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Stable Hopf-Skyrme topological excitations in the superconducting state

Filipp N. Rybakov,1 Julien Garaud,2 and Egor Babaev1,*

1Department of Physics, KTH-Royal Institute of Technology, Stockholm, SE-10691 Sweden
2Institut Denis-Poisson CNRS/UMR 7013, Université de Tours-Université d’Orléans, Parc de Grandmont, 37200 Tours, France

(Received 18 September 2018; revised manuscript received 22 January 2019; published 10 September 2019)

At large scales, magnetostatics of superconductors is described by a massive vector field theory: the London
model. The magnetic field cannot penetrate into the bulk unless quantum vortices are formed. These are
topological excitations characterized by an invariant: the phase winding. The London model dictates that loops
of such vortices are not stable because the kinetic energy of superflow and the magnetic energy are smaller,
the smaller vortex loops are. We demonstrate that in two-component superconductors, under certain conditions,
such as the proximity to pair-density-wave instabilities, the hydromagnetostatics of the superconducting state
and topological excitation changes dramatically: the excitations acquire the form of stable vortex loops and
knots characterized by the different topological invariant: the Hopf index and hence termed hopfions. This
demonstrates that magnetic properties in a superconducting state can be dramatically different from those of
a London’s massive vector field theory.
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I. INTRODUCTION

The basic macroscopic excitations produced by fluctua-
tions and quenches in an ordinary superconducting state are
closed or knotted vortex loops. Once formed, these loops
are unstable and decay. The question of the existence of sta-
ble knotted vortices was raised by Kelvin in the context of
the “vortex-atoms” theory, which identified atoms to knotted
vortices in luminiferous aether [1]. This theory was falsified
after Michelson and Morley’s experiment ruled out the exis-
tence of aether. Yet, this attempt to build a periodic table of
chemical elements as topologically distinct vortex knots, and
interpret matter as their bound states, had a profound impact
on both mathematics and physics. The necessity to classify
different knots topology in this theory has initiated the field
of knot theory in mathematics [2]. In physics, the principle
to associate topological defects of an underlying field with
“particles,” forming “matter,” reemerged on multiple occa-
sions, notably in Skyrme’s work, which aimed at describing
nucleons as topological solitons [3].

Different particle-vortex dualities were eventually well
established in modern condensed matter physics, most notably
in theories of superfluids and superconductors. The basis for
the duality involves three paradigm-shifting concepts intro-
duced in Onsager’s work on superfluids [4]. First was the
observation that superfluid velocity circulation is quantized,
and thus that vortices carry a quantized topological charge.
The second observation was that the rotation of a superfluid
results in the formation of a lattice or a liquid of quantum vor-
tices, i.e., vortex-lines realization of crystals and liquids. The
third crucial concept is that vortex matter controls many of the
key responses of superfluids. For example, the superfluid to
normal state phase transition is a thermal generation and pro-
liferation of vortex loops and knots [4]. Subsequently, this was
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put on firm theoretical grounds by Feynman [5]. The super-
conducting phase transition was likewise demonstrated to be
driven by the proliferation of vortex loops [6]. A remarkable
particle-vortex duality that describes macroscopic responses
of a system can also be found in the Berezinskii, Kosterlitz,
and Thouless theory [7,8] of two-dimensional superfluids,
where vortices with opposite circulations are mapped onto
particles and antiparticles. In three dimensions, thermal and
quench responses, and turbulent states, are collective states of
vortex loops and knots. However, the crucial difference from
the objects that were conjectured in Kelvin’s theory is that
vortex loops and knots are intrinsically unstable, as follows
from Derrick’s theorem [9]. This implies that an excited
system forms vortex loops and knots that tend to collapse,
as the kinetic energy of the superflow always decreases for
smaller loops or knots. This instability is physically important
as it dictates many of the universal hydrodynamics-based
macroscopic properties of presently known superfluids and
superconductors.

