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Photonic heat transport across a Josephson junction
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We present a detailed study of photonic heat transport across a Josephson junction coupled to two arbitrary
linear circuits having different temperatures. First, we consider the linear approximation, in which a nonlinear
Josephson potential is replaced by a quadratic one and the junction acts as an inductor. Afterwards, we discuss
the effects of junction anharmonicity. We separately consider the weak-coupling limit, in which the Bloch band
structure of the junction energy spectrum plays an important role, and the opposite strong-coupling regime. We
apply our general results to two specific models: a Josephson junction coupled to two Ohmic resistors and two
resonators. We derive simple analytical approximations for the photonic heat flux in many limiting cases. We
demonstrate that electric circuits with embedded Josephson junctions provide a useful platform for quantum
thermodynamics experiments.
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I. INTRODUCTION

Transport of heat in nanostructures is a subject of in-
tense research [1–4]. In most nanoscaled devices, the heat is
transferred by either electrons, phonons, or photons. Photonic
heat transport mechanism often dominates over the two other
mechanisms [5] at temperatures below 100 mK. In addition, it
provides convenient way of transmitting tiny amounts of heat
over macroscopic distances [6,7]. Hence, proper understand-
ing of photonic heat transport is essential, for instance, for de-
velopment and calibration of highly sensitive low-temperature
radiation detectors.

Photonic heat flux can be accurately controlled by a tunable
element embedded in the electric circuit. The natural choice of
such an element for low-temperature superconducting circuits
is a SQUID (superconducting quantum interference device)
loop with the Josephson critical current adjusted by magnetic
flux [8,9]. Such systems are promising platforms for realizing
quantum thermal machines [4,10]. Motivated by these con-
siderations, in this work we theoretically study photonic heat
transport through a system schematically shown in Fig. 1. It
contains two linear circuits, playing the role of thermal baths,
with the impedances Z1(ω) and Z2(ω), which include dissipa-
tive elements having the temperatures T1 and T2, respectively.
These circuits are connected via a symmetric SQUID with the
critical current modulated by magnetic flux �,

IC = IC (0)| cos(π�/�0)|, (1)

where �0 is the flux quantum. The setup of Fig. 1 is analogous
to the one used in the experiment [9], in which a SQUID has
been coupled to two resonators terminated by Ohmic resistors.
It also resembles the usual setup of circuit quantum electrody-
namics experiments with transmon qubits [11], which is suit-
able for heat transport experiments with quantum systems. For
example, the transition from quantum to classical behavior in
a Josephson junction subject to thermal radiation with increas-
ing temperature has been observed in a similar setup [12].

The system depicted in Fig. 1 also provides a useful test
ground for theoretical predictions about quantum heat trans-
port. Indeed, the SQUID is an example of a quantum system
coupled to two thermal baths having different temperatures.
It is described by a Hamiltonian of a particle moving in a
one-dimensional periodic potential with the energy spectrum
given by a set of Bloch bands. The Bloch band structure is
very sensitive to the ratio between the Josephson energy of
the SQUID EJ and its charging energy EC . Depending on the
ratio EJ/EC and the temperatures T1 and T2, the model can
be approximately reduced to that of weakly scattered particle,
quantum oscillator or two level system [13–18] coupled to
the two thermal baths. Important related topics are electronic
cooling and heat rectification in nanostructures [1,2,19]. For
example, recently a cooler based on a voltage biased Joseph-
son junction has been proposed [20] and heat rectification in
nonlinear Josephson circuits has been discussed [21]. Thus the
physics of the system shown in Fig. 1 is very rich.

Approximately replacing the nonlinear Josephson junction
by a linear inductor, one can express the photonic heat flux
flowing from the circuit 2 into the circuit 1 in the usual form
resembling Landauer formula,

J =
∫ ∞

0

dω

2π
h̄ω τ (ω) [N2(ω) − N1(ω)]. (2)

Here, N1,2(ω) = 1/(eh̄ω/kBT1,2 − 1) are Bose functions and
τ (ω) is the photon transmission probability. It equals to the
squared absolute value of the microwave transmission coeffi-
cient between the ports 1 and 2, τ (ω) = |S12(ω)|2, which can
be independently measured in the experiment. In Eq. (2), we
use the sign convention J > 0 for T2 > T1. The transmission
probability τ (ω) can be found in a standard way by combining
microwave impedances of various circuit elements [22], and
in the linear approximation it does not depend on the temper-
atures T1 and T2.

Since the SQUID is a nonlinear, or anharmonic, quantum
system, the Landauer formula (2) for the heat flux is just
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FIG. 1. SQUID with the critical current IC , tunable by magnetic
flux, shunted by the capacitor C and coupled to the two linear circuits.
The latter are characterized by the impedances Z1(ω) and Z2(ω) and
temperatures T1 and T2. The heat flux J flows from the circuit 2 into
the circuit 1. It can be controlled by the magnetic flux changing the
critical current IC .

an approximation. There exist several methods of including
the nonlinearity into the model. In the weak-coupling limit,
one can describe the SQUID dynamics by rate equations, ac-
counting for the jumps between its quantum states, and obtain
the heat flux by counting the number of photons emitted to
or absorbed from the thermal baths 1 and 2. Thanks to its
simplicity, this method is very popular. It has been used, for
example, in the analysis of experimental results of Ref. [9],
in the theoretical description of the heat transport through a
superconducting microwave cavity [23], of thermal rectifica-
tion in a quantum system with discrete energy spectrum [19],
of Berry phase effects in the heat pumping [24], etc. More
general approach, which is also valid in the strong-coupling
limit, has been developed by Ojanen and Heikkilä [25] and
Ojanen and Jauho [26], who have used the formalism of
Keldysh Green’s functions, similar to the one developed
earlier for the description of the electron transport through
quantum dots [27]. This formalism has been used to develop
the theory of thermal rectification in quantum systems [28], to
derive bounds on thermal conductance [29], and to study heat
transport through a two level system [13–18]. An equivalent
formally exact approach to the heat transport problems is
based on path integral techniques [30–33]. In principle, it
allows one to go beyond the average value of the heat flux
and to study the full counting statistics of the transferred heat.
Yet another exact and numerically efficient method relies on
stochastic Liouville—von Neumann equation with dissipa-
tion [21,34]. Interestingly, in many cases, one can express the
exact heat flux flowing through the nonlinear system in the
Landauer form (2). However, in this case, the transmission
probability τ (ω) becomes dependent on the bath temperatures
T1,2. Such dependence, for example, makes the rectification
of heat possible in a non-linear and non-symmetric system, as
has been demonstrated in a recent experiment with Josephson
junctions [35].

