orbitals yields the topological insulating gap. A recent
angle-resolved photoemission spectroscopy experiment with
high-energy resolution [27] detected a characteristic surface
Dirac cone in the iron chalcogenide Fe(Se,Te). Even more
importantly, this material exhibits superconductivity with a
relatively high transition temperature Tc = 13 K. Moreover,
a superconducting gap on the Dirac surface states [27] and
an energetically isolated zero-energy density of states in the
vortex cores in Fe(Se,Te) [30,33,36] and (Li,Fe)OHFeSe [31]
were experimentally reported. The band inversions associated
with the other d orbitals yield a topological Dirac semimetal-
lic state, as observed in Fe(Se,Te) and Li(Fe,Co)As [28]. The
authors indicated the possible topological superconductivity
caused by this Dirac semimetal in collaboration with an
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experimental group [28], although further details of full crys-
talline symmetry were not presented.

The purpose of this study is to clarify the topological
property of possible odd-parity superconductivity of the Dirac
semimetallic state in iron-based superconductors. The crys-
talline symmetry generally plays important roles in defin-
ing topological invariants. In particular, the symmetry of
an iron-based superconductor is the nonsymmorphic space
group P4/nmm [40]. The topological states protected by
nonsymmorphic symmetry have a new class of surface states,
called Möbius twisted surface states [41,42] or hourglass
fermions [43,44]. However, this surface state has not been
observed yet in superconducting states.

In this study, we develop a theory of topological crystalline
phases realized in normal and superconducting states of iron-
based superconductors. We first construct the simplest tight-
binding model describing the topological Dirac semimetal of
these materials. Subsequently, we summarize all the possible
Cooper pairs between electrons with opposite parities residing
at the iron and p-block element sites and classify them in
terms of the space group P4/nmm. Furthermore, we clarify
the topological invariants and surface states depending on the
irreducible representation of the gap function and direction of
surfaces. Through our study, we suggest that iron-based super-
conductors are promising platforms to realize rich topological
structures protected by their crystal symmetry.

II. NORMAL STATE

Let us construct the minimal tight-binding model describ-
ing the Dirac semimetal in iron-based superconductors. Al-
though our model can be applied to various iron-based super-
conductors, we here consider the iron chalcogenide Fe(Se,Te).

As shown in Fig. 1, while iron atoms form a flat, square
lattice, chalcogen atoms are displaced in the ±ẑ direction from
the iron plane alternately. Therefore, a unit cell involves four
atoms composed of two irons and two chalcogens. Hereafter,
we denote iron atoms as α = d1 and d2 and chalcogen atoms
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FIG. 1. Lattice structure of the Fe(Se,Te) system. The white and
blue spheres indicate the Fe and chalcogen (Se,Te) atoms, respec-
tively, with sublattices 1 and 2 due to the buckling of the chalcogens.

as p1 and p2, referring to their outermost orbitals d and p. We
take the coordinates such that the iron sites are at r̃d1 = aŷ and
r̃d2 = ax̂ and chalcogens are at r̃p1 = bẑ and r̃p2 = ax̂ + aŷ −
bẑ (see Fig. 1).

In addition, in the Fe2+, Se2−, and Te2− of Fe(Se,Te), 3d ,
4p, and 5p orbitals are almost filled, and hence, the relatively
higher energy orbitals contribute to the physics around the
Fermi level. First, we focus on the d orbitals of iron. As
shown in Fig. 1, the neighboring sites of iron are located
at the ±x ± y directions. In this case, dyz, dzx, and dx2−y2

orbitals forming the in-plane π bond have higher energy than
d3z2−r2 and dxy orbitals forming the σ bond. In the absence
of spin-orbit coupling, the dyz and dzx orbitals are degenerate
owing to improper fourfold rotation symmetry around the
iron site. Including the spin degrees of freedom, we have a
fourfold degeneracy of d orbitals. If we consider the spin-
orbit coupling, this fourfold degeneracy splits into two sets of
twofold degeneracies of [idzx ±dyz]|± 1

2 〉 and [idzx ∓dyz]|± 1
2 〉,

where |± 1
2 〉 represents eigenstates of up and down spins.

The idzx ± dyz orbitals with angular momentum Lz = ∓1 have
the orbital magnetic moment along ±ẑ owing to the negative
charge of the electron. Therefore, the [idzx ∓dyz]|± 1

2 〉 ([idzx ±
dyz]|± 1

2 〉) states where the spin and orbital magnetic moments
are antiparallel (parallel) split to the higher (lower) energy.
Therefore,

|d1,2, s〉 = [idzx − sdyz]
∣∣∣ s

2

〉
(1)

states have the highest energy in five d orbitals at two iron
sites. Here, s = ±1 is the label of spin.

