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In this work, we utilize semiclassical kinetic equations to investigate the order parameter collective modes of
a class of two-dimensional superfluids. Extending the known results for p-wave superfluids, we show that for
any chiral ground state of angular momentum L � 1, there exists a subgap mode with a mass

√
2 � in the BCS

limit, where � is the magnitude of the ground-state gap. We determine the most significant Landau parameter
that contributes to the mass renormalization and show explicitly that the renormalized modes become massless
at the Pomeranchuk instability of the fermion vacuum. Particularly for L = 1, we propose a continuous field
theory to include the Fermi liquid effect in a quadrupolar channel and produce the same result under consistent
approximations. They provide potential diagnostics for distinguishing two-dimensional chiral ground states of
different angular momenta with the order parameter collective modes and reveal another low-energy degree of
freedom near the nematic transition.

DOI: 10.1103/PhysRevB.100.094510

I. INTRODUCTION

In the studies of interacting quantum many-body systems,
collective modes allow physicists to explore the correlated
motions of underlying degrees of freedom. Especially in a
superfluid phase, the order parameter component enriches
the nature of collective excitations. Paradigmatic examples
include the A and B phases of superfluid 3He in (3 + 1)D [1],
where massive subgap modes exist owing to the triplet pairing
structure. They manifest themselves in terms of resonant sig-
natures of transport properties when coupled to a particle-hole
channel [2].

These developments permit various extensions. Natural
questions include: (i) do subgap massive collective modes
also exist in finite angular momentum pairing channels and
in (2 + 1)D space-time? (ii) Do these bosonic degrees of
freedom acknowledge the underlying fermionic state or the
property of the Fermi surface? We pay special attention to
these questions mainly because of the puzzle of ν = 5/2
fractional quantum Hall state. Three of the most prominent
candidates of the ground state, Pfaffian state, T-Pfaffian state,
and anti-Pfaffian state, are understood as p + ip, p − ip, and
f − i f chiral superconductors of nonrelativistic composite
fermions, respectively [3]. Moreover, both experimental [4–6]
and numerical [7] studies have revealed the importance of
nematic fluctuations and quantum criticality in the second
Landau level. As a consequence, a understanding of chiral
superfluids/superconductors including these effects is pur-
sued.

Regarding (i), it is known that the two-dimensional analog
of the B phase hosts four modes of a mass

√
2 � with

angular momenta � = ±2. � is the magnitude of mass of
the Bogoliubov quasiparticle. Similarly, the analog of the
A phase, whose fermionic spectrum is fully gapped in two
dimensions, hosts six modes of mass

√
2 � [8–10]. On

the other hand, (ii) it has been investigated in the context
of (3 + 1)D 3He superfluid with the Fermi liquid theory

[1,11–13], where the corrections to the masses of massive sub-
gap modes and the sound speeds of the Goldstone modes can
be expressed in terms of the Landau parameters. In addition,
for Sr2RuO4 [14], it has been shown that the strong-coupling
effect and gap anisotropy are able to modify the magnitude of
the masses and break the spectrum degeneracy.

This work intends to address the complementary faces
of (i) and (ii). We specifically focus on superfluids in (2 +
1)D with general pairing channels of angular momenta L =
0, 1, . . . For L = 1, the two-dimensional analogs of the A and
B phases are considered, whereas for higher L, we concentrate
on chiral ground states. We look for massive subgap modes
and investigate the mechanisms that may correct their masses
in the long-wavelength limit q = 0.

We find that in the limit with weak coupling and exact
particle-hole symmetry, there is at least one pair of bosonic
modes of universal mass

√
2 � for all L � 1. We investigate

corrections to these degenerate modes owing to fermionic
vacuum in a phenomenological manner and determine the
angular momentum channels substantial for mass renormal-
ization. For a given chiral ground state of angular momentum
L, the order parameter fluctuations longitudinal to the ground
state are renormalized by the Landau parameter in the angular
momentum channel 2L, F2L, and thus correspond to a type of
spin-2L mode.

The Fermi liquid correction is especially intriguing in (2 +
1)D. As we will show shortly in Sec. IV, it implies the subgap
modes soften when F2L is negative. Explicitly, as F2L → −1,
the mass of the collective modes vanishes as√

12(1 + F2L )

6 + F2L
� → 0. (1)

In particular, taking L = 1, the limit F2 → −1 serves as one
of the mechanisms behind nematic electronic phases [15,16].
On top of previous studies on unconventional superconductors
[17] and quantum Hall nematic phases [4–6], this is another
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example where the Pomeranchuk instability in a quadrupolar
channel influences the nature of a paired phase [18] and it
allows us to probe the high-frequency spin-2 mode usually
omitted in literature. We thereby propose a toy model and
compute its effective action in a Gaussian approximation and
show that the kinetic result can be captured after implement-
ing exact particle-hole symmetry.

In our work, (i) we generalize the known high-frequency
subgap modes in p-wave superfluids in (2 + 1)D to higher
angular momentum channels and compute their mass renor-
malizations in terms of the Landau parameters. (ii) Moreover,
for p-wave chiral superfluids, we propose a continuous field-
theory model to include the Landau parameter effect in the
quadrupole channel. In addition to confirming the kinetic
theory result, this model could easily be generalized when
loosening particle-hole symmetry and provides an under-
standing of the underlying nature of spin-2 modes and nematic
fluctuations.

This paper is organized as follows. In Sec. II, we re-
view the semiclassical equation approach for the computation
of collective excitations. The equations derived are used in
Sec. III to compute collective excitations for various ground
states. In Sec. IV, we calculate the Fermi liquid ground-state
effect upon the bare bosonic spectra. Finally, Sec. V presents
a field-theory model for a p-wave chiral superfluid with a
continuous quadrupole interaction. We demonstrate that the
results in Secs. III and IV can be produced in the limit of the
exact particle-hole symmetry. Finally, a summary and several
open directions are composed. The full solutions to the kinetic
equation (2) without assuming q = 0 and � ∈ R, and the
computational method for the effective field theory are present
along with the method in the Appendixes.

II. KINETIC THEORY

Bosonic collective modes in superfluids or superconduc-
tors [19] can be computed with various approaches. In this
section, we start off with the time-dependent mean-field ap-
proximation to include the Fermi liquid corrections. This
approach can be formulated in terms of the generalized
Landau-Boltzmann kinetic equations [1] or the linearized
nonequilibrium Eilenberger equation [12,20]. Though we will
not repeat the derivations of the formalism, which we refer the
readers to Refs. [12,20], we will give a complete elaboration
of the workflow.

In the semiclassical limit, physical quasiparticle distribu-
tion is related to the Keldysh Green’s function ĝ(ε, p̂; ω, q).
In our computation, it is a 4 × 4 matrix function. We use two
sets of Pauli matrices τ = (τ1, τ2, τ3) and σ = (σ1, σ2, σ3)
to span the particle-hole and spin space, respectively. In its
argument (ε, p = pF p̂) are the Fourier transformed variables
of the fast coordinates, where (ω, q) are the Fourier trans-
formed variables of the coordinates of the center of mass
[21]. pF is the magnitude of the Fermi momentum and vF

is the Fermi velocity. In clean limit, the linear response of a
nonrelativistic fermion without spin-orbital coupling is given
by the following kinetic equation:

ε+τ3δ̂g − δ̂gτ3ε− − vF p̂ · qδ̂g − [σ̂0, δ̂g] = δσ̂ ĝ0(ε−)

− ĝ0(ε+) δσ̂ , (2)

where ε± denotes ε ± ω/2. The operator σ̂0(p̂) is the molec-
ular mean field or the self-energy at equilibrium, while
δσ̂ (ω, q) is the linear perturbation of σ̂0. Similarly, ĝ0(ε, p̂)
represents the Keldysh Green’s function at equilibrium. It is
related to the retarded and advanced Green’s functions via
ĝ0 = (gR

0 − gA
0 ) tanh(ε/2T ), which yields [20]

ĝ0 = −2π i(τ3ε − �̂)√
ε2 − |�|2

�(ε2 − |�|2)sgn(ε) tanh
ε

2T
. (3)

The low-energy fluctuation of quasiparticles and the de-
duced physical quantities are given by the ε-integrated
ĝ,
∫∞
−∞

dε
2π i ĝ(ε, p̂; ω, q). In particular, the perturbation δσ̂ is

self-consistently determined by the convolution of the inter-
particle potentials and δ̂g.