In this work, we present a detailed study of heat transport
through a Josephson junction, or a SQUID, embedded in the
circuit depicted in Fig. 1. We use the formalism developed
in Refs. [25,26] combining it with the well known results
from the quantum theory of Josephson junctions [36–39].
We consider weak and strong-coupling regimes, large and
small values of the Josephson energy, and various frequency
dependencies of the environment impedances Z1,2(ω). In
many limiting cases, we derive analytical expressions both
for the photon transmission probability τ (ω) and for the heat

flux (2). The paper is organized as follows. In Sec. II, we
introduce the model and the system Hamiltonian; in Sec. III,
we discuss the linear approximation replacing the junction
by an inductor; in Sec. IV, we consider the limit of weak
coupling; in Sec. V, we analyze the strong-coupling regime,
and in Sec. VI, we summarize the results. Some details
of the calculations and auxiliary information are moved to
Appendices. In Secs. IV and V, we separately discuss the
limits of large, EJ � EC, kBT1,2, and small, EJ � EC, kBT1,2,
Josephson energy.

II. MODEL

We consider a symmetric SQUID with the critical current
tunable by magnetic flux (1), which we will in the following
call junction for simplicity, coupled to the two linear circuits,
characterized by frequency-dependent impedances Z1(ω) and
Z2(ω), as shown in Fig. 1. The linear circuits form two thermal
baths with the temperatures T1 and T2. The system is described
by the Hamiltonian

Ĥ = ĤJ + Ĥ1 + Ĥ2 + Ĥ int
1 + Ĥ int

2 . (3)

Here,

ĤJ = −4EC
∂2

∂ϕ2
+ EJ (1 − cos ϕ) (4)

is the Hamiltonian of the junction. We model the linear
circuits 1 and 2 as oscillator baths with the Hamiltonians

Ĥj =
∑

k

[
P̂2

j,k

2Mj,k
+ Mj,kω

2
j,kX̂ 2

j,k

2

]
, j = 1, 2, (5)

where P̂j,k , X̂ j,k , ω j,k , and Mj,k are, respectively, momentum,
coordinate, frequency, and mass of the kth oscillator in the
thermal bath j. The interaction Hamiltonians Ĥ int

j have the
form [40,41]

Ĥ int
j = −

∑
k

(
c j,kX̂ j,k ϕ̂ − c2

j,k

2Mj,kω
2
j,k

ϕ̂2

)
, (6)

where the coupling constants c j,k should be chosen in such a
way that the bath spectral densities are proportional to the real
parts of the inverse impedances,

π

2

∑
k

c2
j,k

Mj,kω j,k
δ(ω − ωk ) = h̄2ω

4e2
Re

[
1

Zj (ω)

]
. (7)

Formally exact expression for the heat flux J in terms of
Green’s functions has been derived in Refs. [25,26]. Here we
rederive this expression for our particular setup using pertur-
bation theory. We define the heat flux as the time derivative of
the total energy stored in the environment 1 and write it in the
form

J = d

dt
〈Ĥ1〉 = i

h̄

〈[
Ĥ int

1 , Ĥ1
]〉 = ∑

k

c1,k

M1,k
〈P̂1,k ϕ̂〉. (8)

The angular brackets here stand for the quantum me-
chanical averaging with the density matrix of the whole
system ρ̂, 〈Â〉 = tr{Âρ̂}. The expression (1) can be
further transformed in the interaction representation, in
which the operators acquire time dependence Â → Â(t ) =
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eiĤ0t/h̄Âe−iĤ0t/h̄ with Ĥ0 = ĤJ + Ĥ1 + Ĥ2. In this representa-
tion, the system density matrix satisfies the evolution equa-
tion ih̄ d ρ̂(t )/dt = [Ĥint (t ), ρ̂(t )], where Ĥint (t ) = Ĥ int

1 (t ) +
Ĥ int

2 (t ). Integrating this equation over time, we get ρ̂(t ) =
ρ̂(0) − i

∫ t
0 dt ′[Ĥint (t ′), ρ̂(t ′)]/h̄. Substituting this expression

in Eq. (1) and taking the long time limit, we find

J = i

h̄

∫ t

−∞
dt ′∑

k

c1,k

M1,k
tr{P̂1,k (t )ϕ̂(t )[ρ̂(t ′), Ĥint (t

′)]}

= − i

h̄

∫ t

−∞
dt ′∑

k

c2
1,k

M1,k
〈[X̂1,k (t ′)ϕ̂(t ′), P̂1,k (t )ϕ̂(t )]〉.

Note that the term containing ρ̂(0) vanishes at sufficiently
long time t , at which the information about the initial state
of the dissipative system is lost. For such times, one can also
extend the integration over t ′ as follows:

∫ t
0 dt ′ → ∫ t

−∞ dt ′.
Furthermore, within the framework of perturbation theory one
can factorize the averages of the products of four operators
into the products of the pairwise averages 〈X̂1,k (t ′)P̂1,k (t )〉 and
〈ϕ̂(t )ϕ̂(t ′)〉. The average 〈X̂1,k (t ′)P̂1,k (t )〉 can be evaluated,
since in the lowest order of the perturbation theory, the os-
cillators of the thermal baths do not interact with the junction.
Performing these operations, we arrive at the expression

J =
∫

dω

2π

h̄2ω2

4e2
Re

[
1

Z1(ω)

]
× (Sϕ (−ω)[1 + N1(ω)] − Sϕ (ω)N1(ω)). (9)

Here we have introduced the Fourier transformed phase-phase
correlation function

Sϕ (ω) =
∫

dteiωt 〈ϕ̂(t )ϕ̂(0)〉. (10)

Although we have used perturbation theory while deriving the
formula (9), it is actually exact. One can prove this result by
either Keldysh Green’s function technique [25,26], or by path
integral technique [31–33].

One can alternatively express the heat flux in terms of the
correlation function of the operators of the charge accumu-
lated in the junction capacitance Q̂ = −2ie(∂/∂ϕ),

SQ(ω) =
∫

dteiωt 〈Q̂(t )Q̂(0)〉. (11)

Since the operators ϕ̂(t ) and Q̂(t ) are related by the equation
of motion for the phase,

dϕ̂

dt
= i

h̄
[Ĥ, ϕ̂] = 4EC

h̄e
Q̂, (12)

the correlation function (10) can be written in the form

Sϕ (ω) = 16E2
C

e2h̄2ω2
SQ(ω). (13)

Accordingly, the heat flux (9) can be expressed as

J = 4E2
C

e4

∫
dω

2π
Re

[
1

Z1(ω)

]
× (SQ(−ω)[1 + N1(ω)] − SQ(ω)N1(ω)). (14)

Equations (9) and (14) are the starting points of our
analysis. Employing various approximations, we will derive

FIG. 2. Two specific examples: (a) a junction directly coupled to
two Ohmic resistors R1 and R2 and (b) a junction coupled to two
resonators with the impedances (15).

approximate expressions for the heat flux J without specifying
particular frequency dependence of the impedances Z1,2(ω).
Afterwards we will consider two specific examples. One
example is the case of Ohmic dissipation with Zj (ω) = Rj ,
which is illustrated in Fig. 2(a). Another example, shown in
Fig. 2(b) and inspired by recent heat transport experiment [9],
is the junction capacitively coupled to the two λ/4 resonators
having characteristic impedances Zr1 and Zr2 and terminated
by Ohmic resistors R1 and R2. In this case, the impedances of
the two linear electric circuits are