Knotted field configurations have been recently found and
investigated in a broad variety of different physical sys-
tems [10–15]. Research on models supporting stable knots
has been of great interest after stability of these objects,
characterized by a Hopf topological invariant, was found
in the so-called Skyrme-Faddeev model, which opened new
research directions in mathematical physics [16–20]. This is
a model for a three-component unit vector �n = (n1, n2, n3),
with energy density, ESF ∝ (∇�n)2 + (�n · ∂i�n × ∂ j �n)2. While
seemingly unrelated to superconductivity, it was observed that
there exists a formal relation with Ginzburg-Landau theories
of multicomponent superconductors [21,22]. Namely, two-
component Ginzburg-Landau models can be mapped onto
a Skyrme-Faddeev model coupled to an additional massive
vector field. This observation motivated the conjecture that
multicomponent superconductors may support stable knots
with nontrivial Hopf invariant, also termed in various contexts
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knotted solitons, knot solitons, and hopfions. Detailed numer-
ical studies, however, have not demonstrated stability [23].
Reasons for such instability include that the magnetostatic
properties are still well approximated by the London model as
was subsequently discussed both using physical estimates [24]
and formal mathematical approaches [25]. Despite different
analytical arguments made in favor of (meta)stability [24,26]
and findings of the stability of knots in mathematical general-
izations of the Skyrme-Faddeev model coupled to gauge fields
[25,27,28], the prevalent opinion today is that, similarly to
superfluids, knotted vortices are unstable in superconductors.

We demonstrate here that in a class two-component su-
perconducting states, knotted vortices are stable. Many of
the superconducting states of recent interest are characterized
by multicomponent order parameters. This occurs for various
reasons such as chiral or nematic states (for recent examples
see, e.g., [29,30]), or for example due to coexistence of the su-
perconductivity of electrons and nucleons [31–35]. A generic,
but often neglected, effect in multicomponent superconduc-
tors and superfluids is current-current interaction, also known
as the Andreev-Bashkin effect [36,37]. Namely, in superfluid
mixtures with two components, due to the intercomponent
interactions occurring between particles, the current of a
given component j1,2 generically depends on the superfluid
velocities v1,2 of both as follows:

j1 = ρ11v1 + ρ12v2 and j2 = ρ22v2 + ρ21v1. (1)

Here, the coefficients ρ12 and ρ21 determine the fraction of
the density of one of the superfluid components carried by
the superfluid velocity of the other: i.e., the intercompo-
nent drag. Drag coefficients ρ12 and ρ21 can be very large,
for example, in spin-triplet superconductors and superfluids
[38], Fermi-liquid mixtures [31,32], or strongly correlated
systems [39–41].

II. MODEL

Two-component superconductors are described by a dou-
blet � = (ψ1, ψ2)T of complex fields ψa = |ψa|eiϕa (with
a = 1, 2), whose squared moduli |ψa|2 represent the density
of individual superconducting components. Each of the com-
ponents is coupled to the vector potential A of the magnetic
field B = ∇ × A, via the gauge derivative D = ∇ + igA. Such
a system is described by the Ginzburg-Landau free energy
E = ∫

E dr, whose density reads as

E = B2

2
+

∑
a=1,2

γa

2
|Dψa|2 +

∑
a,b=1,2

μab

2
Ja · Jb (2a)

+ ν(�†� − 1)2 + V [�,�†], (2b)

where Ja = Im(ψ∗
a Dψa) = |ψa|2(∇ϕa + gA).

The terms μ12 = μ21 of the current coupling matrix μ̂

describe the intercomponent drag [31,32,36,38–41]. The total
current is the sum of supercurrents in individual components,
which have a similar structure to that described in (1). The first
term in (2b) is responsible for the condensation of supercon-
ducting electrons, such that in the ground state, �†� �= 0. For
ordinary type-II superconductors, a good approximation is the
constant-density (London limit), here it is equivalent to ν →
∞ in (2b). In the simulations we considered the case of g = 1.

Many two-component superconducting states spontaneously
break U(1)×U(1), U(1)×Z2, or U(1) symmetries (see, e.g.,
[29,30,33–35]). Corresponding symmetry-breaking potential
terms are collected in V [�,�†], whose structure is detailed
in Appendix A. For a discussion of the relationship between
the related, but less general, Ginzburg-Landau and Skyrme-
Faddeev models see [24,42].