To further elaborate, we note that δ̂g has a general structure
in particle-hole space

δ̂g =
(

δg + δg · σ (δ f + δf · σ)iσ2

iσ2(δ f ′ + δf ′ · σ ) δg′ + δg′ · σt

)
, (4)

and accordingly so does δσ̂

δσ̂ =
(

δε + δε · σ (d + d · σ )iσ2

iσ2(d ′ + d′ · σ ) δε′ + δε′ · σt

)
, (5)

where the primed variables are

δg′(p̂; ω, q) = δg(−p̂; ω, q), (6a)

δε′(p̂; ω, q) = δε(−p̂; ω, q), (6b)

δ f ′(p̂; ω, q) = δ f ∗(p̂; −ω,−q), (6c)

d ′(p̂; ω, q) = d∗(p̂; −ω,−q). (6d)

We would like to explain the notations here before mov-
ing forward. The diagonal parts of δ̂g refer to the normal,
or particle-hole, correlation functions 〈ψψ†〉 and 〈ψ†ψ〉,
while the off-diagonal parts denote the anomalous or particle-
particle correlation functions 〈ψψ〉 and 〈ψ†ψ†〉. σ denotes
the Pauli matrices (σ1, σ2, σ3) in spin space as defined earlier
and σt denotes the transposed Pauli matrices. Looking at
the Green’s function δ̂g, in the particle-hole channel, δg and
δg denote spin-independent and spin-dependent correlations,
respectively. In the particle-particle channel, δ f represent the
spin-singlet pairing amplitude and δf the spin-triplet one.
Correspondingly, the diagonal part of the self-energy δσ̂ is
the particle-hole self-energy, including the spin-independent
δε and spin-dependent part δε. The off-diagonal part of the
self-energy is the superfluid gap induced by anomalous corre-
lations. d is the spin-singlet gap, and d denotes the spin-triplet
gap.

Note that physical observables are usually expressed in
terms of the symmetric and anti-symmetric combination of
δg, δ f , and their primed partners. In this work, we define (+)
and (−) combinations of a function f as

f (±) = f ± f ′. (7)

The eigenvalues (±1) represent the parity under charge con-
jugation. As we will see, the charge density and energy stress
tensor correspond to the scalar and quadrupole modes of
δg(+), respectively, whereas the current density is proportional
to the vector mode of δg(−). Similarly, δ f (+) and δ f (−) stand
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for the amplitude and phase fluctuations of the anomalous
correlation functions.

To complete the equations, the correction to the self-energy
is determined by the two-body vertex. Evaluating the internal
momentum integral over the Fermi surface, we have, in the
particle-hole channel [22–24],

δε(p̂; ω, q) = δεext (p̂; ω, q) +
∫

dθ ′

2π
As(θ, θ ′)

×
∫

dε′

4π i
δg(ε′, p̂′; ω, q), (8a)

δε(p̂; ω, q) = δεext (p̂; ω, q) +
∫

dθ ′

2π
Aa(θ, θ ′)

×
∫

dε′

4π i
δg(ε′, p̂′; ω, q). (8b)

These two equations state that at 1-loop, the particle-hole
self-energy consists of external perturbation δεext or δεext and
a fermion loop is closed by a two-body interaction vertex. An
example of δεext is a background inhomogeneous chemical
potential, whereas an example of δεext could be a weak exter-
nal magnetic field. As (Aa) is the spin-independent (exchange)
forward scattering amplitude, which can be rewritten in terms
of Landau parameters F via the relation

A(θ, θ ′) = F (θ, θ ′) −
∫

dθ ′′

2π
F (θ, θ ′′)A(θ ′′, θ ′). (9)

Similar expressions arise in the particle-particle channel.
Since the fluctuations of the superfluid gaps directly come
from the anomalous correlation functions, the off-diagonal
components are related by the linearized gap equations:

d (p̂; ω, q) =
∫

dθ ′

2π
Ve(θ, θ ′)

∫
dε′

4π i
δ f (ε′, p̂′; ω, q), (10a)

d(p̂; ω, q) =
∫

dθ ′

2π
Vo(θ, θ ′)

∫
dε′

4π i
δf (ε′, p̂′; ω, q), (10b)

where Ve (Vo) is the pairing potentials in even (odd) angular
momentum channel.

In two dimensions, the scattering amplitudes and pairing
potentials yield the approximate angular expansions:

A =
∞∑

�=−∞
A�e−i�(θ−θ ′ ), A� = A−�, (11a)

Ve =
∑

�∈{even}
V�[e−i�(θ−θ ′ ) + H.c.], (11b)

Vo =
∑

�∈{odd}
V�[e−i�(θ−θ ′ ) + H.c.], (11c)

from which and (9) we can derive A� = F�

1+F�
, where F� is

the conventional dimensionless Landau parameter of angular
momentum channel �. Notationwise, for other functions, f (p̂)
evaluated at a point on the Fermi surface p̂, the angular
decomposition is defined as

f =
∞∑

�=−∞
e−i�θ f�. (12)

We can then provide a recipe for the computation. We first
invert (2) to obtain the perturbed Green’s function δ̂g as a
function of the equilibrium Green’s function ĝ0, equilibrium
self-energy σ̂0, and perturbed self-energy δσ̂ . Taking the con-
volution as in (8a), (8b), (10a), and (10b) establishes integral
equations for δσ̂ . Projecting equations (10a) and (10b) to
different angular modes � gives us the coupled equations of
d�, d�, δε, and δε. The bare bosonic collective modes are
given by the normal modes of the homogeneous part of the
equations. To include the Fermi liquid corrections, we project
(8a), and (8b) to their �th angular modes as well and solve δε�

and δε� in terms of δεext, δεext, d , and d. Plugging the results
back into the equations for d� and d� yields inhomogeneous
equations sourced solely by external fields. The renormalized
mass spectrum is solved as the poles of the solution kernels.

In the rest of this section, we use the above formulation to
derive the integral equation for two-dimensional spin-singlet
and spin-triplet superfluids and compute the collective modes
and Fermi liquid corrections in the sections following. While
in the main text only the equations in the long-wavelength
limit are presented, the complete set of dynamical equations
are given in Appendix B.

A. Spin-singlet pairing

In a spin-singlet pairing channel, the equilibrium self-
energy is characterized by a complex gap field �:

σ̂0 = �̂ =
(

0 �iσ2

�∗iσ2 0

)
. (13)

The fluctuation of the spin-singlet order parameter can be
parametrized by a complex number d . It transforms as a scalar
under spin rotation SOS (3) and can have internal structures,
i.e., tensor indices under orbital rotation SOL(2) depending
on pairing symmetries. In the absence of magnetic field, the
spin-triplet fluctuations d are decoupled from d . Hence we
consider them separately in the present work.