Zj (ω) = 1

−iωCj
− iZr j tan

(
π

2

ω

ω j
+ iα j

)
, (15)

α j = 1

2
ln

Zr j + Rj

Zr j − Rj
. (16)

Here, Cj are the coupling capacitors [see Fig. 2(b)], ω j are
the frequencies of the fundamental modes of the resonators,
and the parameters α j determine their internal quality factors,
Qj = π/4α j . Here we will only consider the regime Rj < Zr j .
Provided Qj � 1, EJ � EC , and the temperatures T1,2 are
sufficiently low, one can keep only the two lowest energy
levels formed close to the bottom of the Josephson potential
well, and approximately describe the system by Rabi Hamil-
tonian [11]

Ĥ = − h̄ω01

2
σ̂z +

∑
j=1,2

[h̄ω j b̂
†
j b̂ j + h̄g j (b̂

†
j + b̂ j )σ̂x]. (17)

Here the transition frequency between the levels is h̄ω01 =
h̄ωJ − EC , ωJ = √

8EJEC/h̄ is the classical frequency of
small oscillations at the bottom of the potential well, and the
coupling constants g1, g2 are given by

g j =
√

1

π

Zr jω jC2
j

C

ω j . (18)

Here we defined the total capacitance C = C1 + C2 + C.

III. LINEARIZED DYNAMICS

In this section, we approximately replace the nonlinear
Josephson junction by an inductor with the impedance

ZJ (ω) = −ih̄ω/2eIC . (19)
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This simple approximation is valid in the wide range of
parameters. For the beginning, it is valid for sufficiently low
temperatures, kBT1,2 � 2EJ , sufficiently high ratio EJ/EC � 1,
and sufficiently strong coupling between the junction and the
environment,

Re

[
Rq

Z1(ωJ )
+ Rq

Z2(ωJ )

]
� 1. (20)

Here we have introduced the resistance quantum Rq = h/e2.
The condition (20) ensures that the width of the energy levels
formed at the bottom of the Josephson potential well, which is
determined by the transition rates (54), exceeds the charging
energy EC . Since the latter defines the scale of anharmonicity
in the system the junction may be viewed as a linear element.
The linear approximation is also valid at high temperatures
kBT1,2 � EJ , where one can just put IC = 0, thus removing
the nonlinear element from the circuit.

Once the Josephson junction has been replaced by a linear
lumped element, one can exactly reduce the full quantum
problem to the solution of the classical Langevin equations
for the Josephson phase and currents, which contain the
stochastic noises generated by the circuit elements [22,42].
Similar Langevin equations have been used, for example,
in order to describe the transport of heat by phonons in
harmonic lattices [43]. The details of the analysis are given in
Appendix A. The final expression for the heat flux acquires the
Landauer form (2) with the photon transmission probability

τ (ω) =
4Re

[
1

Z1(ω)

]
Re
[

1
Z2(ω)

]
∣∣−iωC + 1

Z1(ω) + 1
Z2(ω) + 1

ZJ (ω)

∣∣2 . (21)

Here the junction impedance is given by Eq. (19). Since
τ (ω) does not depend on the temperatures of the two baths,
the heat flux (2) has the property J (T1, T2) = −J (T2, T1),
which implies the absence of heat rectification in the linear
approximation. Absence of rectification is the well known
property of linear harmonic systems [19,44].

As an example, in Fig. 3, we plot the transmission prob-
ability (21) versus frequency f = ω/2π for a junction cou-
pled to the two identical resonators characterized by the
impedances (15). We observe that τ (ω) has peaks at frequen-
cies corresponding to the eigen-modes of the resonators ωn =
(2n + 1)ω1, with n = 0, 1, 2 . . . Besides that, there exists a
peak at the frequency of phase oscillations in the junction
ωJ . For a certain value of magnetic flux, the resonant con-
dition ωJ = ω1 = ω2 is achieved. Close to this value three
peaks appear in τ (ω) due to hybridization of the modes of
the resonators and of the junction. The positions of these
peaks are shown in Figs. 4(a) and 4(b). For weak coupling
[Fig. 4(a)], the hybridization of the modes is almost invisible,
while for strong coupling [Fig. 4(b)], it is quite strong and
manifests itself in avoided crossing of the peak position lines.
In Figs. 4(c) and 4(d), we plot the dependence of the heat
power (2) on magnetic flux for weak and strong coupling,
respectively.

In certain limiting cases, one can derive analytical approx-
imations for τ (ω) and for the heat flux J . First, we consider
the junction coupled to identical resonators with high quality
factors. We assume that the junction mode is sufficiently far
detuned from the modes of the resonators and ignore the

FIG. 3. Transmission probability τ (ω) (21) for a symmetric sys-
tem of Fig. 2(b) with two identical resonators and for three different
values of magnetic flux. The parameters of the system are: ω1/2π =
ω2/2π = 8.84 GHz, Zr1 = Zr2 = 50 �, R1 = R2 = 2 �, C1 = C2 =
15 fF, C = 58.7 fF, critical current at zero magnetic flux is IC (� =
0) = 291 nA. This results in the following values for the charging
energy, the Josephson energy and the coupling constants between
the junction and the resonators (18): EC/h = 218.4 MHz, EJ (� =
0)/h = 144.6 GHz, and g1/2π = g2/2π = 418.6 MHz. At � = 0,
the Josephson frequency equals to ωJ/2π = 15.9 GHz and it is far
detuned from the resonator frequencies ω1,2. In this case, a sharp
peak in the transmission probability, indicated by arrow, is formed at
frequency f = ωJ/2π . Close to �/�0 = 0.4, the resonance condi-
tion ωJ = ω1,2 is achieved, the two resonator modes and the junction
are hybridized, and three peaks in τ (ω) are formed. At �/�0 = 0.5,
the critical current is suppressed, IC = 0, the peak associated with
the junction disappears and only the peaks coming from the modes
of the resonators centered at ωn = (2n + 1)ω1 remain.

shift of the junction frequency induced by the coupling to the
resonators. This approximation is valid provided the condition

g2
1ω

2
J

ω2
n

[
(ωJ − ωn)2 + γ 2

1

] � 1 (22)

is satisfied for all modes of the resonators. Here, γ1 =
2α1ω1/(π + 2Zr1C1ω1) is the total damping rate of the res-
onators. In this case, the transmission probability τ (ω) is
expressed as a sum of well separated peaks,

τ (ω) ≈ γ 2
J

(ω − ωJ )2 + γ 2
J

+
∞∑

n=0

anγ
4
1[

(ω − ωn)2 + γ 2
1 − a2

nω
2
n

4

]2 + anγ
4
1

. (23)

The first Lorentzian peak comes from the junction mode. Its
width γJ is given by

γJ = 2g2
1ω

2
Jγ1

ω2
1

[
(ωJ − ωn0 )2 + γ 2

1

] , (24)

where ωn0 is the frequency of the mode closest to the Joseph-
son frequency ωJ . The remaining peaks correspond to the