III. TOPOLOGICAL CHARGE

In two-component superconductors, the simplest vortices
feature 2π phase winding only in one of the components,
e.g., when on a closed contour surrounding the vortex core is∮ ∇ϕ1 ·d� = 2π while

∮ ∇ϕ2 ·d� = 0. These are called frac-
tional vortices (for further details, see, e.g., [37,43]). Integer
flux carrying defects are composite of two fractional vortices.
Topologically nontrivial knotted vortex loops consist of linked
or knotted loops of fractional vortices in each component. As
in Kelvin’s picture, there are infinitely many ways to knot
and link such objects. Topological considerations imply that
knotted vortices are characterized by an integer topological in-
dex Q (see, e.g., discussions given in Refs. [11,16,18,21–24]).
This index, which is conserved when fractional vortices of
different components cannot cross one another, is defined as
(see Appendix B)

Q = − 1

12π2

∫
R3

εi jkεabcd ζa
∂ζb

∂ri

∂ζc

∂r j

∂ζd

∂rk
dr , (3)

where ζ = (Re ψ1, Im ψ1, Re ψ2, Im ψ2)/
√

�†�, and where
ε is the Levi-Civita symbol. Index Q is always an integer
unless � has zeros. The situation where � = 0 can appear
when cores of fractional vortices of different components in-
tersect. However, in the case a constant density, this situation
is impossible. Importantly, if this constraint is removed, we
did not observe core intersections in numerical simulations for
the considered regimes. Transient vortex states characterized
by similar kind of topological indices are rather generic for
two-component superfluids and were experimentally observed
[15]. In superfluids, however, such vortex knots represent
nonstationary objects which are unstable against shrinkage.
The corresponding topological index vanishes when loops
shrink without potential barriers, therefore knotted vortex
configurations in this kinds of superfluids do not represent
topological solitons analogous to discussed in [16–20].

IV. RESULTS AND DISCUSSION

To investigate the existence of stable knotted vortices in
two-component superconductors, we performed a numerical
minimization of the free-energy functional (2), starting from
various initial states of knotted and linked vortex loops. The
numerical computations are related, in a way, to the relaxation
processes of vortex tangles forming due to thermal fluc-
tuations or quenching. Such three-dimensional optimization
problems are highly computationally demanding, which we
address with a code designed for graphic processing units
(GPUs) (see Appendix A for details). Upon finding stable
knotted solutions for various parameters of the model (2), an
in-depth investigation of solutions for various values of the
topological index Q was performed within the London limit
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FIG. 1. Detailed structure of two stable vortex knots with different topological charges. Cyan and magenta tubes denote the positions of
cores of (fractional) vortices defined as lines for which the densities of component |ψ1|2 or |ψ2|2 vanish. Tubes here are density isosurfaces
such that |ψ1,2|2 = 2.5 × 10−2. Panels of the first column show, in addition to vortex cores, a selection of magnetic field streamlines that
circulate within the knot (colored according to the magnitude of |B|), showing chiral structures of the magnetic field. The second column
shows the total current structure J on a selected isosurface where |J|/Jmax = 0.5. This also shows their chiral structures (colors denote values
of the component Jz). The last panels show isosurfaces of the energy densities of the vortex knot solutions.

where �†� = 1 (see Appendix A for details). We confirm
that typically for superconducting models, vortex knots are
unstable. This agrees with the phenomenology of common
superconducting materials where, as in superfluids, vortex
loops minimize their energy by shrinking. However, we find
that properties of knotted vorticity become principally dif-
ferent when Andreev-Bashkin couplings μ̂ are substantially
larger than usual gradient couplings γa. Such a disparity
between coefficients occurs close to two kinds of critical
points. This happens near the phase transition to paired phases
caused by strong correlations [37,39,41]. There, the ratio of
the stiffnesses of counterflows and coflows of the two com-
ponents vanishes, implying that the superconductor acquires
arbitrarily strong Andreev-Bashkin coupling close enough to
the critical point [41]. It can also occur close to the phase
transition to Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state
[44,45]. At such transitions, the coefficients γa change signs
(see, e.g., [46,47]), while the Andreev-Bashkin interaction re-
mains nonzero. Two-component FFLO states and correspond-
ing Ginzburg-Landau models were microscopically derived
for superconding Dirac metals [47]. Hence, even systems with
relatively weak Andreev-Bashkin interactions μab fulfill the
above requirements for disparities of coefficients close to a
FFLO phase transition. We find that in such regimes, energy
minimization from entangled vorticity relaxes to stable vortex
knots.