Subsequently, we consider the p orbital of chalcogen
atoms. As the iron-based superconductors have a layered
structure, the state

|p1,2, s〉 = pz

∣∣∣ s

2

〉
(2)

forming the π bond in the xy plane has higher energy than
the px and py orbitals forming the σ bond. According to
the first-principles calculation [23], in FeSe, this pz orbital
has much higher energy than the d orbitals. By partially
substituting Se by Te, one can lower this energy to those of
the d orbitals. This substitution also enhances the dispersion
of the pz orbital along the kz direction. Eventually, the pz band
of Eq. (2) intersects the d bands of Eq. (1) between the � and
Z points.

To describe this band inversion, we construct the following
tight-binding model considering the states in Eqs. (1) and (2)
on each atomic site. In total, we have eight internal degrees of
freedom (DOFs) composed of the two species of atoms with
different orbitals, two sublattices, and two spin components.
In general, the Hamiltonian is

H0 =
∑
αβ

∫
drdr′φ†

α (r)tα,β (r−r′)φβ (r′), (3)

where α is the label of the atomic sites (α = d1, d2, p1, or
p2) and φα (r) is a spinor composed of the operator φs

α (r)
annihilating a state |φs

α (r)〉 = ∑
R[δ(r−r̃α−R)]1/2|α, s〉 lo-

calized at each atomic site at r = r̃α + R. Here, R is the lattice
translation vector, and |α, s〉 is the wave function of the atomic
orbitals given in Eqs. (1) and (2). The tαβ = [tαβ]s,s′

in Eq. (3)
is the 2 × 2 matrix acting on the spin space.

The spatial symmetry and time-reversal symmetry restrict
the hopping parameter. Iron chalcogenides have space group
symmetry P4/nmm, whose generators are operators of the
point group C4v with the main axis at the chalcogen site
and of inversion with respect to the center of the plaquette
(indicated by point P in Fig. 1). The matrix representation
of the generator G in the basis |α, s〉 is given as [Gαα′ ]ss′ =
〈α, s|G|α′s′〉. Accordingly, we can describe each generator as

C4 = e−i 3π
4 s3

σ0 + σ3

2
η1 + e−i π

4 s3
σ0 − σ3

2
η0,

My = −is2σ0η0,

Mx+y = −i

(
s1 − s2√

2

σ0 + σ3

2
η1 + s1 + s2√

2

σ0 − σ3

2
η0

)
,

P = s0σ3η1.

(4)

Here, C4 is fourfold rotation, Mn is a mirror operator with
respect to the n = 0 plane, and P is inversion. si, σi, and
ηi are the 2 × 2 Pauli matrices acting on the spin, atomic
species, and sublattice basis, respectively. Note that |α, s〉 with
α = d1,2 (p1,2) is the eigenstate of σ3 with the eigenvalue
λσ3 = +1 (−1) and |α, s〉 with α = d1 and p1 (d2 and p2)
is the eigenstate of η3 with λη3 = +1 (−1). In other words,
we characterize each atomic site α as (λσ3 , λη3 ) = (±1,±1).
Accordingly, the time-reversal operator is given as

T = UT K, UT = is2σ3η0, (5)

where K is a complex-conjugate operator.
By using the representation (4) and (5), we restrict the

hopping parameter to Gαα′tα′β ′ (r)G†
β ′β = tαβ (DG[r]), where

DG[r] is the symmetry operation G upon the vector r. This
symmetry generates all the equivalent nearest- and next-
nearest-neighbor hopping from individual ones depicted in
Fig. 1. It also restricts the individual hopping as follows:
td2d1 (ax̂ + aŷ) = td s0, tp2 p1 (ax̂ + aŷ + 2bẑ) = tps0, td1d1 (0) =
td2d2 (0) = −tp1,p1 (0) = −tp2,p2 (0) = −δμs0, td1d1 (cẑ) = td2d2

(cẑ) = t ′
d s0, tp1,p1 (cẑ) = tp2 p2 (cẑ) = t ′

ps0, and tp2d1 (ax̂ − [b +
nc]ẑ) ≡ t n

p2d1
= t n

1 s2 + it n
2 s0, with n = ±1 or 0. The td , tp, t ′

d ,
t ′
p, t n

1 , t n
2 , and δμ are real parameters.

Fourier transformation of Eq. (3) gives

H0 =
∫

dkc†
αkH0,αβ (k)cβk, (6)
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FIG. 2. (a) Band dispersion obtained from the tight-binding
model (3) along a typical high-symmetry cut in the Brillouin zone.
The color code indicates the orbital property of the band (blue, d
orbital; red, pz orbital; green, mixed). The size of the gray circle
indicates the weight of the λη1 = −1 component (see also main text).
The sign on the band indicates the inversion eigenvalue. (b) Bulk
and surface Brillouin zones with the parity product of the two
lower bands at the time-reversal symmetric momenta. The green
sphere represents bulk Dirac points. The green spots on the surface
Brillouin zone represent the projected Fermi surface. The red curves
on the surface Brillouin zone represent the surface Fermi loop. The
parameters are td = −1.5, tp = 1, t ′

d = −0.6, t ′
p = 1, t0

1 = 0.5, t0
2 =

1, t±
1 = t±

2 = 0.4 ∓ 0.2, δμ = 2(td − tp), and μ = −0.5.

where cαk = ∫
dreik·r−ikz z̃αφα (r). Diagonalizing H0,αβ (k), we

obtain the band structure shown in Fig. 2. The hopping pa-
rameters are chosen to reproduce the band inversion obtained
in the first-principles calculation [27], and small changes in
them do not alter all the results below.