094508-4



PHOTONIC HEAT TRANSPORT ACROSS A JOSEPHSON … PHYSICAL REVIEW B 100, 094508 (2019)

FIG. 4. Positions of the peaks in the transmission probability
[(a) and (b)] and the heat flux [(c) and (d)] as a function of the
magnetic flux for a symmetric system with parameters given in the
caption of Fig. 3. (a) Peak positions in the weak-coupling limit
with C1 = C2 = 1 fF. (b) Peak positions at stronger coupling with
C1 = C2 = 15 fF. Avoided crossing of the hybridized modes close
to the resonance and the formation of the third peak, shown by
the red dashed line, are clearly visible. (c) Heat flux vs magnetic
flux in the weak-coupling regime C1 = C2 = 1fF. In this case, the
integral (2) and the approximate expression (40) produce the same
result. (d) Heat flux vs magnetic flux at stronger coupling C1 =
C2 = 9fF (red curves) and C1 = C2 = 15fF (blue curves). The solid
curves are obtained from Eq. (2), whereas the dotted curves is from
the approximate Eq. (40). We have used the following parame-
ters: fr = ω1/(2π ) = ω2/(2π ) = 8.84 GHz, EJ/(2π ) = 144.6 GHz,
EC/(2π ) = 218.4 MHz, T2 = 300 mK, T1 = 150 mK, R1 = R2 =
2�, and Zr1 = Zr2 = 50�.

modes of the resonators. They have non-Lorentzian shape, and
their heights an are determined by the detuning between the
junction mode and the corresponding resonator mode,

an = 4g2
1ω

2
n

ω2
1γ

2
1

∣∣ω2
n − ω2

J

∣∣ . (25)

The resonator modes split into the pairs of closely lying peaks
if anωn > 2γ1, when the effective coupling between the modes
of the resonators becomes stronger than the dissipation rate.
At high temperatures, kB max{T1, T2} � min{h̄ωJ , h̄ω1}, one
can approximately replace all the peaks in Eq. (23) by δ

functions. The heat flux (2) then takes the form

J = γJ h̄ωJ

2
[N2(ωJ ) − N1(ωJ )]

+
∞∑

n=0

γ1h̄ωn[N2(ωn) − N1(ωn)]

1 + R2
1C2



Z4
r1C4

1 ω2
n

(
1 − ω2

J
ω2

n

)2
. (26)

The first term in this expression describes the heat
transport through the junction mode, while the second term—
through the modes of the resonators. The effective coupling
between the modes of different resonators depends on the
value of the Josephson frequency ωJ .

Next, we consider arbitrary resonators, which are not nec-
essarily identical, but assume that the temperatures are low,
kB max{T1, T2} � min{h̄ωJ , h̄ω1,2}. In this case, the transmis-

FIG. 5. Schematic representation of the heat transport regimes
for a Josephson junction weakly coupled to two identical high quality
factor resonators. Here, Tmax = max{T1, T2} and ωr = ω1 = ω2 is
the frequency of the resonators. Shaded area indicates the region
in which ωJ ≈ ωr and kBTmax � h̄ωr . In this region, the heat flux
approaches maximum values.

sion probability and the heat flux are

τ (ω) = h̄4R1R2C2
1C2

2

4e4E2
J

ω6, ω � ωJ ,

J = π7

15

R1R2C2
1C2

2

h̄3e4E2
J

[(kBT2)8 − (kBT1)8]. (27)

In the regime h̄ωJ � h̄ω, kB max{T1, T2} � h̄ω1,2, we find

τ (ω) = πγJδ(ω − ωJ ) + 4R1R2C2
1C2

2

C2


ω2,

J = γJkB(T2− T1)

2
+ 2π3

15

R1R2C2
1C2

2 k4
B

C2
 h̄3

(
T 4

2 − T 4
1

)
. (28)

In Fig. 5, we schematically overview various heat transport
regimes for a Josephson junction coupled to two identical
resonators with high-quality factors.

Let us now consider a system with suppressed Josephson
current, IC = 0. The transmission probability (21) for such
system is plotted in Fig. 6 for a symmetric and an asymmetric
coupling. In both cases, it exhibits sharp peaks at the fre-
quencies corresponding to the eigenmodes of the resonators
ω j,n = (2n + 1)ω j . For the case of identical resonators, one
can derive an accurate high-temperature asymptotics for the
integral (2) valid at kBT1,2 � h̄ω1/2π . In this case, one can
average the transmission probability (21) over one period 2ω1

and replace τ (ω) in Eq. (2) by its averaged value

〈τ (ω)〉 =
1
2

( Zr1
R1

+ R1
Zr1

)
1
4

( Zr1
R1

+ R1
Zr1

)2 + CC

4C2
1

(
ω
ω0

+ ω0
ω

)2 , (29)

where ω0 = (Zr1C1)−1√C/C. The frequency ω0 is usually
very high so that the condition kBT1,2 � h̄ω0 is fulfilled. In
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FIG. 6. Transmission probability (21) of a system with two cou-
pled resonators, shown in Fig. 2(b), at IC = 0 and C1 = C2 = 15
fF. Other parameters are listed in the caption of Fig. 3. Red dotted
line is for the symmetric system with identical resonators, ω1/2π =
ω2/2π = 8.84 GHz; blue line represents the asymmetric system,
ω1/2π = 8.84 GHz and ω2/2π = 3.5 GHz.

this limit, one finds

J ≈ 0

(
T 4

2

1 + T 2
2

/
T 2

0

− T 4
1

1 + T 2
1

/
T 2

0

)
, (30)

where the parameter

0 = π3

15

Z2
r1C

4
1 k4

B

h̄3C2


(
Zr1

R1
+ R1

Zr1

)
(31)

characterizes the thermal conductance between capacitively
coupled resonators, and

T0 =
√

5

π
√

2

h̄R1C

kBC2
1

(
Z2

r1 + R2
1

) (32)

is the characteristic temperature at which the crossover be-
tween two different heat transport regimes occurs. The re-
sult (30) is consistent with the expression (26) in the limit
ωJ = 0 and R1 � Zr1. In Fig. 7, we illustrate the temperature
dependence of the heat flux (2) for a symmetric system
with the two identical resonators and zero Josephson current,
IC = 0, and compare it with the approximation (30). We find
that the approximation (30) indeed works quite well at high
temperature. The low-temperature limit is well described by
Eq. (28). For comparison, in the same figure, we have also
plotted the temperature dependence of the heat flux between
two resonators with different parameters.