Plugging (13) into (2), inverting it using the variables de-
fined in (4) and (5), and taking the convolution as in (10a) and
(10b) give us, in the long-wavelength limit, the off-diagonal
components of the molecular fields

d (p̂; ω) =
∫

dθ ′

2π
Ve(θ, θ ′)

[(
γ + 1

4
λ̄[ω2 − 2|�|2]

)
d

− λ̄

2
�2d ′ − ω

4
λ̄�δε(+)

]
, (14a)

d ′(p̂; ω) =
∫

dθ ′

2π
Ve(θ, θ ′)

[(
γ + 1

4
λ̄[ω2 − 2|�|2]

)
d ′

− λ̄

2
(�∗)2d + ωλ̄

4
�∗δε(+)

]
. (14b)

γ is the BCS logarithm given explicitly in Appendix A. The
function λ, often called the Tsunedo function, whose complete
form is given in Appendix A. In q → 0 limit,

λ̄ = λ(p̂; ω)

|�|2 =
∫ ∞

|�|

dε√
ε2 − |�|2

tanh ε
2T

ε2 − ω2/4
. (15)

There could be angular dependence through the anisotropy in
|�|2 even in the long-wavelength limit. Suppose only a single
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pairing channel L is significant, i.e., that V = VL(e−iL(θ−θ ′ ) +
H.c.). Taking

∫
dθ
2π

eiLθ on both sides of (14a) and (14b)
eliminates γ s. The dynamical equations of motion are then
obtained

〈eiLθ λ̄([ω2 − 2|�|2]d − 2�2d ′ − ω�δε(+) )〉 = 0, (16a)

〈eiLθ λ̄([ω2 − 2|�|2]d ′ − 2(�∗)2d + ω�∗δε(+) )〉 = 0, (16b)

where we use the angle bracket 〈· · · 〉 to denote the angular
average

∫ π

−π
dθ
2π

· · · .

B. Spin-triplet pairing

In a spin-triplet pairing channel, the ground-state self-
energy is characterized by the vector-valued gap function �

�̂ =
(

0 � · iσσ2

�∗ · iσ2σ 0

)
. (17)

The fluctuation is encoded in the dynamics of the d vector,
which transforms as a vector under SOS (3), and could contain
internal structure depending on pairing symmetry as well.
Taking two-dimensional p-wave superfluids, for example, it
can be expanded as dμ(p̂) = dμi p̂i, where i = x, y. Inverting
the kinetic equations, the dynamical equations for d in q → 0
limit are

d =
∫

dθ ′

2π
Vo(θ, θ ′)

{[
γ + 1

4
λ̄
(
ω2 − 2|�|2)]d

+ λ̄

2

[
(� · �)d′ − 2(� · d′)�

]
− ωλ̄

4

(
�δε(+) − i� × δε(+))}, (18a)

d′ =
∫

dθ ′

2π
Vo(θ, θ ′)

{[
γ + 1

4
λ̄(ω2 − 2|�|2)

]
d′

+ λ̄

2
[(�∗ · �∗)d − 2(�∗ · d)�∗]

+ ωλ̄

4

(
�∗δε(+) + i�∗ × δε(+)

)}
. (18b)

Again multiplying (18a) and (18b) by V = VL[e−iL(θ−θ ′ ) +
eiL(θ−θ ′ )] and integrating over θ will give us

〈eiLθ λ̄([ω2 − 2|�|2]d + 2(� · �)d′ − 4(� · d′)�)〉
= ω〈eiLθ λ̄(�δε(+) − i� × δε(+) )〉, (19a)

〈eiLθ λ̄([ω2 − 2|�|2]d′ + 2(�∗ · �∗)d − 4(�∗ · d)�∗)〉
= −ω〈eiLθ λ̄(�∗δε(+) + i�∗ × δε(+) )〉. (19b)

In the following section, we will solve (16a), (16b), (19a), and
(19b) for the ground states of different pairing channels and
symmetries.

III. COLLECTIVE MODES

In this section, we utilize the equations derived in the
last section to compute the bare bosonic spectra for various
superconducting ground states. We focus on the chiral ground
states of angular momentum L 
= 0, in which the massive col-
lective modes are interpreted as spin-2L modes. The masses

of order parameter collective modes appear as normal modes
of the homogeneous part in (16a), (16b), (19a), and (19b).
The self-energy δε and δε in Landau channel are treated as
external sources at the zeroth order, and they will renormalize
the above bare masses in the next section as we conclude
Fermi liquid effects.

A. s-wave pairing

For s-wave pairing, it is possible to choose a gauge such
that � ∈ R, in such a limit the amplitude mode d (+) and
phase mode d (−) decouple. The superscripts (+) and (−) are
defined according to (7). The bosonic field has no internal
structure and is simply a complex scalar. Two order parameter
collective modes thus exist and obey the equations

(ω2 − 4�2)d (+) = 0, (20a)

ω2d (−) = 2ω�δε
(+)
0 , (20b)

where the zero-angular momentum quasiparticle energy δε
(+)
0

is obtained under the projection (12). The normal modes have
masses 2� and 0 corresponding to the simplest example of
Higgs and Goldstone bosons, respectively. Note that if we
compute (20b) to the leading nonvanishing order in q2, we
would have obtain (ω2 − 1

2 (vF q)2)d (−), entailing the Gold-
stone boson moves at the speed vF /

√
2. Another observa-

tion is that the Higgs mode receives no external force and
consequently it would not be renormalized by particle-hole
self-energy. On the other hand, the Goldstone boson is sourced
by the density mode δε

(+)
0 , which would trigger the Higgs

mechanism in the presence of the Coulomb interaction.

B. p-wave pairing

Owing to the triplet pairing and orbital structure, the p-
wave pairing states have more degrees of freedom and thus
more collective modes. In two dimensions, the fluctuation of
p-wave superconductors can be represented by the complex
tensor dμi, which contains 3 × 2 complex degrees of freedom,
leading to 12 collective modes in total. The number of the
massless modes NG, as we will see shortly, can be determined
by ground-state symmetry breaking pattern. The rest (6 −
NG) × 2 is number of subgap collective modes.

a. B phase. We first consider the two-dimensional analog
of 3He B phase, where the gap function assumes the form

� = �

pF
(x̂px + ŷpy), � ∈ R. (21)

In this phase, the global symmetry breaks following the pat-
tern SOS (3) ⊗ SOL(2) ⊗ U(1) → SO(2), which immediately
indicates the existence of four Goldstone modes. Besides,
the residual symmetry is SO(2) rotation and we expect the
fluctuations can be characterized by total angular momen-
tum J . Owing to this fact, it is convenient to first decom-
pose dμ into different angular momentum channels dμ =∑

m=±1 dμme−imθ , where θ is the polar angle of p̂, and take
the linear combinations as follows:

D±m = dxm ± idym, (22)

D0m = dzm. (23)
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These Dσσ ′’s form a nice basis in which the dynamical
equations can be solved. Moreover, as the gap function is
real, modes transforming differently under charge conjugation
again decouple. That is to say, we can further separate d (±) =
d ± d ′ degrees of freedom. We first look at the d(−) modes
governed by the equation

(ω2 − 4�2)d(−) + 4(� · d(−) )� = 2ω�δε(+). (24)

Organizing the dynamical equations using the basis Dσσ ′ , we
could find

(ω2 − 4�2)D(−)
0± = 0, (25a)

(ω2 − 2�2)D(−)
±± = 2ω�δε

(+)
±2 , (25b)

(ω2 − 4�2)(D(−)
+− − D(−)

+−) = 0, (25c)

ω2(D(−)
+− + D(−)

−+) = 4ω�δε
(+)
0 . (25d)

Consequently, d (−) has two subgap massive modes J = ±2
of the same mass

√
2 �, sourced by the spin-independent

quadrupolar molecular field δε
(+)
±2 .