First, let us focus on the � and Z points. These points are
invariant under the inversion P and C4 rotation in Eq. (4), and
hence, the basis diagonalizing η1 is more convenient than the
sublattice basis diagonalizing η3. The eigenstates with λη1 =
±1 are bonding or antibonding molecular orbitals of sublattice
states |d1〉 ± |d2〉 (also |p1〉 ± |p2〉). As shown in Table I, at
the � and Z points, the states with (λσ3, λη1 ) = (±1,±1) are
classified in terms of eigenvalues λP and λC4 = eim4

π
2 . Each

state corresponds to an irreducible representation of the space
group P4/nmm at the � and Z points.

TABLE I. Inversion eigenvalues λP, C4, rotation eigenvalues
ηC4 = eim4π/2, and irreducible representation of the space group
P4/nmm for eight different bands at the � and Z points. The
eigenvalues λσ3 = ± represent d and p orbitals.

(
λσ3λη1 , λs3

)
(+,+, ±) (+, −, ±) (−, +, ±) (−,−, ±)

λP +1 −1 −1 +1
m4 ±3/2 ±1/2 ±1/2 ±1/2
P4/nmm E3/2g E1/2u E1/2u E1/2g

FS with 

Negligible parity mixing

Odd parity

s-wave

parity mixing 
E

 Γ  kzp

d

EF

EF

SC

FIG. 3. Schematics of the band structure and position of the
Fermi level. In the case where the Fermi level is close to the Dirac
points, odd-parity superconductivity is possible.

In Fe(Se,Te), band inversion between the d orbital with
(λσ3, λη1 ) = (+1,+1) at the iron atom and the pz orbital
with (−1,+1) occurs on the �Z path. These states are char-
acterized by different C4 eigenvalues with |m4| = 3/2 and
1/2. As momenta along the �Z path are invariant under the
C4 rotation, these states cannot hybridize with each other.
Therefore, the energy-crossing point on the path remains a
Dirac point.

It is also worth comparing the energy of the molecular
orbitals λη1 = −1 with that of λη1 = 1 (see Fig. 2). For the
d orbital, λη1 = −1 is the antibonding molecular orbital and
hence has higher energy than λη1 = +1. Meanwhile, for the
pz orbital, λη1 = −1 is the bonding molecular orbital because
the two sublattices of the chalcogen sites are displaced from
the iron plane oppositely. Therefore, it has lower energy than
λη1 = +1.

By using the obtained level structure, we evaluate the
topological index of the Dirac point. We can consider the
kz = 0 and kz = π planes in momentum space as a two-
dimensional system with time-reversal and inversion symme-
tries. Therefore, the topological invariant for these planes is
the Z2 index introduced by Kane and Mele [45]. We evaluate
it as a parity product of the occupied state at the time-reversal
momenta [19] as

eiπθ2(kz ) =
∏

En<0

λn
P(0, 0, kz )λn

P(π, π, kz ), (7)

where λn
P(kx, ky, kz ) is the parity eigenvalue at the time-

reversal invariant momentum also shown in Fig. 2. From the
energy dispersion and the parity shown in Fig. 2, we observe
that the Z2 indices are θ2(0) = 1 and θ2(π ) = 0. These values
are robust against small changes in material parameters. As
the kz = 0 plane is topologically nontrivial, the Fermi loop
appears around kz = 0 of the surface Brillouin zone [46], as
shown in Fig. 2(b).

III. POSSIBLE SUPERCONDUCTING GAP

Let us consider the superconductivity of the obtained Dirac
semimetal. When the Fermi level is far from the energy of the
Dirac point (see Fig. 3), the parity mixing on the Fermi surface
is negligibly weak. Hence, the only possible superconductiv-
ity is the s-wave pairing state. The s-wave pair is topologically
trivial in the bulk, but it may induce a topological supercon-
ductor on the surface of the system. Recently, the presence of
Majorana bound states in a vortex of this surface superconduc-
tor was theoretically discussed [29,34,35]. By contrast, when
the Fermi level is close to the Dirac points, opposite-parity
states strongly mix with each other on the Fermi surfaces
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1

0

FIG. 4. (a) Fermi surface around the Dirac point, where the color
code indicates the expectation value of the parity operator P on it.
(b)–(d) The normalized superconducting gap on the Fermi surface of
the B1u, B2u, and Eu representations.