The detailed structure of two obtained stable vortex knots
is shown in Fig. 1, for a U(1)×U(1) superconductor, where
the parameters γa = 0.02 and μab = 1 correspond to a system

in the vicinity of the above-mentioned phase transitions. Both
topologically different solutions consist of linked and knotted
loops of fractional vortices, which are visualized by tubes cor-
responding to constant-density isosurfaces around their cores.
The energy density of knotted solutions is localized close
to the knot center, thus emphasizing the particlelike nature
of these topological defects (cf. energy density of knotted
solitons in the original Skyrme-Faddeev model [18,20,48]).
The mechanism responsible for the stability of the solutions
follows from the nontrivial scaling of magnetic field energy
produced by knotted currents. During the energy minimiza-
tion process initiated from a large vortex tangle, the solution
first shrinks to reduce the kinetic energy of supercurrents. This
energy gain is eventually counterbalanced by an increase in
magnetic field energy due to the knotted current configuration.
By contrast, a topologically trivial vortex loop that does not
feature helical or knotted currents (such as a loop of a single
fractional vortex) trivially shrinks to zero size.

The superconducting states here support an infinite number
of stable solutions corresponding to topologically different
ways to tie vortex knots. Figure 2 shows 10 stable knotted
vortex loops with the smallest values of the topological in-
dex Q = 1–10, in the case of a U(1)×U(1) superconductor.
Animations showing the structure of knotted vortices and
their formation can be found in the Supplemental Material,
movies 1–3 [49]. Solutions with Q = 1–4 consist of two
linked fractional vortex loops twisted around one another a
varying number of times. For Q = 5 the solution instead is a
bound state of two pairs of linked fractional vortex loops. The
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FIG. 2. Solutions for stable knots with topological charges Q = 1–10. Each panel shows obtained numerically stable solutions. They
consist of two images: the lower image shows a core structure where as in Fig. 1 cyan and magenta tubes are surfaces enclosing the cores of
(fractional) vortices in each component. The upper image shows in addition to vortex cores a selection of magnetic field streamlines circulating
within the knot. Note that when increasing the topological index, the structure of the magnetic field streamlines becomes increasingly more
complex. The last panel shows the dependence of vortex knot energy EQ as a function of the topological index Q. Curves labeled SU(2)iso.,
U(1)×Z2, U(1)×U(1), and U(1) correspond to knotted solutions for different models with various symmetry-breaking potentials while case
SU(2)ani. corresponds to symmetry-breaking gradient terms.

Q = 6 knot consists of two linked trefoil knots. For higher
topological indices Q = 7–10 we find that topological struc-
tures of the vorticity of different components are inequivalent,
thus with solutions forming “isomers.”. For example, the Q =
7 knot features a fractional vortex in one component forming
a trefoil knot linked to two twisted fractional vortex loops of
the other component. For each such isomer solution, there is
an energetically degenerate solution where the linked vorticity
structure is interchanged between components. We obtained
similar stable solutions for two-component models that break
SU(2), U(1)×Z2, and U(1) symmetries. The last panel of
Fig. 2 shows that energy of knotted vortices scales with the
topological charge as EQ ∝ |Q|3/4. Remarkably, the power
law is the Vakulenko-Kapitansky law of Skyrme-Faddeev
model [50]. This scaling of the energy with the topological
charge is quite unique, markedly different from the original
Skyrme model, where the corresponding exponent is equal
to one [51]. This demonstrates that the vortices acquire the
properities similar to those of topological excitations in the
Skyrme-Faddeev model and therefore the existence of close
relationship between the multicomponent gauge theories and
the Skyrme-Faddeev model. This implies that vortex knots are
not only stable, but when increasing the topological index,
knotted vortices minimize their energy by forming complex
bound states of knotted and linked fractional vortices.