Next we look at d (+), which obeys

[ω2d(+) − 4�(� · d(+) )] = −2iω� × δε(+). (26)

Following the same procedure to project each component to
different J sectors, we would obtain

ω2d (+)
0 = −2iω(� × δε(+) ) · ẑ, (27a)

(ω2 − 2�2)D(+)
±± = ∓2ω�δε

(+)
±2 · ẑ, (27b)

ω2(D(+)
−+ − D(+)

+−) = 4�ωδε
(+)
0 · ẑ, (27c)

(ω2 − 4�2)(D(+)
+− + D(+)

+−) = 0. (27d)

Again modes D(+)
±± have the rest mass

√
2 � and they are

driven by the z component of the spin-dependent quadrupolar
fields δε

(+)
±2 · ẑ.

b. A phase. Considering only the continuous symme-
try, thetwo-dimensional A phase has a different symmetry
breaking pattern SOS (3) ⊗ SOL(2) ⊗ U(1) → UL−N/2(1) ⊗
USz (1). The residual symmetry contains two parts. UL−N/2(1)
refers to the combination of orbital and phase rotation. The
order parameter is symmetric when an orbital rotation of angle
α is followed by a phase rotation −α/2. The USz (1) is the
residual spin rotation about the direction of the ground state
�.

Let us now consider a p + ip ground state described by

� = px + ipy

pF
�ẑ = eiθ�ẑ, � ∈ R. (28)

The dynamic equations for d� and d′
� (� = ±1) are now

coupled and given as follows:

〈ei�θ [(ω2 − 2�2)d + 2�2d′e2iθ − 4�2ẑ(ẑ · d′)ei2θ ]〉
= ω�〈ei�θ eiθ [ẑδε(+) − iẑ × δε(+)]〉, (29a)

〈ei�θ [(ω2 − 2�2)d′ + 2�2de−2iθ − 4�2ẑ(ẑ · d)e−i2θ ]〉
= −ω�〈ei�θ e−iθ [ẑδε(+) + iẑ × δε(+)]〉. (29b)

We first look at the angular modes d�=1 and d′
�=−1. They

obey the equations

(ω2 − 2�2)d1 = ω�〈ẑδε(+)
2 − iẑ × δε

(+)
2 〉, (30a)

(ω2 − 2�2)d′
−1 = −ω�〈ẑδε(+)

−2 + iẑ × δε
(+)
−2 〉, (30b)

and have the same mass
√

2 �. The external forces consist of
both spin-dependent and spin-independent molecular fields,
both of which are projected to quadrupolar channels. On the
other hand, equations for d�=−1 and d′

�=1 are coupled. Solving
these equations, one can find three massless modes and three
modes with the mass 2�. The external forces on the right-
hand sides of (30a) and (30b) consist of both spin-dependent
and spin-independent molecular fields, both of which are
projected to the quadrupolar channels.

C. d-wave pairing

The d-wave gap fluctuation is captured by the complex
field di j p̂i p̂ j with the irreducible complex degrees of freedom
1 × 2, represented by the modes d±2e∓i2θ . In this work, we
consider the chiral ground state

�

p2
F

(px + ipy)2 = �ei2θ , � ∈ R. (31)

Equations (16a) and (16b) then become

(ω2 − 2�2)d2 = ω�δε
(+)
4 , (32a)

(ω2 − 2�2)d ′
−2 = −ω�ε

(+)
−4 , (32b)

(ω2 − 4�2)(d−2 + d ′
2) = 0, (32c)

ω2(d−2 − d ′
2) = 2ω�δε

(+)
0 . (32d)

Clearly d2 and d ′
−2 have masses

√
2 � and the external

driving forces have angular momenta ±4.

D. Higher L chiral ground states

Extending the analyses for p and d channels, we could
actually consider a more general ground state

singlet : �eiLsθ , Ls = even, (33a)

triplet : ẑ�eiLt θ , Lt = odd. (33b)

Modes dLs , d ′
−Ls

, dLt , and d′
−Lt

would automatically satisfy

(ω2 − 2�2)dLs = ω�δε
(+)
2Ls

, (34a)

(ω2 − 2�2)d−Ls = −ω�δε
(+)
−2Ls

, (34b)

(ω2 − 2�2)ẑ · dLt = ω�δε
(+)
2Lt

, (34c)

(ω2 − 2�2)ẑ · d′
−Lt

= −ω�δε
(+)
−2Lt

. (34d)

In this sense,
√

2� is a universal order parameter collective
mode for any chiral ground state of the angular momentum
L, each of which is sourced by quasiparticle self-energy
δε2L. Since the right-hand sides belong to specific angular
momentum channels, the collective modes could be regarded
as generalized spin-2L modes.
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IV. FERMI LIQUID CORRECTIONS

In the previous section, we found that for chiral ground
states of given L, spin-2L bosonic modes dL and d ′

−L have the
finite mass

√
2�. In this section, we compute the Fermi liquid

corrections to the mass spectra. Before presenting quantitative
details, we point out some general features. Those modes with
the mass 2�, e.g., Eq. (20a), in general, are not sourced by
fermionic self-energy, and consequently these modes are not
renormalized. On the other hand, for those massless modes,
e.g., Eq. (20b), short-range fermionic self-energy can at most
renormalize the sound speed and the magnitude of external
source fields instead of generating a gap. We will therefore
focus on the spin-2L modes of mass

√
2 �.

A. Massless modes

Let us first look at the massless modes in the s-wave
channel (20b). The right-hand side δε

(+)
0 consists of pure

external perturbation and the renormalization coming form
the integral part of (8a). Since we have rewritten Eqs. (8a)
and (8b) using F (θ, θ ′) instead of A(θ, θ ′), we substitute
the properly normalized external perturbations δεext and δεext

with new symbols δu and δu. In the long-wavelength limit,

δε(+)(θ ) = δu(+) +
∫

dθ ′

2π
F s(θ, θ ′)

[
−λδε(+) + ωλ

2�
d (−)

]
.

(35)

Projecting out � = 0 component, we obtain(
1 + λ(ω)F s

0

)
δε

(+)
0 = δu(+)

0 + ωλ

2�
F0d (−), (36)

plugging which back into (20b) yields

ω2d (−) = 2ω�δu0. (37)

It entails that d (−) remains massless. To demonstrate a triplet-
pairing example, we look at B phase (21) and (25c). For
triplet-pairing states, the diagonal term of (8a) reads

δε(+)(θ ) = δu(+) +
∫

dθ ′

2π
F s(θ, θ ′)

×
[

− λ(ω)δε(+) + 1

2
ωλ̄� · d(−)

]
, (38)

whose projection to �th mode is

δε
(+)
� = δu(+)

� + 1
2 λ̄ωF s

� (� · d(−) )�
1 + λ(ω)F s

�

. (39)

For � = 0,

B : δε
(+)
0 = δu0 + λω

4�
F s

0 (D(−)
+− + D(−)

−+)

1 + λF s
0

(40)

and we again find

ω2(D(−)
+− + D(−)

−+) = 4ω�δu0. (41)

The dynamical equations for d0 and D{+−} are not modified by
F s

0 , which implies that short-range interactions are not capable
of gapping the Goldstone mode.

B. Massive subgap modes

Let us continue to examine how Landau parameters renor-
malize massive modes. We start with the B phase (25b). Take
� = ±2 component of (39):

B : δε
(+)
±2 = δu±2 + ωλ

4�
F s

2 D(−)
±±

1 + λF s
2

. (42)

Plugging this back into (25b) renormalizes the solutions as

D(−)
±± = 2ω�δu±2

(ω2 − 2�2) + 1
2λF s

2 (ω2 − 4�2)
. (43)

The new mass is given by the zero of the denominator. In the
limit |F s

2 |  1,

ω2 � 2�2
(
1 + 1

2λF s
2

)
. (44)

λ is a positive number of order 1. We can see modes get heav-
ier for repulsive interactions F s

2 > 0 and soften for attractive
interactions F s

2 < 0.
Next let us look at the mode in the A phase (27b) sourced

by spin-dependent quasiparticle energy:

δε(+)
z (θ ) = δuz +

∫
dθ ′

2π
F a(θ, θ ′)

×
[

− λδε(+)
z − iω

2
λ̄(� × d(+) )z

]
(45)

with δuz = δu · ẑ. Projecting it to � = ±2 modes,

δε
(+)
z,±2 = δuz,±2 ∓ F a

2
ωλ
4�

D(+)
±±

1 + λF a
2

. (46)

Substituting this back into (27b) yields

D(+)
±± = ±2ω�δuz,±2

(ω2 − 2�2) + 1
2λF a

2 (ω2 − 4�2)
. (47)

Therefore the mass correction is given by the same transcen-
dental equation with the replacement F s

2 → F a
2 .