Let us now consider the system with Ohmic dissipation,
Zj (ω) = Rj . The transmission probability takes the form

τ (ω) = 4ω2

R1R2C2
∣∣ω2 + iγω − ω2

J

∣∣2 , (33)

where γ = (R1 + R2)/R1R2C. In the low-temperature regime
kBT1,2 � min{h̄ωJ , h̄ω2

J/γ }, one finds the following approxi-
mation for the heat flux:

J = πα1α2

480

k4
B

(
T 4

2 − T 4
1

)
h̄E2

J

, (34)

FIG. 7. Heat flux (2) vs the temperature T2 and T1 = 0 for a sys-
tem with two coupled resonators and IC = 0, C1 = C2 = 15 fF. Other
parameters are the given in the caption of Fig. 3. Black solid line
represents the symmetric system with ω1/2π = ω2/2π = 8.84 GHz;
red solid line is for the asymmetric system with ω1/2π = 8.84 GHz
and ω2/2π = 3.5 GHz; blue dashed line shows high-temperature
asymptotics (30); cyan dashed line is the low-temperature expan-
sion (28).

where α j = h/e2Rj are the dimensionless conductances of the
Ohmic resistors. The result (34) may be interpreted as the
contribution of co-tunneling, and it has the same tempera-
ture dependence as the co-tunneling contribution to the heat
flux through a two level system [13]. At high temperatures
kBT1,2 � max{h̄ωJ , h̄γ }, one finds

J = kB(T2 − T1)

(R1 + R2)C
− h̄

πR1R2C2
ln

T2

T1
. (35)

Interestingly, this result is independent of EJ even for tem-
peratures T1,2 well below the barrier height 2EJ . At these
temperatures, one can roughly approximate the transmission
probability (33) by a δ peak,

τ (ω) ≈ 2π

(R1 + R2)C
δ(ω − ωJ ), (36)

and the heat flux by the expression

J = h̄ωJ [N2(ωJ ) − N1(ωJ )]

(R1 + R2)C
. (37)

This simple approximation correctly captures the leading
term of the high-temperature asymptotics (35), but fails to
reproduce the subleading term as well as the low-temperature
power law dependence of the heat flux (34). Interestingly, the
δ-peak approximation (36) for the transmission probability
holds even for an overdamped junction with h̄ωJ � h̄γ �
kBT1,2 and for a system with IC = 0 provided h̄γ � kBT1,2.
However, in these cases, the δ peak shifts towards zero fre-
quency. For an overdamped junction with γ � ωJ and for
h̄ω2

J/γ � kBT1,2 � h̄γ , the heat flux (2) takes the familiar
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γ

FIG. 8. Schematic representation of the three heat transport
regimes for a linearized Josephson junction coupled to two Ohmic
resistors. Here, Tmax = max{T1, T2}.

form

J = π

12

4R1R2

(R1 + R2)2

k2
B

(
T 2

2 − T 2
1

)
h̄

(38)

describing the heat transfer between two resistors. In Fig. 8,
we provide a schematic diagram of the three heat transport
regimes discussed above.

Finally, we consider the limit of sufficiently weak coupling
and sufficiently high temperatures without specifying the fre-
quency dependence of the impedances Zj (ω). In this regime,
one can replace the transmission (21) by a single δ peak. The
corresponding expression reads [19]

τ (ω) ≈ 4πEC

e2

Re
[
Z−1

1 (ωJ )
]
Re
[
Z−1

2 (ωJ )
]

Re
[
Z−1

1 (ωJ ) + Z−1
2 (ωJ )

] δ(ω − ωJ ). (39)

Afterwards, the heat flux (2) acquires a simple form [19]

J = 2h̄ωJEC

e2

Re
[
Z−1

1 (ωJ )
]
Re
[
Z−1

2 (ωJ )
]

Re
[
Z−1

1 (ωJ ) + Z−1
2 (ωJ )

]
× [N2(ωJ ) − N1(ωJ )]. (40)

We test the accuracy of this approximation in Figs. 4(c)
and 4(d), where we plot the heat flux through a system with
two identical resonators versus the magnetic flux. We find that
the approximation (40) indeed works very well in the weak-
coupling regime [Fig. 4(c)], but it fails at stronger coupling
[Fig. 4(d)].

To conclude this section, we note that replacing
the nonlinear Josephson junction by a linear inductor
with the impedance (19) results in a very good approximation
for the heat flux provided the coupling between the junction
and the environment is sufficiently strong and the temperature
is sufficiently high.

IV. EFFECTS OF ANHARMONICITY IN THE
WEAK-COUPLING LIMIT

In this section, we consider the effect of Josephson nonlin-
earity on the heat flux in the weak-coupling limit

Re

[
Rq

Z1(ω)
+ Rq

Z2(ω)

]
� 1. (41)

This condition should be valid for all relevant frequencies
h̄ω � kBT1,2. It ensures that the transition rates between the
eigenstates of the junction Hamiltonian (4) are smaller than
the charging energy EC , which provides the scale of anhar-
monicity of the junction. For a setup with two high-quality
resonators, we also require sufficiently strong detuning be-
tween the Josephson frequency and the nearest mode of one
of the resonators ωn0, j

h̄g2
jω

3
n0, j

ωJω
2
j |ωJ − ωn0, j | � EC . (42)

In this case, the shift of the junction frequency caused by the
coupling to the resonators is much smaller than EC .

Under this conditions, it is convenient to work in the basis
of the eigenfunctions ψqn(ϕ) of the junction Hamiltonian,
which satisfy Schrödinger equation[

−4EC
∂2

∂ϕ2
+ EJ (1 − cos ϕ)

]
ψqn = εn(q)ψqn. (43)

Here, εn(q) is the 2e-periodic energy of the nth Bloch band,
which depends on the electric charge q transferred through
the junction [37,38]. According to the Bloch theorem the
wave functions can be expressed in the form ψqn(ϕ) =
uqn(ϕ)eiqϕ/2e, where uqn(ϕ) are the 2π -periodic functions
normalized as

∫ π

−π
dϕu∗

qm(ϕ)uqn(ϕ) = δmn. In order to find the
transition rates between the energy bands, we need to know
the matrix elements of the momentum p̂ = −i(∂/∂ϕ) and of
the phase between the functions uqn(ϕ) belonging to different
bands, m �= n,

pmn(q) =
∫ π

−π

dϕ u∗
qm(ϕ)

(
−i

∂

∂ϕ

)
uqn(ϕ), (44)

ϕmn(q) =
∫ π

−π

dϕ u∗
qm(ϕ)ϕuqn(ϕ). (45)

Equation (12) leads to the relation between them

ϕmn(q) = −8iEC

εm(q) − εn(q)
pmn(q). (46)

We will also use the well known result of solid state physics,
which states that the operator p̂ within one band acts on
any function of q by multiplying it with the combination
(e/4EC )(∂εn(q)/∂q). More detailed information about vari-
ous analytical approximations for the Bloch band energies
εn(q) and the matrix elements pmn, ϕmn can be found in
Refs. [11,38] and in Appendix B.

With the matrix elements at hand, we can express the
charge-charge correlation function (11) as a sum of intraband
[Sb

Q(ω)] and interband [Sib
Q (ω)] contributions,

SQ(ω) = Sb
Q(ω) + Sib

Q (ω). (47)
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The intraband contribution has the form

Sb
Q = e4

4E2
C

∑
n

∫
dt eiωt

〈
∂εn(q̂(t ))

∂q

∂εn(q̂(0))

∂q

〉
, (48)

while the contribution associated with the interband transi-
tions reads

Sib
Q = 8π h̄e2

∑
m �=n

∫ e

−e
dq wn(q)δ(ω − ωmn(q))|pmn(q)|2.