[see Figs. 3 and 4(a)]. This hybridization naturally allows the
Cooper pair between electrons with opposite orbital parities.
Here, we discuss the possible odd-parity pairing induced from
this pairing and its topological property.

Here, we use the Bogoliubov–de Gennes (BdG) formalism
within the Nambu space (ck, c̄−k). The spinor c̄−k = UT c†

−k,
with UT defined in Eq. (5), is the time-reversal hole partner of
the annihilation operator ck. Accordingly, the BdG Hamilto-
nian is written as

H (k) =
(

H0(k) �(k)
�†(k) −H0(k)

)
, (8)

where H0(k) is a one-particle Hamiltonian given in Eq. (6) and
we use the time-reversal symmetry T H0(k)T −1 = H0(−k).

Subsequently, we consider the possible gap functions. The
present system involves spin, orbital, and sublattice DOFs.
Then, we can generally describe the gap function as

�(k) = sμσνηγ f (k). (9)

The spin component sμ can take the values μ = 0, 1, 2, 3.
Here, we focus on the pairing between the d and pz

orbitals with σν = σ1 or σ2. It is the pairing between
the nearest-neighboring sites. Sublattices 1 and 2 appear
alternately along the x direction in the present model, as
shown in Fig. 1. Therefore, the (off-)diagonal matrices η3

and η0 (η1 and η2) in the sublattice basis indicate the pairing
between the neighboring sites in the y (x) direction. This
pairing direction restricts the possible form of the momentum
dependence f (k) coupling with ην as ηγ f (k) = η1,2

cos(kxa), η1,2 sin(kxa), η3,0 cos(kya), η3,0 sin(kya) ≡ ηc
1,2,

ηs
1,2, η

c
3,0, η

s
3,0. We can combine the spin, orbital, and

sublattice components to satisfy the Fermi statistics
[�(k)UT ]T = −�(k)UT . Consequently, we obtain the 32
possible pairing functions in Table II and classify them in
terms of the irreducible representations of the space group
P4/nmm.

Let us choose the gap functions with a higher transition
temperature Tc, which correspond to those with relatively
larger superconducting gaps on the Fermi surface at zero
temperature. First, for the small Fermi surface around the
Dirac point at kx = ky = 0, which is considered here, the
gap function with the sinusoidal k dependence ηγ sin(kia)
(i = x, y) is rather small. Subsequently, we check the sublat-
tice DOF in terms of the molecular orbital basis diagonal-
izing η1. Accordingly, � ∝ η1+η0 = diag(1, 0) [� ∝ η1−
η0 = diag(0, 1)] opens a gap on the Fermi surface of the

TABLE II. Possible gap function for the nearest-neighbor pairing
states, where the abbreviated notations are ηc

1,2 = η1,2 cos kxa, ηs
1,2 =

η1,2 sin kxa, ηc
3,0 = η3,0 cos kya, and ηs

3,0 = η3,0 sin kya.

C4v P4/nmm �(k)

A1 A1g s1

(
σ2η

c
2−σ1η

c
3

)
, s3σ2η

s
1−s0σ1η

s
0

A2u s1σ1

(
ηc

1−ηc
0

)
,

(
ηs

2s3+ηs
3s0

)
σ1

A2 A2g s2

(
σ2η

c
2−σ1η

c
3

)
, s0σ1η

s
1+s3σ2η

s
0

A1u s2σ1

(
ηc

1−ηc
0

)
,

(
ηs

2s0+ηs
3s3

)
σ2

B1 B1g s1

(
σ2η

c
2+σ1η

c
3

)
, s3σ2η

s
1+s0σ1η

s
0

B2u s2σ1

(
ηc

1+ηc
0

)
,

(
ηs

2s0−ηs
3s3

)
σ2

B2 B2g s2

(
σ2η

c
2+σ1η

c
3

)
, s0σ1η

s
1−s3σ2η

s
0

B1u s1σ1

(
ηc

1+ηc
0

)
,

(
ηs

2s3−ηs
3s0

)
σ1

E Eg σ1

{
ηc

2s0, ηc
3s3

}
, σ2

{
ηc

3s0, ηc
2s3

}
s1σ2

{
ηs

0, ηs
1

}
, s2σ2

{
ηs

0, ηs
1

}
Eu s1

{
σ1η

s
2, σ2η

s
3

}
, s2

{
σ1η

s
2, σ2η

s
3

}
{s3σ1, s0σ2}

(
ηc

1 ± ηc
0

)

λη1 = +1 (−1) bands. Those with � ∝ η2,3, off diagonal on
this basis, can open the gap when the two states with different
λη1 mix with each other on the Fermi surface. In the present
system, the bands near the Dirac point contain almost no
η1 = −1 component (see Fig. 2). Therefore, the gap function
with the sublattice component η1 + η0 opens an energy gap
larger than the others. From the above arguments, we narrow
down the candidate of irreducible representation with higher
Tc to B1u, B2u, or Eu in Table II. Note that these representations
coincide with those of odd-parity superconductivity obtained
in the k · P model of the Dirac semimetal accompanied by
contact pairing interaction [11].