We are now ready to repeat the above computation for
general chiral ground states. As it can be inferred from the
previous analyses, the equations for singlet-pairing states are
identical to ones for the longitudinal components (d · �) of
the triplet-pairing states. Moreover, higher L states also have
the same algebraic forms. Hence, we will concentrate on
triplet-pairing states and take L = 1 without loss of generality.

The main difference between the preceding analyses and
the one for general chiral states is that the gap function can
no longer be chosen real and d (±) are no longer a good
basis. Consequently, the scalar self-energy would satisfy the
equation

δε(+) = δu+ +
∫

dθ ′

2π
F (θ, θ ′)

×
[

− λδε(+) + 1

2
ωλ̄(� · d − � · d′)

]
. (48)

Let us take the z component of (30a) and (30b)

(ω2 − 2�2)d1z = ω�δε
(+)
2 , (49)

(ω2 − 2�2)d ′
−1z = −ω�δε

(+)
−2 . (50)
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FIG. 1. The root to (55) depending on the value of Landau
parameter F .

Renormalizing δε
(+)
±2 with (48), we find

d1z = ω�δu(+)
2

(ω2 − 2�2) + 1
2λF s

2 (ω2 − 4�2)
, (51a)

d ′
−1z = ω�δu(+)

−2

(ω2 − 2�2) + 1
2λF s

2 (ω2 − 4�2)
. (51b)

Finally we look at the transverse fluctuation by looking at the
x component:

(ω2 − 2�2)d1x = −iω�(ẑ × δε
(+)
2 )x, (52a)

(ω2 − 2�2)d ′
−1x = −iω�(ẑ × δε

(+)
−2 )x. (52b)

The spin-dependent self-energy now takes the form

ẑ × δε(+) = ẑ × δu(+) +
∫

dθ ′

2π
F a(θ, θ ′)

×
[
−λẑ × δε(+) − i

ω

2
λ̄ẑ×[(�∗ × d)+(�×d′)]

]
.

(53)

Projecting it to � = ±2 allows to solve

d1x = −iω�(ẑ × δu(+) )2

(ω2 − 2�2) + 1
2λF a

2 (ω2 − 4�2)
. (54)

To sum up, the analyses in this section have shown the
following. (i) The Goldstone modes are not gapped by short-
range interaction parametrized by Landau parameters. (ii) For
p-wave superconductors in both B and A phases, the subgap
modes

√
2 � receive renormalization from quadrupolar Lan-

dau parameters F s
2 or F a

2 . (iii) For all chiral ground states of
finite orbital momenta L, the subgap modes parallel to their
ground states receive mass renormalization from the channel
F s

2L. The mass corrections referred to in (ii) and (iii) are all
determined by the following equation:

(ω2 − 2�2) + 1
2λ(ω)F (ω2 − 4�2) = 0. (55)

In Fig. 1, we plot the numerical solution to (55) as a function
of F , which stands for the Landau parameter of the channel of

interest. Intuitively, we acquired, from the small F expansion,
that a strong repulsive interaction in particle-hole channel
increases the magnitude of the gap, which asymptotically
approaches the pair-breaking threshold 2�. On the other hand,
an attractive interaction softens the mass of order parameter.
In particular, we see the mode would become massless as F =
−1, at which the Pomeranchuk instability of two-dimensional
Fermi liquid is triggered.

We can then look at the region F = −1 + ε with ε  1.
At T = 0, we can expand the equation (55) around ω2 ≈ 0
and extract its dependence on F near the instability. Using
the closed form (A5a), we can deduce that Eq. (55) has the
zero at

ω2 = 3(1 + F )

6 + F
× 4�2 ≈ 12

5
ε�2. (56)

This expression allows us to study how this mode becomes
massless as we approached the instability.

V. FIELD-THEORY MODEL FOR CHIRAL
p-WAVE SUPERFLUID

A complete kinetic theory treatment for both spin-singlet
and spin-triplet chiral superfluids in the previous section
has been conducted. However, it is still tempting to acquire
an effective theory formulation, which would allow us to
investigate the problem with techniques and insights across
communities. Here, we propose a toy microscopic model for
L = 1 p-wave chiral superfluid at T = 0. The corresponding
Pomeranchuk instability in 2L = 2 channel triggers the charge
nematic order. In the approximation consistent with the ki-
netic theory approach, it reproduces exactly the same result,
and moreover reveals the spin-2 nature of the subgap modes
of interest.

Let us consider a two-dimensional spin-polarized nonrela-
tivistic fermion ψ with the kinetic term HF[ψ], a short range
pairing potential in L = 1 channel HV [25], and a quadrupolar
density interaction HQ devised in Ref. [16]. Note that the spin
degree of freedom is frozen in this regard, and therefore we
no longer have the SOS (3) symmetry to start with. The model
thus describes a minimalistic p-wave superfluid. The system
presented in the previous section in this sense is considered
to be three copies of the model here. Nonetheless, these
ingredients suffice to produce the subgap modes and their
renormalization. The exact form of the models read

HF =
∫

d2k

(2π )2
ψ

†
k

(
k2

2m
− εF

)
ψk :=

∫
d2k

(2π )2
ψ

†
kξkψk,

(57a)

HV = − 1

p2
F

∫
d2k

(2π )2

d2k′

(2π )2
V1ψ

†
−kψ

†
kk · k′ψk′ψ−k′ , (57b)

HQ = 1

2

∫
d2q

(2π )2
f2(q)M(−q) · M(q), (57c)

where M = (M1, M2)T is defined by the quadrupole moment
of particle density(

M1 M2

M2 −M1

)
= − 1

p2
F

ψ†

(
k2

x − k2
y 2kxky

2kxky k2
y − k2

x

)
ψ (58)
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and

f2(q) = f2

1 + κq2
= ν−1

2D

F2

1 + κq2
. (59)

ν2D = m
2π

, denoting the density of state of 2D electron gas,
and F2 is the conventional Landau parameter. Owing to the
frozen spin degree of freedom, the F2 here corresponds to
the spin-independent Landau parameter, F s

2 in the previous
section. κ characterizes the interaction range and is irrele-
vant in the long-wavelength properties explored below. We

introduce Hubbard-Stratonovich fields (φ, φ†), (�,�†), and
(Q̄, Q) to decouple the two-body terms and rewrite the full
action as

S =
∫

d3x �†(i∂t − H )BdG�

− 1

2V1

∫
d3x (φ†φ + �†�) +

∫
d3xQ̄ f −1

2 (−i∇ )Q,

(60)

where � = 1√
2
(ψ,ψ†)T and

(i∂t − H )BdG =
(

i∂t − ξ(−i∇ ) 0

0 i∂t + ξ(−i∇ )

)
+ p−2

F

(
Q(∂x − i∂y)2 + Q̄(∂x + i∂y)2 0

0 −[(∂x − i∂y)2Q + (∂x + i∂y)2Q̄]

)

− i

pF

(
0 φ(∂x − i∂y) + �(∂x + i∂y)

φ†(∂x + i∂y) + �†(∂x − i∂y) 0

)
. (61)

The derivatives are understood to act on all quantities on their right. From the structure of the action, we see φ and � represent
the p − ip and p + ip pairing amplitudes, respectively. In the mean-field limit,

p − ip : 〈φ〉 = �, 〈�〉 = 0, (62a)

p + ip : 〈φ〉 = 0, 〈�〉 = �. (62b)