(49)

Here we have defined the interband frequency ωmn(q) =
[εm(q) − εn(q)]/h̄ and the occupation probability wn(q) of the
quantum state described by the wave function ψnq(ϕ). These
occupation probabilities are normalized as

∞∑
n=0

∫ e

−e
dq wn(q) = 1. (50)

The weak-coupling approximation has been explicitly used
in deriving Eq. (49), in which the interaction between the
junction and the thermal baths has been ignored. In contrast,
at this stage we keep the intraband correlation function (48) in
a general form.

Let us assume that the impedances Zj (ω) remain finite in
the low-frequency limit ω → 0. In this case, the distribution
function wn(q) satisfies the kinetic equation [37,38]

∂wn

∂t
= 1

RS

∂

∂q

(
∂εn(q)

∂q
wn

)
+ kBTJ

RS

∂2wn

∂q2

+
∑

m( �=n)

[�nm(q)wm − �mn(q)wn] (51)

valid in the lowest nonvanishing order of the perturbation
theory in the interaction Hamiltonians Ĥ int

1,2. Here we have
introduced the shunt resistance R−1

S = Z−1
1 (0) + Z−1

2 (0) and
the effective temperature of the junction

TJ = Z−1
1 (0)T1 + Z−1

2 (0)T2

Z−1
1 (0) + Z−1

2 (0)
. (52)

The interband transition rates, appearing in the last term of
Eq. (51), are given by the sum of partial contributions of the
baths 1 and 2, respectively,

�mn(q) = �(1)
mn (q) + �(2)

mn (q), (53)

and the latter are defined as

�( j)
mn (q) = |ϕnm(q)|2 h̄ωmn(q)

2e2
Re

[
1

Zj (ωmn(q))

]
Nj (ωmn(q)).

(54)

Since the matrix elements ϕmn do not exceed 1, the condi-
tion (41) ensures that �

( j)
mn + �

( j)
nm � h̄|ωmn| and guaranties the

validity of the kinetic equation (51).
Ignoring the interaction effects, we derive the following

expressions for the symmetric and antisymmetric parts of the

intraband correlation function (48):

Sb
Q(ω) + Sb

Q(−ω) = πe4

E2
C

δ(ω)
∫ e

−e
dq

(
∂εn

∂q

)2

wn(q),

Sb
Q(ω) − Sb

Q(−ω) = h̄ω

2kBTJ

[
Sb

Q(ω) + Sb
Q(−ω)

]
. (55)

The first of these equations follows from the conservation
of the charge q in the absence of interactions. As a result,
the symmetrized correlator 〈[∂εn(q̂(t ))/∂q] [∂εn(q̂(0))/∂q] +
[∂εn(q̂(0))/∂q] [∂εn(q̂(t ))/∂q]〉 becomes time independent
and its Fourier transform reduces to a δ function peaked
at zero frequency. However, in order to treat low-frequency
asymptotics correctly, one should remember that this peak
has small finite width. The second equation follows from
the fluctuation dissipation theorem, which in equilib-
rium, i.e., at T1 = T2 = T , states that Sb

Q(ω) − Sb
Q(−ω) =

tanh(h̄ω/2kBT )[Sb
Q(ω) + Sb

Q(−ω)]. Since the symmetrized
correlator is proportional to δ(ω), the tangent in front of it
can be expanded at small frequencies. Afterwards, one can
make a replacement T → TJ because in the low-frequency
Markovian limit, the intensities of the noises generated by the
two environments become proportional to the corresponding
temperatures and also become additive.

Substituting the correlation function (55) in the general
formula (14), we obtain the heat flux as a sum of the intraband
and interband contributions,

J = Jb + J ib. (56)

The intraband contribution has the form

Jb = T2 − T1

Z2(0)T1 + Z1(0)T2

∞∑
n=0

∫ e

−e
dq

(
∂εn

∂q

)2

wn(q), (57)

while the interband part reads

J ib =
∞∑

n=0

∞∑
m=n+1

∫ e

−e
dqh̄ωmn(q)

[
�(1)

nm (q)wm(q)−�(1)
mn (q)wn(q)

]
.

(58)

It is instructive to consider the system in which the fre-
quency dependence of the two bath spectra is the same. More
precisely, let us assume that

Re
[
Z−1

1 (ω)
] = aRe

[
Z−1

2 (ω)
]
, (59)

where a is a frequency independent constant. We introduce
the heat flux flowing in the direction 1 → 2, which we will
denote as J2. It is given be the expressions (56)–(58) with
the interchanges indexes 1 ↔ 2. Energy conservation in the
stationary case implies J + J2 = 0. This property is ensured
by the kinetic equation (51). Using the energy conservation
condition, we can rewrite the heat flux in the form

J = J − aJ2

1 + a
. (60)

After such symmetrization, well known in the theory of quan-
tum dots [27,45], the total heat flux J acquires the Landauer
form (2) with the transmission probability given by the sum
of intraband in interband contributions,

τ (ω) = τ b(ω) + τ ib(ω). (61)
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These contributions read

τ b(ω) =
2
∑∞

n=0

∫ e
−e dq

(
∂εn
∂q

)2
wn(q)

kB(Z2(0)T1 + Z1(0)T2)
δ(ω), (62)

τ ib(ω) = π h̄ω

e2

Re
[
Z−1

1 (ω)
]

Re
[
Z−1

2 (ω)
]

Re
[
Z−1

1 (ω)
]+ Re

[
Z−1

2 (ω)
]

×
∞∑

n=0

∞∑
m=n+1

∫ e

−e
dq[wn(q) − wm(q)]

× |ϕmn(q)|2δ(ω − ωmn(q)). (63)

Thus, in the weak-coupling limit, the intraband transitions
produce a narrow low-frequency peak in the transmission
probability, while the interband transitions result a series of
transmission bands at higher frequencies. Unlike the trans-
mission probability (21) derived in linear approximation, the
probabilities (62) and (63) may depend on temperatures T1

and T2 via the distribution function wn(q). Hence, in general,
J (T1, T2) �= −J (T2, T1) and heat rectification becomes possi-
ble. We also note that in the limit EJ = 0, in which the Bloch
bands are reduced to parabolas (q − 2en)2/2C, the intraband
transmission probability (62) takes the simple form (36) with
ωJ = 0, while the interband contribution (63) vanishes.

Another simple case is the system with strongly asym-
metric coupling. Namely, if we assume that Re[Z−1

1 (ω)] �
Re[Z−1

2 (ω)], then the stationary solution of the kinetic equa-
tion (51) can be found exactly,

wn(q) = e−εn(q)/kBT2∑∞
n=0

∫ e
−e dq e−εn (q)/kBT2

. (64)

In this regime the junction is thermalized with the thermal
bath 2. For a strongly asymmetric system the expressions for
transmission probabilities [Eqs. (62) and (63)] are valid for
arbitrary frequency dependence of the impedances Zj (ω).