V. CONCLUSIONS

The Meissner effect dictates that superconductors can carry
magnetic fields and currents only in a thin layer close to
their surfaces unless they form quantum vortices. An exter-
nal magnetic field creates vortex lines that terminate on su-
perconductor surfaces. Field-induced vortices form different
collective states (lattices, liquids, and glasses), all featuring
distinct transport properties. Closed loops form in the absence
of an external field dynamically, e.g., due to quenches or
entropically due to thermal fluctuations [6,37]. In ordinary
superconductors, vortex loops are not energetically stable and
many universal macroscopic properties are dictated by this
instability [37]. The instability is a fundamental property
of London’s hydrodynamics where the smaller is a vortex
loop, the smaller are the kinetic energy of supercurrents and
magnetic energy. If by contrast the energy associated with a
closed vortex loop starts to increase when it shrinks beyond
a certain size, a superconductor should exhibit very different
basic macroscopic properties. For example, because the pro-
duction of vortex loops depends on the cooling rate, superfluid
stiffness will be history dependent. Slowly cooling through
the phase transition or quenching material will produce a
different number of loops [52,53] that will not decay, thus
differently renormalizing the superfluid stiffness. Moreover,
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magnetic properties will also show a history dependence,
even in zero-field-cooled setups. Magnetization of ordinary
superconductors is determined by the Bean-Livingston barrier
[54,55] which the vortices have to overcome to nucleate at a
surface. By contrast, if the superconductors described here are
rapidly cooled or quenched, they will form stable vortex tan-
gle in their interior. In the case of a sufficiently dense vortex
tangle, the barrier for magnetization will have a principally
different nature, due to the preexistent vortex tangle.

We showed that under certain conditions, in multicompo-
nent superconductors the properties of vorticity are closer to
those in the Skyrme-Faddeev model rather than in the London
model. Namely, knotted vorticity becomes stable and acquires
conserved Hopf topological invariant.
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APPENDIX A: NUMERICAL METHODS AND DETAILS OF
THE MODEL

The Ginzburg-Landau free-energy features a potential term
U = ν(�†� − 1)2 responsible for the nonzero superconduct-
ing ground state �†� �= 0. It is supplemented with additional
terms that explicitly break the global SU(2) symmetry of U
down to different subgroups

V [�,�†] = σ |ψ1|2|ψ2|2 + η
(
ψ1ψ

∗
2 + ψ∗

1 ψ2
)
. (A1)

Solutions were obtained for parameters of kinetic term γa =
0.02 and of current coupling coefficients μab = 1 for a, b =
1, 2 [except of the SU(2)ani. case described below]. To demon-
strate that the existence of stable knotted vortices does not rely
on a specific symmetry of the model, we performed compu-
tations with various representative symmetry-breaking poten-
tials: (i) U(1): σ = −10−4, η = −5 × 10−5; (ii) U(1)×Z2:
σ = 10−4, η = 0; (iii) U(1)×U(1): σ = −10−4, η = 0;
(iv) SU(2), iso.: σ = 0, η = 0; SU(2), ani.: for this partic-
ular case the ground state is invariant under SU(2) rota-
tions, but current-current coupling coefficients were chosen to
break this symmetry: μ11 = μ22 = 0.97 and μ12 = μ21 = 1.
Symmetry-breaking parameters were chosen to be small to
prevent important changes in intrinsic length scales and thus
to prevent substantial changes in the solution size relative
to the numerical lattice spacing. This allowed us to make
quantitatively accurate comparisons of knotted solutions for
different symmetry-breaking potentials. Note that in all cases
the functional is positively defined. In the special case (iv) the

functional is positively defined only in the London limit, i.e.,
as long as the total density is fixed to unity.