Figure 4 shows the energy gap on the Fermi surface. For
all three gap functions, we have gap nodes at two poles on
the kz axis. The energy gap of the Eu representation is also
suppressed along the lines connecting them. Therefore, the
B1u and B2u representations support higher Tc than Eu. The
B1u and B2u representations differ only in the character of
the diagonal and vertical mirror reflections; for instance, the
gap function satisfies the commutation or anticommutation
relation [My,�]∓ = 0 and [Mx+y,�]± = 0, where the upper
(lower) sign is for B1u (B2u). However, the in-plane anisotropy
between the vertical (100) and diagonal (110) directions is
small. Therefore, Tc for these two representations is almost
degenerate.

IV. TOPOLOGICAL PROPERTIES OF THE
B1u AND B2u STATES

We examine the symmetry-protected topological proper-
ties of the possible superconducting states B1u and B2u. The
BdG Hamiltonian has particle-hole symmetry,

CH (k)C−1 = −H (−k), C = iτ2UT K, (10)

inherent in superconductors. Here, τν=0,1,2,3 represents the
identity and Pauli matrices acting on the particle and time-
reversal hole space and UT is the unitary part of the time-
reversal operator [see Eq. (5)]. In addition, both the B1u and

094520-4
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B2u states preserve the time-reversal symmetry

T̃ H (k)T̃ −1 = H (−k), T̃ = τ0UT K. (11)

By combining them, we obtain chiral symmetry

γ H (k)γ −1 = −H (k), γ = iT̃ C = τ2. (12)

We also consider the crystalline symmetry of the BdG Hamil-
tonian, formally given as

G̃H (k)G̃−1 = H (DG[k]) (13)

for the generator G of the space group symmetry. Note that
the unitary operator G̃ acting on the Nambu space and its
commutation or anticommutation relation with the operators
in Eqs. (10), (11), and (12) depend on the irreducible rep-
resentations of the gap function (see later discussion). We
can define rich topological numbers by using these relations.
Owing to these topological numbers, the system supports
the bulk-surface correspondence depending on the irreducible
representations of the gap function and the direction of the
surface.

To exhaust these topological properties, we analyze the sur-
face spectrum of the B1u and B2u states by numerically solving
the BdG equation. We summarize the observed gapless states
on the (100) and (110) surfaces in Figs. 5 and 6, and we
will discuss their characteristics and topological origin below.
We obtain these results with the gap function uniform in real
space. It is expected that a self-consistent calculation would
result in qualitatively the same features, similar to the surface
state of superconducting topological insulators [47].

A. Majorana flat bands

We observe the flat zero-energy bands along the �Z path
of the (100) surface of B2u [Figs. 5(g) and 5(l)] and (110)
of B1u [Figs. 6(c) and 6(e)]. They originate from bulk one-
dimensional (1D) topological numbers. Specifically, let us
consider those in the B2u states shown in Fig. 5(f). The B2u

gap function is symmetric under the vertical mirror reflections
My�(k)M−1

y = �(DMy [k]). Hence, the mirror reflection oper-
ator acting on the Nambu space is given as

M̃y = Myτ0. (14)

From Eq. (13) with G = My and DMy [kx, ky, kz] =
(kx,−ky, kz ), we obtain the commutation relation
[H (kx, 0, kz ), M̃y] = 0. Therefore, in the basis diagonalizing
the mirror operator as UM̃y

M̃yU
−1
M̃y

= diag(+i,−i), the

Hamiltonian is also diagonal as UM̃y
H (kx, 0, kz )U −1

M̃y
=

diag(H+i, H−i ).
The mirror operator in Eq. (14) also commutes with

the chiral operator in Eq. (12). Hence, UM̃y
γU −1

M̃y
=

diag(γ+i, γ−i ). The simultaneous diagonalizability of
H (kx, 0, kz ), M̃y, and γ indicates that each block of the
Hamiltonian has chiral symmetry

γ±iH±i(kx, 0, kz )γ −1
±i = −H±i(kx, 0, kz ). (15)