Even though the kinetic equation (51) and the heat fluxes
[Eqs. (57) and (58)] have relatively simple form, the solution
of the problem for an arbitrary ratio EJ/EC is a challenging
task, which requires numerical simulations. In the next two
sections, we consider the limits EJ � EC and EJ � EC , where
further approximations are possible.

A. Tight-binding limit EJ � EC

In the limit EJ/EC � 1, the lowest Bloch bands acquire
cosine dispersion typical for tight-binding models (see Fig. 9
for illustration)

εn(q) = En + δn cos(πq/e). (65)

Here, En is the position of the nth energy level in an isolated
potential well and δn is the half-bandwidth proportional to
the hopping amplitude between the wells. Analytical ap-
proximations for both these parameters are summarized in
Appendix B. The cosine dispersion (65) is valid for the lowest
energy bands with 0 � n � nmax, where nmax, defined by
Eq. (B3), is the number of the highest energy level lying under
the barrier 2EJ . An example is shown in Fig. 9.

Next, we assume that kBT1,2 � 2EJ and that the coupling
between the junction and the environment is not too weak.

FIG. 9. The first three Bloch bands (65) of a junction with the fol-
lowing parameters: EJ/(2π ) = 1.5 GHz and EC/(2π ) = 150 MHz.
The dotted line indicates the height of the potential barrier 2EJ .

Namely, we impose the condition

π (|δn| + |δn+1|)
(n + 1)EC

� Re

[
Rq

Z1(ωJ )
+ Rq

Z2(ωJ )

]
� 1 (66)

for all bands relevant for the transport of heat, i.e., those
with En � kBT1,2. In this case, the transition rates between
the levels (54) exceed the half-bandwidth δn and one can
put δn = 0. Afterwards, the kinetic equation (51) acquires a
simple form

Ẇn =
∑

m( �=n)

[�nmWm − �mnWn], (67)

where Wn = ∫ e
−e dq wn(q) is the total population of the nth

band. The interband contribution to the heat flux (58) is
simplified to

J ib =
∞∑

n=0

∞∑
m=n+1

h̄ωmn
[
�(1)

nmWm − �(1)
mnWn

]
. (68)

The small intraband heat flux, which may dominate at low
temperatures, will be analyzed later. For a system with baths
spectra having the same frequency dependence (59), or for
a strongly asymmetric system, the transmission probability
associated with interband transitions (63) acquires the form

τ ib(ω) = π h̄ω

e2

Re
[
Z−1

1 (ω)
]

Re
[
Z−1

2 (ω)
]

Re
[
Z−1

1 (ω)
]+ Re

[
Z−1

2 (ω)
]

×
∞∑

n=0

∞∑
m=n+1

[Wn − Wm]|ϕmn|2δ(ω − ωmn). (69)

Thus every possible transition between the levels results in a
separate δ peak in the transmission probability at frequency
ωmn corresponding to the level spacing.

The energy levels close to the bottom of the Josephson
potential are not equidistant due to the quartic nonlinearity
of the Josephson potential [see Eq. (B5)], and the splittings
between the lowest neighboring levels vary as h̄ωn+1,n =
h̄ωJ − (n + 1)EC . In Fig. 10(a), we plot the dependence of
the frequencies fn+1,n = ωn+1,n/2π on the magnetic flux for
n = 0, 1, 2 for a junction coupled to two identical resonators
with the impedances (15). Every time one of these frequencies
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FIG. 10. Anharmonic effects in the heat flux vs magnetic
flux dependence for a system with two identical resonators
shown in Fig. 2(b). Here, we have used the following parame-
ters: fr = ω1/(2π ) = ω2/(2π ) = 8.84 GHz, EJ/(2π ) = 48.20 GHz,
EC/(2π ) = 655 MHz, T2 = 300 mK, T1 = 150 mK, R1 = R2 = 2�,
Zr1 = Zr2 = 50�, and C1 = C2 = 1 fF. (a) Frequencies f01, f12, and
f23, corresponding to the splitting between the lowest three levels, as
a function of magnetic flux. (b) Red line shows the heat flux J ib, given
by Eq. (68), vs the flux �. Peaks appear when one of the frequencies
f j, j+1 crosses the frequency of the resonators. Blue dashed line: a
harmonic approximation for the heat flux [Eqs. (2) and (21)].

crosses the frequency of the resonators, a peak in the heat
flux (68) appears, as shown in Fig. 10(b). The height of these
peaks is determined by temperatures T1,2 via the occupation
probabilities Wn. At the lowest temperature, only one peak,
coming from the transitions between the levels 0 and 1,
survives. Since the transmission probability (69) depends on
temperatures T1,2 due to the anharmonicity of the junction,
one should expect rectification in the system provided the
couplings to the two baths are different. In Fig. 11, we show
that this is indeed the case. For the chosen parameters, the
difference between the heat fluxes J (T1, T2) and −J (T2, T1)
reaches up to 50%. In order to establish the correspondence
with the previous section, we note that one can find an exact
solution of the master equation (67) for the junction with the
equidistant energy levels En = h̄ωJ (n + 1/2) corresponding
to the spectrum of a harmonic oscillator, see Appendix C. For
this system, the heat flux (68) takes the form (40), while all
the peaks in the transmission probability (69) collapse into a
single peak and it acquires the form (39). For comparison, we
have plotted the harmonic approximation for the heat flux (40)
in Fig. 10. Clearly, for the chosen parameters, it significantly
differs from the more accurate result (68).

For small, but finite, bandwidths δn one can evaluate the
integral over q in the general expression for the transmission

FIG. 11. Heat rectification in an asymmetric and anharmonic
system. Here, we have used the following parameters: EJ/(2π ) =
48.20 GHz, EC/(2π ) = 655 MHz, Zr1 = Zr2 = 50 �, ω1/(2π ) =
5.89 GHz, ω2/(2π ) = 8.84 GHz, R1 = 2 �, R2 = 20 �, and C1 = 1
fF, and C2 = 2 fF.

probability (63) neglecting weak q dependence of the occu-
pation probabilities wn and matrix elements ϕmn. Afterwards,
τ ib(ω) takes the form (69) with the δ functions replaced by
finite width transmission bands having a double-peak shape
with square root divergences,

δ(ω − ωmn) → h̄

π

θ (|δm| + |δn| − |h̄ω − Em + En|)√
(|δm| + |δn|)2 − (h̄ω − Em + En)2

.