On the other hand, Q and Q̄ represent the nematic order parameters.
To proceed, we consider a ground state with a gapped fermion spectrum from either of the above choices, integrate the fermion

sector, and compute the bosonic Gaussian fluctuation. In the explicit computation following, we choose the p − ip ground state
(62a) and shift φ → � + φ so that φ presents purely the fluctuation. In this scenario, φ and � would be playing the role of
d · ẑ in our kinetic approach. Note that the particle-hole symmetry is usually assumed in kinetic theory, whereas it is exact
only on the Fermi surface. The effective field theory respecting this symmetry would acquire an emergent relativistic covariant
form [26], even though the microscopic origin might rather respect Galilean symmetry. In the long-wavelength limit q → 0, the
particle-hole symmetry can be implemented by evaluating loop momentum on the Fermi surface and extending the depth of the
Fermi sea to infinity. Using the method and Feynman rules summarized in Appendix C, the resulting effective action has
the form

Seff = S0[�0, φ, φ†] +
∫

d3q

(2π )3
(Q̄(q)MQ̄Q(q)Q(q) + �†(q)M�†�(q)�(q) + MQ�(q)Q(−q)�(q) + MQ̄�† (q)Q̄(−q)�†(q)).

(63)

The leading part S0 contains the mean-field free energy,
Goldstone fluctuations (φ† − φ)/i, and the amplitude mode
φ† + φ. The bare masses of Q and � are given by
the zeros of MQ̄Q and M�†�, whose explicit forms are
given by

MQ̄Q = ν2D

(
λ(ω) + 1

F2

)
, (64)

M�†� = ν2Dλ(ω)

8�2
(ω2 − 2�2). (65)

λ is again the Tsunedo function (A5a). Hence, the bare mass
of Q depends on the parameter F2 and becomes soft as
F2 → −1. On the other hand, the mass of � is shown to be
m� = √

2 �, in agreement with the result (30a) and (30b).
The Fermi-liquid correction can now be understood in terms
of the coupling Q� and Q̄�†

MQ� = MQ̄�† = −ν2Dωλ(ω)

4�
, (66)

indicating � and Q are actually not independent modes. As
F2 
= −1 and Q has a finite bare mass, we are able to integrate
out Q to obtain a more compact effective theory.

Seff = S0 +
∫

d3q

(2π )3

ν2Dλ̄(ω)

8(1 + F2λ(ω))
�†(ω)

×
[

(ω2 − 2�2) + 1

2
λ(ω)F2(ω2 − 4�2)

]
�(ω), (67)

reproducing explicitly the result (55). Alternatively, one could
integrate out � to derive an effective theory of Q.

Seff = S0 +
∫

d3q

(2π )3
ν2DQ̄(ω)

×
[

ω2 − 4�2

2(ω2 − 2�2)
λ(ω) + 1

F2

]
Q(ω). (68)

Straightforward investigation shows the renormalized mass of
Q in the above action is still given by (55).
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In addition to reproducing the known result, the field-
theory approach already offers some implications beyond the
semiclassical kinetic theory approach.

(1) The exact value
√

2 � is closely related to the assump-
tion of particle-hole symmetry, or the approximate relativis-
tic nature of the fermionic superfluid on the Fermi surface.
Loosening this approximation allows corrections of order
�/εF . Moreover, a term �†i∂t� appears in the action if we
breaks particle-hole symmetry during computation, which in
turn modifies the value of the bare mass m� as well. In this
computation, we impose the particle-hole symmetry in order
to be consistent with the assumptions of the kinetic theory.
While one could compute nonuniversal corrections to the
value of m� by breaking the particle-hole symmetry, we
comment that in the weak-coupling computation, terms odd in
frequency merely change the mass slightly and the magnitude
of m� would remain O(�). The qualitative fact that this mass
is reduced by negative F2 is not affected.

(2) In the presence of a condensate, operators are classified
by the residual symmetry respected by the ground state.
Taking the p − ip ground state, for instance,

�p ∼ (px − ipy)〈ψ (−p)ψ (p)〉. (69)

�p is symmetric under a combination of U(1) charge transfor-
mation and orbital rotation

ψ → eiα/2ψ, (70a)(
px

py

)
→
(

px cos α − py sin α

py cos α + px sin α

)
. (70b)

In this example, the operators are classified using the angular
momentum � defined by this combined transformation O →
ei�αO. In particular, the fluctuation of p + ip condensate
transforms as

(px + ipy)〈ψ (−p)ψ (p)〉 → e2iα (px + ipy)〈ψ (−p)ψ (p)〉
(71)

and has angular momentum � = 2. Similarly, the nematic
order parameter transforms as

(px + ipy)2〈ψ†(p)ψ (p)〉 → e2iα (px + ipy)2〈ψ†(p)ψ (p)〉,
(72)

indicating both operators possess the spin-2 nature under the
residual symmetry group. The spin-2L states can also be
understood from this perspective. Besides, that � and Q are
not independently fluctuating can be explained in terms of
the notion of emergent geometry [27,28]. The nematic order
parameters Q := (Q1 + iQ2)/2 and Q̄ := (Q1 − iQ2)/2, un-
der a proper normalization [29], also parametrize an emergent
unimodular metric gi j via

g := exp

(
Q1 Q2

Q2 −Q1

)
. (73)

Similarly, the order parameters of a p-wave superfluid �i

also define an emergent geometric degree of freedom Gi j ∼
�∗i� j . The subgap modes, in this language, correspond to the
spin-2 sector of G. Placed on a flat space and close to equilib-
rium, both g and G favor the Euclidean metric δi j . Hence, their

fluctuations, both being spin-2, are indistinguishable from this
geometric perspective.

(3) In previous studies, these modes are usually overlooked
regarding low-energy physics [30], even though they are re-
sponsible for electromagnetic response at high frequency [2].
That the spin-2 mode becomes soft as F2 = −1 suggests that
an effective low-energy theory different from one in Ref. [30]
should be formulated to incorporate a spin-2 mode close to
a nematic critical point. While different microscopic models
could produce different results depending on model depen-
dent parameters, symmetry principle together with the above
geometric picture suggests an effective action that replaces the
background geometry with the internal fluctuating geometry.
A proper microscopic model is then responsible for correctly
producing effects such as the analogous Hall viscosity, which
comes from a Q̄∂t Q term in effective action. The existence
of this term breaks time reversal symmetry and distinguish a
p − ip ground state from a p + ip one. This issue is beyond
the scope of current work and will be addressed in detail
separately in the future.

VI. CONCLUSION

In conclusion, we revisit a class of two-dimensional super-
fluids. Using the semiclassical kinetic equation, we compute
the order parameter collective modes for the two-dimensional
B phase and general chiral ground states of angular momenta
L � 0. Extending the known results for L = 1, we show that
the subgap modes of the universal mass value

√
2 � exist for

all chiral ground states L � 1 in the limit with exact particle-
hole symmetry. By renormalizing the fermionic self-energy,
we calculate the correction of these subgap modes from
Fermi liquid corrections and discover those subgap modes,
sourced by F2L, could be regarded as spin-2L modes, where
L is the angular momentum of their underlying ground state.
The masses increase for repulsive fermionic interactions and
soften for attractive ones. Remarkably, renormalized subgap
modes become gapless when the Pomeranchuk instability in
the corresponding channel is triggered.