By using this symmetry, we can define the 1D winding
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FIG. 5. Energy spectrum of the system with the (100) surface.
(a)–(f) indicate the B1u states. (a) shows the dispersion along a
typical high-symmetry cut in the surface Brillouin zone. The bands in
green and red indicate the bulk and surface states, respectively. (b)–
(d) magnify the momentum regions around the surface Fermi loop.
(e) shows the schematics of the surface zero-energy states on the
surface Brillouin zone in the normal state. The projected bulk Fermi
surface and the surface Fermi loop are depicted by the green oval
and red curve, respectively. (f) is the surface zero-energy states in the
B1u superconducting state. In (f), the bulk Fermi surface and Fermi
loop in the normal state (indicated by green and red dashed curves,
respectively) are gapped at the generic point. At intersections with
mirror invariant lines, the surface Fermi loop survives as Majorana
fermions in the superconducting state. Around the � point, they form
a Majorana quartet [10]. (g)–(l) are the same as (a)–(f) but for the
B2u state. The thick red line in (l) shows the Majorana flat band. The
parameters are the same as in Fig. 2.

number [48] as

w±i(kz ) = − 1

4π i

∫
dkxtr

[
γ ±i(H±i(kx, 0, kz ))−1

× (
∂kx H±i(kx, 0, kz )

)]
. (16)

Note that the total winding number is always zero, w =
w+i + w−i = 0, for the odd-parity superconductivity [49],
but the mirror winding number wM = (w+i − w−i )/2 can be
nontrivial. In the Dirac semimetallic state shown in Fig. 2
coupled with the B2u gap function, we numerically determine
that

wM (kz ) =
{

1 for k1 < kz < k2,

0 otherwise, (17)

where ki=1,2 represents the momenta of the north and south
poles of the Fermi surface k = ±ki ẑ. The nontrivial mirror
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FIG. 6. Energy spectrum of the system with the (110) surface in
a manner similar to Fig. 5. (a)–(e) and (f)–(j) indicate the B1u and
B2u states, respectively. In contrast to the (100) surface shown in
Fig. 5, the B1u state exhibits a flat band on the �Z path, and B2u has a
Majorana quartet. In addition, the whole surface Fermi loop remains
gapless for the B1u superconductor, associated with the diagonal
C′′

2 -odd property of the gap function. Both B1u and B2u states have
Möbius twisted surface states (hourglass fermions), passing through
the bulk spectrum, as shown by the dashed line in (a) and (f). They
are typical for glide-protected time-reversal-invariant topological
phases. (See text for more details.) The parameters are the same as in
Figs. 2 and 5.

winding number in Eq. (17) ensures the existence of the
zero-energy mode on ky = 0 and between the projected point
nodes on the surface perpendicular to the x axis, consistent
with Figs. 5(g) and 5(l).

Similarly, B1u is symmetric under the diagonal mirror
reflection as M−x+y�(k)M−1

−x+y = �(DM−x+y [k]). Thus, the
above discussion is directly applicable to B1u by replacing
x → x + y, y → −x + y. Hence, the B1u state has a zero-
energy flat band on the diagonal (110) surface as shown in
Figs. 6(c) and 6(e).

By contrast, the B2u (B1u) gap function is odd under diago-
nal (vertical) mirror reflection. In this case, we cannot define
the chiral symmetry (15) in a mirror sector and the mirror
winding number (16), and hence, the surface states between
the projected point nodes on the (110) [(100)] surface of the
B2u (B1u) states split as shown in Figs. 5(a) and 6(h).

B. Point and line nodes on the surface Fermi loop

In addition to the Majorana flat band ensured by the bulk
1D winding number (16), we observe other gapless spectra on

the surface Fermi loop (see Figs. 5 and 6). We reveal in this
section that the topological numbers defined by the surface
state characterize them. Let us start our discussion with the
(100) surface of the B1u state. As shown in Figs. 5(a)–5(f),
the surface state passes through the zero-energy points on the
�Y and �Z paths. The key to understanding them is vertical
mirror reflection symmetry.

First, we examine the gapless states on the �Y path.
The effective Hamiltonian of the (100) surface state is writ-
ten as H100(ky, kz ) = H0,100(ky, kz )τ3 + �100(ky, kz )τ1. Here,
H0,100(ky, kz ) is the surface Hamiltonian of the normal state
and �100(ky, kz ) is the gap function projected on the surface
state. As the bulk B1u gap function is odd under the ver-
tical mirror reflection My, that on the surface also satisfies
My�100(ky, kz )M−1

y = −�100(DMy [ky, kz]). In this case, the
mirror symmetry operator acting on the Nambu space is
given as

M̃y = Myτ3. (18)

The combination of the mirror reflection symmetry (18) and
particle-hole symmetry (10) yields the antiunitary antisymme-
try of the BdG Hamiltonian,

CM̃y
H100(ky, kz )C−1

M̃y
= −H100(ky,−kz ), (19)

with

CM̃y
= M̃yC = τ1MyUT K. (20)

The operator in Eq. (18) for the mirror-odd superconductor
satisfies the anticommutation relation {M̃y, C} = 0. This re-
lation together with C2 = 1, M̃2

y = −1 yields C2
M̃y

= 1. That

is, we can consider the surface state with fixed k on kz = 0
as a zero-dimensional system in class D with particle-hole
symmetry CM̃y