In our preliminary simulations, we considered various
values of coefficient ν. When stable vortex knots exit they
have no zeros of total density. The stability properties of
solutions typically improve with increasing ν. However, such
a regime significantly inhibits the convergence of conven-
tional methods of minimization. This phenomenon is directly
related to well-known disadvantages of the penalty function
method. Thus, after finding stable solutions, with different
indices Q in several simulations with variable total density,
and observing no core crossing of the cores of fractional
vortices in different components in these configurations, we
reduced the size of the parameter space by focusing on the
London limit where �†� = 1 to systematically investigate
solutions with a topological index of Q = 1 to Q = 10.

For a computationally efficient investigation of the London
limit, we used the “Atlas” method, which is based on the
efficient navigation of coordinate charts for the order-
parameter manifold, which here is an S3

� (for further infor-
mation on the method, see the Supplemental Materials section
given in Ref. [56]). This is advantageous in that this automat-
ically satisfies the constraint in contrast to the conventional
minimization techniques.

Fields were discretized using a second-order accuracy
finite-difference scheme and a homogeneous cuboidal mesh
with a lattice spacing of 0.5. The grid used consisted of
1603 nodes for solutions with Q � 7 and 2243 nodes for
higher topological charges. To ensure that the solutions were
not artifacts of a finite-simulation domain, we considered
both “fixed” and “free” boundary conditions. Energy was
minimized by applying a nonlinear conjugate gradient (NCG)
method and the Polak-Ribière-Polyak formula. We used a
branched approach to standard NCG by separating all degrees
of freedom into two sets: one associated with gauge degrees
of freedom A and another with superconducting degrees of
freedom ψa. Accordingly, the conventional linear search rou-
tine of the NCG method was replaced with a two-dimensional
search. By separating numerical degrees of freedom according
to their physical features, this approach significantly acceler-
ates the convergence speed of the algorithm. The termination
criterion for convergence was chosen according to [57] with
a function tolerance τF =10−10. The algorithm was paral-
lelized for NVIDIA CUDA-enabled graphics processor units.
Calculations were performed on a set of two video cards
with microprocessors GP102-350-K1-A1. To achieve optimal
performance, most computations were realized using a single-
precision floating-point format (32 bits). To offset truncation
errors from the single-precision arithmetic, we used the Kahan
summation algorithm [58] and a parallel reduction technique
suitable for CUDA [59].

To cross validate our results, we performed simulations
extending beyond the London limit using a different approach
based on finite-element methods and found consistent re-
sults. Fields were discretized within a framework provided by
the FreeFem++ library [60]. Most of the simulations were
performed on four two-socket nodes with 8-core Intel Xeon
E5-2660 processors.
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APPENDIX B: CALCULATION OF A TOPOLOGICAL
INDEX OF VORTEX KNOTS

Different vortex knots are characterized by an integer
index/invariant Q associated with the topological properties
of the maps S3 → S3

� . To calculate this invariant, the
superconducting order-parameter field � is cast into
a four-dimensional vector ζ = (Re ψ1, Im ψ1, Re ψ2,

Im ψ2)/
√

�†�. Note that for ζ to be well defined, there
should be no zeros of �, i.e., no overlap between core
centers of fractional vortices in both components. When
cores of fractional vortices in different components can
cross one another, this generates a point where �†� = 0,
then the topological index Q is not an invariant. Namely,
it can discretely change from different integer values when
fractional vortices in different components cross one another.
Note that when knots are unstable, the invariant changes when
they collapse to a size comparable with that of the numerical
lattice. In the regime where knots are stable, the crossing of
the fractional vortex cores is prevented by a barrier associated
with magnetic energy. This leads to the emergence of the
following topological invariant.

The finiteness of energy implies that a superconductor
should be in the ground state at spatial infinity. It follows
that infinity is identified with a single field configuration
(up to gauge transformations). Hence, the vector field ζ (r)
is a map from the one-point compactified space to the tar-
get 3-sphere ζ : S3 [∼= R3 ∪ {∞}] → S3

� . Maps between 3-
spheres fall into disjoint homopoty classes, the elements
of the third homotopy group π3(S3

� ), which is isomorphic
to integers: π3(S3

� ) = Z. Thereby, ζ is associated with an
integer number, the degree of the map ζ is deg ζ , which
counts how many times the target sphere S3

� is wrapped
while covering the whole R3 space. Field configurations are
thus characterized by the topological index Q := deg ζ which
is calculated using Eq. (3). As discussed, for example, in
[23], the degree of ζ , Q is equal to the Hopf charge of the
combined Hopf map h ◦ ζ : S3 → S2. Formula (3) was used
to calculate the topological invariant of numerically obtained
stable knotted vortex configurations. It was numerically found
to be an integer with an accuracy level ranging within a few
percent.