Moreover, we proposed a toy model for the case L =
1, whose effective bosonic action is able to reproduce the
kinetic result under the consistent approximations. This model
could describe a p-wave chiral superfluid near a nematic
critical point, and furthermore allows us to loosen the common
assumptions made in semiclassical approaches and utilize
the insights from field-theory communities to understand the
nature of the subgap modes. We hope that the approaches and
conclusions drawn from this work could provide the studies
of quantum Hall nematic physics and nematic unconventional
superfluid a complementary perspective and new insights.
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APPENDIX A: γ AND THE TSUNEDO FUNCTION λ

The integral γ is∫ ∞

|�|

dε

2π i

1√
ε2 − |�|2

tanh
ε

2T
= γ . (A1)

It is formally divergent, but can be regularized and identified
with 1/V� [or 1/(2V0)] using linearized gap equation.

The function λ was first introduced by Tsunedo as a kind
of Cooper pair susceptibility:

λ̄(p̂; ω, q) = λ

|�(p̂)|2

=
∫ ∞

−∞

dε

2π i

n(ε−)(2εω − η2) − n(ε+)(2εω + η2)

(4ε2 − η2)(ω2 − η2) + 4|�|2η2
,

(A2)

where η = vF q · p̂ and

n(ε) = − 2π isgn(ε)√
ε2 − |�|2

�(ε2 − |�|2) tanh
ε

2T
. (A3)

In q → 0 limit, the integral reduces to

λ = |�|2
∫ ∞

|�|

dε√
ε2 − |�|2

tanh ε
2T

ε2 − ω2/4
. (A4)

These expressions can be used in numerical evaluation. This
function actually has an analytic closed form in the limit T →
0. Writing x = ω/(2|�|),

λ(ω) = sin−1 x

x
√

1 − x2
, |x| < 1, (A5a)

where as for |x| > 1,

λ(ω) = 1

2x
√

x2 − 1

[
ln

∣∣∣∣
√

x2 − 1 − x√
x2 − 1 + x

∣∣∣∣+ iπsgn(x)

]
.

(A5b)

APPENDIX B: FULL DYNAMICAL EQUATIONS

In this section, we sketch the steps for inverting the ki-
netic equation and give the full dynamical equations at finite
wavelength. Expanding (2) with respect to the ground state of
interest, we could found components of the Keldysh Green’s

function satisfy a general equation

�|̂g〉 = M|σ̂ 〉. (B1)

The quasiclassical Green’s functions can thus be obtained
via ∫

dε

2π i
|̂g〉 =

∫
dε

2π i
�−1M|σ̂ 〉. (B2)

We note that when performing ε integral in this work, the
particle-hole symmetry ε ↔ −ε is assumed.

The defined in (B1) the matrices are

� =

⎡⎢⎣ −η ω 2i�I −2�R

ω −η 0 0
2i�I 0 −η 2ε

2�R 0 2ε −η

⎤⎥⎦ (B3)

and

M =

⎡⎢⎣ 0 −ma −ins�I ns�R

−ma 0 −na�R ina�I

−i�Ins �Rna 0 −ms

−ns�R ina�I −ms 0

⎤⎥⎦. (B4)

�R and �I are the real and imaginary parts of the gap
function. In terms of the n defined by (A3), the elements in
M are

ns = n(ε+) + n(ε−), (B5a)

na = n(ε+) − n(ε−), (B5b)

m = εn(ε), (B5c)

ms = m(ε+) + m(ε−), (B5d)

ma = m(ε+) − m(ε−). (B5e)

In the rest of the section, we give the proper combinations
|̂g〉 and |σ̂ 〉 and the complete dynamical equations.

1. Singlet-pairing ground state

For a singlet-pairing state, the bosonic fluctuation couples
only to spin independent fermionic self-energies, and the
relevant equations are those which δg, δg′, d , and d ′ obey.
These equations can be easily solved by taking

|̂g〉 =

⎛⎜⎜⎝
δg(−)

δg(+)

δ f (+)

δ f (−)

⎞⎟⎟⎠, |σ̂ 〉 =

⎛⎜⎜⎝
δε(−)

δε(+)

d (+)

d (−)

⎞⎟⎟⎠. (B6)

Expressing |̂g〉 in terms of |σ̂ 〉 and performing convolutions
with suitable potentials would imply the following equations:

δε(−)(p̂; ω, q) − δε
(+)
ext =

∫
dθ ′

2π
As(θ, θ ′)

{[
1 + (1 − λ(p̂′))

η′2

ω2 − η′2

]
δε(−)(p̂′)

+ ωη′

ω2 − η′2 (1 − λ(p̂′))δε(+)(p̂′) + λ̄(p̂′)η′

2
[d (p̂′)�∗(p̂′) − �(p̂′)d (p̂′)]

}
, (B7a)

δε(+)(p̂; ω, q) − δε
(+)
ext =

∫
dθ ′

2π
As(θ, θ ′)

{
ωη′

ω2 − η′2 (1 − λ(p̂′))δε(−)(p̂′)

+ ω2

ω2 − η′2 (1 − λ(p̂′))δε(+)(p̂′) − 1

2
ωλ̄(p̂′)[d ′(p̂′)�(p̂′) − d (p̂′)�∗(p̂′)]

}
, (B7b)
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d (p̂; ω, q) =
∫

dθ ′

2π
Ve(θ, θ ′)

{[
γ + 1

4
λ̄(p̂′)(ω2 − η′2 − 2|�(p̂′)|2)

]
d (p̂′)

− λ̄(p̂′)
2

�2(p̂′)d ′(p̂′) − �(p̂′)λ̄(p̂′)
4

[η′δε(−)(p̂′) + ωδε(+)(p̂′)]
}
, (B7c)

d ′(p̂; ω, q) =
∫

dθ ′

2π
Ve(θ, θ ′)

{[
γ + 1

4
λ̄(p̂′)(ω2 − η′2 − 2|�(p̂′)|2)

]
d ′(p̂′)

− λ̄(p̂′)
2

(�∗(p̂′))2d (p̂′) + �∗(p̂′)λ̄(p̂′)
4

[η′δε(−)(p̂′) + ωδε(+)(p̂′)]
}
. (B7d)

2. Triplet-pairing ground state

For a triplet-pairing ground state, the vectors d and d′ couple to both spin-dependent and independent self-energies. We denote
the direction of the ground-state condensate � as n̂. To solve vector quantities d and ε, we decompose them into the longitudinal
L and transverse T components with respect to n̂, that is, a vector v is decomposed as v = vL + vT , where vL = n̂(v · n̂).
The complete set of equations can be solved by considering the following combinations of {|̂g〉, |σ̂ 〉}. The part coupled with
spin-independent δg is the longitudinal modes ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
δg(−)

δg(+)

δf (+)
L

δf (−)
L

⎞⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎝
δε(−)

δε(+)

d(+)
L

d(−)
L

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭. (B8a)

The part coupled with the spin-dependent δg, on the other hand, includes the transverse and binormal parts of the anomalous
Green’s function. ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
n̂ × δg(−)

n̂ × δg(+)

iδf (−)
T

iδf (+)
T

⎞⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎝
n̂ × δε(−)

n̂ × δε(+)

id(−)
T

id(+)
T

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭; (B8b)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
δg(−)

T

δg(+)
T

iδf (−) × n̂

iδf (+) × n̂

⎞⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎝
δε

(−)
T

δε
(+)
T

id(−) × n̂

id(+) × n̂

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭. (B8c)

The above two sets of vectors give only the binormal and transverse information about δg. It turns out the spin-singlet components
δ f and d are required to access the longitudinal information of δg using the combination below:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎝
δg(+)

L

δg(−)
L

δ f (+)

δ f (−)

⎞⎟⎟⎟⎟⎠,

⎛⎜⎜⎜⎜⎝
δε

(+)
L

δε
(−)
L

d (+)

d (−)

⎞⎟⎟⎟⎟⎠
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭. (B8d)

These spin-singlet degrees of freedom δ f and d are treated as external sources and turned off at the end of computation. After
solving all above |̂g〉 in terms of |σ̂ 〉, we could again make use of (8a), (8b), (10a), and (10b) to obtain the following equations:

δε(−)(p̂; ω, q) − δε
(−)
ext =

∫
dθ

2π
As(θ, θ ′)

{[
1 + (1 − λ(p̂′))

η′2

ω2 − η′2

]
δε(−)(p̂′)

+ ωη′

ω2 − η′2 (1 − λ(p̂′))δε(+)(p̂′) + 1

2
η′λ̄(p̂′)[�∗(p̂′) · d(p̂′) − �(p̂′) · d′(p̂′)]

}
, (B9a)

δε(+)(p̂; ω, q) − δε
(+)
ext =

∫
dθ ′

2π
As(θ, θ ′)

{
ωη′

ω2 − η′2
(
1 − λ(p̂′)

)
δε(−)(p̂′)

+ ω2

ω2 − η′2 (1 − λ(p̂′))δε(+)(p̂′) + 1

2
ωλ̄(p̂′)[�∗(p̂′) · d(p̂′) − �(p̂′) · d′(p̂′)]

}
, (B9b)
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δε(−)(p̂; ω, q) =
∫

dθ ′

2π
Aa(θ, θ ′)

{(
1 + (1 − λ(p̂′))

η′2

ω2 − η′2

)
δε(−)(p̂′) + ωη′

ω2 − η′2 (1 − λ(p̂′))δε(+)(p̂′)

− λ(p̂′)[δε(−)(p̂′) · n̂(p̂′)]n̂(p̂′) − iη′λ̄(p̂′)
2

[�∗(p̂′) × d(p̂′) + �(p̂′) × d′(p̂′)]
}
, (B9c)

δε(+)(p̂; ω, q) =
∫

dθ ′

2π
Aa(θ, θ ′)

{
ω2

ω2 − η′2 (1 − λ(p̂′))δε(+)(p̂′) + η′ω
ω2 − η′2 (1 − λ(p̂′))δε(−)(p̂′)

+ λ(p̂′)[δε(+)(p̂′) · n̂(p̂′)]n̂(p̂′) − iω

2
λ̄(p̂′)[�∗(p̂′) × d(p̂′) + �(p̂′) × d′(p̂′)]

}
, (B9d)

d(p̂; ω, q) =
∫

dθ ′

2π
Vo(θ, θ ′)

{(
γ + 1

4
λ̄(p̂′)(ω2 − η′2 − 2|�(p̂′)|2)

)
d(p̂′)

− 1

4
λ̄(p̂′)�(p̂′)[η′δε(−)(p̂′) + ωδε(+)(p̂′)] + 1

4
λ̄(p̂′)i�(p̂′) × (η′δε(−)(p̂′) + ωδε(+)(p̂′))

+ 1

2
λ̄(p̂′)[(�(p̂′) · �(p̂′))d′(p̂′) − 2(�(p̂′) · d′(p̂′))�(p̂′)]

}
, (B9e)

d′(p̂; ω, q) =
∫

dθ ′

2π
Vo(θ, θ ′)

{(
γ + 1

4
λ̄(p̂′)(ω2 − η′2 − 2|�(p̂′)|2)

)
d′(p̂′)

+1

4
λ̄(p̂′)�∗(p̂′)[η′δε(−)(p̂′) + ωδε(+)(p̂′)] + 1

4
λ̄(p̂′)i�∗(p̂′) × (η′δε(−)(p̂′) + ωδε(+)(p̂′))

+ 1

2
λ̄(p̂′)[(�∗(p̂′) · �∗(p̂′))d(p̂′) − 2(�∗(p̂′) · d(p̂′))�∗(p̂′)]

}
. (B9f)

APPENDIX C: 1-LOOP ACTION COMPUTATION

The system concerning us in this note is a spin polarized p-wave chiral superfluid. We adapt the simplest pairing model
induced by a contact pairing, which we can decouple by introducing a dynamical auxiliary field via Hubbard-Stratonovich
transformation. We also introduce the nematic fluctuation in the particle-hole channel. Those interactions can also be decoupled
by introducing more auxiliary/collective fields, which we will denote as φI in the following.

The fermionic part of the action after possibly multiple Hubbard-Stratonovich transformations can be written as S =∫
(dx) �†iD−1�, where � is the Nambu spinor �T = (ψ,ψ†). The partition function of the fermion sector is then∫

D�†D� exp

(
−
∫

(dx)�†D−1�

)
:= exp

(
iSeff

)
. (C1)

Since we are only considering a single species of fermions, the effective action of auxiliary fields {φI} reads

Seff = − i

2
Tr ln D−1. (C2)

Formally, we can expand the action with respect to a classical solution φ0
J (k) = 〈φ0

J 〉 × (2π )3δ(k). In terms of the deviation
δφJ = φJ − φ0

J ,

S = Seff + Saux[φI ] = S[φ0
I ] +

∫
(dq)

δS

δφJ (q)
[φ0]δφJ (q) + 1

2

∫
(dq)(dq′) δφI (q)

δ2S

δφI (q)δφJ (q′)
[φ0]δφJ (q′) + · · · (C3)

The first-order condition
δS

δφI (k)
[φ0] = 0 (C4)

is often used to specify the information of a certain uniform ground state φ0
I (2π )3δ(k). The key ingredient of the Gaussian

effective theory is the second derivative of the action evaluated with respect to the ground state. To extract the contribution from
Seff , we have to compute

δ2

δφI (q)δφJ (q′)
Seff = − i

2

δ2

δφI (q)δφJ (q′)
Tr ln D−1 = − i

2

δ

δφI (q)
TrD

δD−1

δφJ (q′)

= − i

2
Tr

δD

δφI (q)

δD−1

δφJ (q′)
− i

2
TrD

δ2D−1

δφI (q)δφJ (q′)

= i

2
Tr

[
D

δD−1

δφI (q)
D

δD−1

δφJ (q′)

]
− i

2
Tr

[
D

δ2D−1

δφI (q)δφJ (q′)

]
. (C5)
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Thus the two-point function of our interest is then

MIJ (q, q′) = i

2
Tr

[
D

δD−1

δφI (q)
D

δD−1

δφJ (q′)

]
− i

2
Tr

[
D

δ2D−1

δφI (q)δφJ (q′)

]∣∣∣∣
φ=φ0

. (C6)

The second term in (C6) is usually referred to as the contact term. Example includes the diamagnetic current term of
electromagnetic response. For the model concerning us in this paper, we only have to focus on the first term in (C6).

To compute the two-point functions presented in the main text, we will need the ground-state propagator of a p − ip ground
state and the variation of the sum (57a)+(57b)+(57c) with respect to fields Q̄, Q, �†, and �. The propagators are

iD−1
0 (p, p′) = (2π )3δ(p − p′)

(
p0 − ξp �p−1

F (px − ipy)
�p−1

F (px + ipy) p0 + ξp

)
, (C7a)

D0(p, p′) = (2π )3δ(p − p′)
i

p2
0 − E2

p + iη

(
p0 + ξp −�p−1

F (px − ipy)
−�p−1

F (px + ipy) p0 − ξp

)
(C7b)

with E2
p = ξ 2

p + p−2
F �2p2. Finally, the vertices are

δiD−1(p, p′)
δQ(q)

= 1

p2
F

(−(p′
x − ip′

y)2 0
0 (px − ipy)2

)
(2π )3δ(p − p′ − q), (C8a)

δiD−1(p, p′)
δQ̄(q)

= 1

p2
F

(−(p′
x + ip′

y)2 0
0 (px + ipy)2

)
(2π )3δ(p′ − p − q), (C8b)

δiD−1(p, p′)
δ�(q)

= (2π )3δ(p − p′ − q)

(
0 p−1

F (p′
x + ip′

y)
0 0

)
, (C8c)

δiD−1(p, p′)
δ�†(q)

= (2π )3δ(p′ − p − q)

(
0 0

p−1
F (p′

x − ip′
y) 0

)
. (C8d)
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