. In this case, Eqs. (19) and (20) indicate that
H100(ky, 0)τ1MyUT is the unitary equivalent to a real and
antisymmetric matrix. Thus, we can immediately introduce
the Z2 topological number

χ (ky) = sgn{Pf[H100τ1MyUT ]}. (21)

In the weak-coupling limit �(ky, kz ) 
 EF, we can eval-
uate this number from a particle Hamiltonian as χ (ky) =
sgn[det(H0,100)]. Thus, the Fermi loop, where the sign of an
eigenvalue of H0,100 changes, is the boundary between the
regions with opposite-sign χ (ky). Owing to the difference of
χ (ky), the zero-energy modes on the �Y path in Figs. 5(b)
and 5(f) appear.

Subsequently, let us show that symmetry of the surface
Hamiltonian also protects the zero-energy states on the �Z
path in Figs. 5(c), 5(d) and 5(f). We start with a noninteracting
case with � = 0, where the particle (λτ3 = 1) and time-
reversal hole part (λτ3 = −1) are completely decoupled. In
this case, a particle state ũn,k = (uT

n,k, 0T )T with eigenenergy
En can be a solution of the BdG equation. By contrast, the
chiral symmetry (12) ensures that a hole state ũn′,k = γ ũn,k =
(0T , iuT

n,k)T with eigenenergy En′ = −En is also a solution.
While the energy dispersion of ũn,k and γ ũn,k may cross at
Fermi level En = 0 when � = 0, weak, but finite, coupling
� 
 EF opens an energy gap at the crossing point at the
generic momentum k.
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However, the mirror symmetry (18) of this system prohibits
the energy gap on the �Z path. As this path is invariant under
vertical mirror reflection, the eigenstates of the BdG Hamilto-
nian are also those of the mirror operator simultaneously,

M̃yũn,kz = λ
(n)
M̃y

ũn,kz , (22)

where ũn,kz is the wave function ũn,k on ky = 0. Owing to the
anticommutation relation {γ , M̃y} = 0 of mirror-odd super-
conductivity, the particle and time-reversal hole solutions ũn,kz

and ũn′,kz = γ ũn,kz have different mirror eigenvalues λ
(n)
M̃y

=
−λ

(n′ )
M̃y

. Therefore, on the �Z path, these two states do not

interact with each other even when � is finite, and energy
crossing at zero energy remains as shown in Figs. 5(c), 5(d)
and 5(f).

In contrast to the B1u state, the B2u state is odd under
the diagonal mirror reflection M−x+y. Applying the above
discussion to B2u states by replacing y with −x + y and
H100 with H110, we can conclude that the zero-dimensional
topological number of the (110) surface states characterizes
the zero-energy points on the Fermi loop in Fig. 6(j).

In addition, as shown in Figs. 6(a)–6(e), the energy gap
closes everywhere on the surface Fermi loop for the B1u state
with the (110) surface. It also originates from the symmetry-
protected topological number of the surface states. The rel-
evant symmetry is twofold rotation symmetry C′′

2 about a
diagonal axis as depicted in Fig. 1. As the B1u state is odd
under this C′′

2 rotation, we have the antiunitary antisymmetry
of the BdG Hamiltonian

CC̃′′
2
H110(k1̄10, kz )C−1

C̃′′
2

= −H110(k1̄10, kz ), (23)

with CC̃′′
2

= iC̃′′
2C, C2

C̃′′
2

= 1, and momenta along the −x + y
direction k1̄10. In contrast to the case of Eq. (19), the antisym-
metry and the Z2 number are defined in any fixed momenta
(k1̄10, kz ) in the Brillouin zone. Therefore, anywhere on the
Fermi loop where the sign of the Z2 number changes, the
energy gap closes as shown in Figs. 6(a)–6(e).

C. Topology protected by nonsymmorphic symmetry

There is a topological property associated with nonsym-
morphic symmetry of iron-based superconductors, which is
common to B1u and B2u. In the combination of generators in
Eq. (4), C2

4 P corresponds to glide mirror reflection, namely,
translation by t = ax̂+aŷ followed by mirror reflection with
respect to the z = 0 plane. In addition to glide mirror sym-
metry, this system hosts time-reversal and particle-hole sym-
metries [Eqs. (10) and (11)]. In this case, we can define a Z4

topological invariant protected by glide mirror symmetry [42].
We can evaluate this Z4 invariant based on the unifi-

cation and subdivision of the topological phases associated
with symmetry breaking and recovery. In general, in a sys-
tem with glide mirror symmetry, one can recover mirror
symmetry while retaining all the other symmetries. In the
presence of recovered mirror symmetry, the mirror Chern
number νM = (νi − ν−i )/2 is quantized to the Z number.
Here, ν±i = ∑

En<0

∫
dk2

‖εi j (∂ki u
±i†
n,k‖ )(∂k j u

±i
n,k‖ ) is the Chern

number for the eigenstate H (k‖)u±i
nk‖ = Enu±i

nk‖ with the mir-

ror eigenvalue Mu±i
n,k‖ = ±iu±i

n,k‖ on the mirror-symmetric

TABLE III. Relations between the topological indices of the
systems where the mirror symmetry is recovered and partially broken
to the glide mirror symmetry. θn is the Zn number, with θn = 0, 1, . . . ,
n − 1. m is an integer.