APPENDIX C: INITIAL STATES USED FOR
ENERGY-MINIMIZATION CALCULATIONS

The energy-minimization calculations were performed for
a variety of vorticity-generating initial states. The initial states
included (i) textures based on hedgehog-type ansatz, (ii)
closely spaced pairs of such a textures, (iii) linked vortex
loops, and (iv) textures based on rational map ansatz. All of
the initial guesses were giving consistent results.

One of the easiest-to-construct initial cases that we exten-
sively used was based on a hedgehog-type texture [61]

(ζ ′
1, ζ

′
2, ζ

′
3) = m sin(χ ), ζ ′

4 = cos(χ ), (C1)

where the unit vector field m is defined as

m1 + im2 = sin(ϑ )e−iQφ, m3 = cos(ϑ ),

and the shape function

χ = π (1 + (r/r0)2e(r/r0 )2
)−1,

where r, ϑ , φ are the spherical coordinates, and r0 is a tunable
parameter that sets the appropriate scale of the texture. For
the initial state to satisfy appropriate behavior at r → ∞, the
vector ζ ′ must be rotated: ζ = R · ζ ′. The generic rotation
matrix and a particular one R̃ in the case of the potential
yielding a U(1)×Z2 symmetry of the ground state are defined
as follows:

R = 1

2

⎛
⎜⎝

1 1 −1 1
−1 1 1 1
1 −1 1 1

−1 −1 −1 1

⎞
⎟⎠,

R̃ = 1√
2

⎛
⎜⎝

0 0 −1 1
0 0 1 1
1 −1 0 0

−1 −1 0 0

⎞
⎟⎠ . (C2)

Thus, at the boundaries of the simulation domain supercon-
ducting degrees of freedom assume ζ = (1, 1, 1, 1)/2, except
in the case of U(1)×Z2 symmetry where ζ = (1, 1, 0, 0)/

√
2.

The vector potential is initially set as a pure gauge A=0.
This initial state generates linked vorticity for which the

topological charge Q is an input parameter. We found that for
the regimes with stable knots, the total topological charge re-
mains invariant throughout minimization. In the Supplemental
Material, video 4 [49] demonstrates the minimization process,
starting from the initial state (C1) with Q = 2. This and all of
the Supplemental Material movies [49] described below were
recorded for the case σ = −10−4, η = 0. To obtain solutions
with a high topological index Q, we placed two separated
textures along the main diagonal of the computational domain
with charges of Q1,2 such that Q1 + Q2 = Q. For example, to
construct a Q = 1 solution, the starting configuration was set
to Q1 = −1, Q2 = 2; for Q = 2, we used Q1 = Q2 = 1, etc.
During minimization, the two initially separated textures were
attracted to one another and eventually merged into a single
texture. The approach of starting with two well-separated
vorticity-seeding initial states, rather than a single one, is very
efficient. This is because it breaks spatial symmetries, thus
minimizing the chance of being trapped in long-living unsta-
ble or weakly metastable states. The Supplemental Material
video 5 [49] demonstrates the minimization process, starting
from two closely spaced textures with Q1 = Q2 = 1.

The Supplemental Material video 6 [49] demonstrates the
minimization process, starting with three circular vortex loops
having two links. Similarly to the cases presented in Supple-
mentary Material movies 4 and 5 [49] this leads to the same
solution with Q = 2.

The Supplemental Material video 7 [49] demonstrates the
minimization process with the initial state corresponding to
rational map ansatz for baryon number |B| = 3 in “tetra-
hedral” case [62]. Such an initial condition, as well as an
axially symmetric ansatz (C1) with Q = 3 (see Supplemental
Material video 8 [49]), lead to the same solution.
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