Mz or M̃z Normal Superconducting

Broken θ2 = νMz mod 2 θ4 = ν̃M̃z mod 4
Recovered νMz = θ2 + 2m ν̃M̃z = θ4 + 4m

momenta DM[k‖] = k‖, and H (k) is the one-particle or BdG
Hamiltonian. If the recovery of symmetry can be achieved
adiabatically, we have a correspondence of the topological
number between the systems with and without mirror sym-
metry, shown in Table III; the Z2 invariant in Eq. (7) for
the normal state and the Z4 invariant for the superconducting
state correspond to the mod 2 and mod 4 parts of the mirror
Chern number in the system with recovered mirror symmetry,
respectively.

We apply this correspondence to the present Fe(Se,Te)
system. By removing the displacement of chalcogen atoms by
b → 0 in Fig. 1 or, in terms of the tight-binding model, setting
the parameter t0

1 → 0 and t+
1,2 → t−

1,2, the mirror reflection
symmetry with respect to the z = 0 plane

Mz = is3σ0η0 (24)

is recovered. The energy gaps on the kz = 0 and π planes do
not close during this process. Applying the relation in Table III
to the Z2 invariant θ2(kz ) of the band structure in Fig. 2, the
normal state with recovered mirror symmetry has

νMz (0) = 2m + 1, νMz (π ) = 2m, (25)

with an integer m.
In addition, the B1u and B2u gap functions are odd under

the mirror reflection Mz�M−1
z = −�. In this case, the mirror

symmetry operator for the BdG Hamiltonian is given as
M̃z = Mzτ3 [50]. Within the weak-pairing limit � 
 EF , the
BdG Hamiltonian is H ∼ diag(H0,−H0). Therefore, when
the Fermi levels at the � and Z points are located between the
inverted bands as shown in Fig. 2, the mirror Chern number of
the superconducting state can be evaluated as ν̃M̃z

= 2νMz for
kz = 0 and π . By substituting Eq. (25), the Z4 invariant of the
original system without mirror symmetry is evaluated as

θ4(0) = 2, θ4(π ) = 0. (26)

This indicates that the B1u and B2u superconductivity is non-
trivial topological superconductivity protected by glide mirror
symmetry.

We can observe the bulk-edge correspondence of this topo-
logical invariant in the numerical solution for the (110) surface
(Fig. 6). The gapless states between Y and � in both the B1u

and B2u states are characteristics of the surface state protected
by glide mirror symmetry. The B1u and B2u gap functions
are odd under the glide mirror reflection G(k) = C2

4 Peik·t .
Hence, the symmetry of the BdG Hamiltonian is given
as G̃(k)H (k)G̃−1(k) = H (kx, ky,−kz ), with G̃ = G(k)τ3. As
[G̃, H (k)] = 0 is satisfied on the kz = 0 plane, the eigenvalue
of λG̃(k) of G̃(k) is a good quantum number. In addition, at the
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� and X points, time-reversal symmetry requires the Kramers
degeneracy. At the � (X ) point, as the glide mirror eigenvalue
is λG̃ = ±i(±1), eigenstates with different (same) eigenvalues
λG̃ form the Kramers pair. In other words, between the X and
� points, two Kramers pairs must exchange their eigenstates
with different λG̃. This exchange is typical for Möbius twisted
surface states (hourglass fermions) for glide-protected time-
reversal-invariant topological phases [42].

V. CONCLUSION

In summary, we have developed a theory of topological
crystalline phases associated with the Dirac semimetallic
band structure of iron-based superconductors. Based on the
minimal tight-binding model, the Cooper pairing states be-
tween the p and d orbitals, which strongly mix with each
other at the Fermi level, yield odd-parity superconductivity.
Moreover, these superconducting states have nontrivial topo-
logical invariants protected by the generators of the P4/nmm
space group of iron-based superconductors and hence exhibit
characteristic Majorana flat surface states and point and line

nodes of the surface Fermi loop. Our theory is applicable
not only to Fe(Se,Te) and (Li,Fe)OHFeSe, which were ex-
perimentally studied recently [31,38], but also to other iron-
based superconductors obtained by different chemical com-
positions, carrier doping, and so on. Therefore, the observed
results broaden the possibility to obtain the topological crys-
talline phenomena associated with various types of Majorana
fermions in materials to be realized in future.
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