(70)

Next, we consider the intraband contribution to the heat
flux and transmission probability in the tight-binding limit
EJ � EC . For simplicity, we consider only strongly asym-
metric systems with Re[Z−1

1 (ω)] � Re[Z−1
2 (ω)], for which

an analytical solution of the problem is possible. Taking
Boltzmann distribution function (64), in which εn(q) have
cosine form (65), we evaluate the intraband heat flux (57) and
arrive at the result

Jb = π2

e2

kB(T2 − T1)

Z1(0)

∑nmax
n=0 e− En

kBT2 δnI1
(

δn
kBT2

)
∑nmax

n=0 e− En
kBT2 I0

(
δn

kBT2

) . (71)

Here, In(x) are modified Bessel functions. The intraband heat
flux (71) may dominate over the interband one (68) at low
temperatures kBT2 � h̄ωJ/2π if Z−1

1 (0) is sufficiently large.
At these temperatures, only the lowest energy band is popu-
lated, and we can approximate Jb as

Jb = π2δ0

e2Z1(0)

I1(δ0/kBT2)

I0(δ0/kBT2)
kB(T2 − T1). (72)

One can also derive relatively simple analytical expressions
for the heat flux in the temperature interval h̄ωJ/2π � kBT2 �
2EJ . In this case, the interband contribution can be well
approximated by harmonic result (40), which can be further
simplified to the form

J ib = 2EC

e2
Re

[
1

Z1(ωJ )

]
kB(T2 − T1) (73)

resembling the result (35) derived for the case of Ohmic dis-
sipation. The intraband contribution (71) in this temperature
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FIG. 12. The two lowest Bloch bands (75) for the junction pa-
rameters EJ/(2π ) = 10 MHz and EC/(2π ) = 50 MHz. The energy
gap between the two bands equals to EJ .

interval takes the form

Jb ≈ Rq

4π Z1(0)

T2 − T1

h̄kBT 2
2

h̄3ω3
J e−1−2EJ /kBT2

ln[16π
√

8EJ/EC]
. (74)

The heat flux (74) is a contribution of thermally activated
phase slips, i.e., the jumps between the neighboring poten-
tial wells of the Josephson potential, which become rel-
evant above the quantum to classical crossover tempera-
ture of the junction T ∗ = h̄ωJ/2π . The phase slip heat
flux (74) may dominate over the interband contribution (73)
if Re[Z−1(0)] � Re[Z−1(ωJ )].

B. Weak Josephson coupling, EJ � EC

For EJ � EC the energies of the two lowest Bloch bands
with n = 0 and 1 are well approximated by [46,47]

εn(q)

EC
=
(

2

π
arcsin

[(
1 − π2

128

E2
J

E2
C

)∣∣∣sin
πq

2e

∣∣∣]− 2n

)2

.

(75)

These two lowest Bloch bands are illustrated in Fig. 12.
Higher lying Bloch bands can be replaced by parabolas

4EC (n − q/2e)2 and small energy gaps between them can
be ignored. Furthermore, the matrix elements of the phase
operator connecting the two bands read [38]

|ϕ01(q)|2 = 16E2
J E2

C

h̄4ω4
01(q)

. (76)

For simplicity, here we only consider a system with
strongly asymmetric coupling, for which the distribution func-
tion has Boltzmann form (64) with the temperature T2. For
EJ � EC , the contribution of the interband transitions to the
the transmission probability (63) becomes

τ ib(ω) = 8√
π

E2
J E3/2

C√
kBT2

Re
[ Rq

Z1(ω)

]
sinh h̄ω

2kBT2

h̄2ω2
√

h̄2ω2 − E2
J

× θ

(
ω − EJ

h̄

)
exp

[
−EJ + EC

kBT2
− h̄2ω2 − E2

J

16ECkBT2

]
,

(77)

where θ (x) is the Heaviside step function. The transmission
probability (77) exhibits a gap EJ/h̄ at low frequencies and
gets exponentially suppressed for kBT2 � EC .

For temperatures exceeding the gap, kBT1,2 � EJ , one can
derive rather simple analytical expression for the heat flux.
The intraband contribution (57) takes the form

Jb = RqECkB(T2 − T1)

π h̄Z1(0)

(
1 − π − 2√

π

EJe−EC/kBT2

kBT2

)
. (78)

The leading term in this expression is similar to the heat flux
through a capacitor (35), while the correction ∝EJ comes
from the opening of the energy gap between the two lowest
Bloch bands. The interband contribution to the heat flux is
small in this limit,

J ib ≈ Re

[
Rq

Z1(EJ/h̄)

](
EC

kBT2

)3/2 EJe−EC/kBT2

√
π h̄

kB(T2 − T1).

(79)

V. EFFECTS OF ANHARMONICITY IN THE
STRONG-COUPLING LIMIT

In this section, we consider the strong-coupling limit (20)
in more detail and derive corrections to the results of Sec. III
caused by anharmonicity of the junction. As in the previous
section, we will separately consider the regimes EJ � EC and
EJ � EC .

A. Tight-binding limit EJ � EC

In this section, we consider the tight-binding regime
EJ � EC and assume that the temperature is low, kBT1,2 �
h̄ωJ . We derive the correction to the Landauer formula (2)
originating from the finite bandwidth of the lowest Bloch
band. For this purpose, we perform the expansion in the
half-bandwidth δ0 keeping only the lowest nonvanishing term
∝ δ2

0 . This correction may also be interpreted as a contribution
of phase slips, or the jumps between the neighboring poten-
tial wells. In the weak-coupling limit and for EJ � EC , the
Landauer heat flux (2) crosses over to the interband contribu-
tion (68), while the phase slip correction ∝δ2

0—to the high-
temperature expansion of the intraband contribution (72).

The phase slip correction is important only at low tem-
peratures kBT1,2 � h̄ωJ unless the Landauer contribution (2)
is deliberately made small by specific choice of the circuit
impedances Z1,2(ω). At these temperatures, only the lowest
Bloch band is populated and the intraband charge correlation
function (48) takes the form

Sb
Q = π2e2δ2

0

4E2
C

∫
dt eiωt

〈
sin

π q̂(t )

e
sin

π q̂(0)

e

〉

= π3e2δ2
0

4E2
C

P (ω). (80)

Here, we have introduced the function

P (ω) =
∫

dt

2π
eiωt 〈eiπ q̂(t )/ee−iπ q̂(0)/e〉, (81)

similar to the one appearing in the theory of the Coulomb
blockade in a Josephson junction embedded in electromag-
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netic environment [48]. The function P (ω) has a physical
meaning of the probability of photon absorption in either of
the two thermal baths during a phase slip event. This function
should be evaluated at δ0 = 0 and, since the temperature is
low, one can also ignore interband transitions. Afterwards,
applying the standard methods [49] and adapting them to
the environment consisting of the two baths with different
temperatures, we obtain P (ω) in the form of the convolution
of the two probabilities P1,2(ω) describing photon absorption
in the baths 1 and 2,

P (ω) =
∫

dω′P1(ω − ω′)P2(ω′). (82)

These probabilities are given by the integrals

P j (ω) =
∫

dt

2π
eiωt e−F j (t )−iK j (t ), (83)

in which the functions F j (t ) and K j (t ) read

F j (t ) = π h̄

e2

∫ ∞

0
dω Re

[
ω coth h̄ω

2kBTj

Z j (ω)

]
1 − cos ωt

ω2
, (84)

K j (t ) = π h̄

e2

∫ ∞

0
dω Re

[
1

Zj (ω)

]
sin ωt

ω
. (85)

For details of the derivation, we refer the reader to the Ap-
pendix D. The substitution of the correlation function (80)
in the general expression (14) for the heat flux results in the
phase slip correction (see Appendix D for details)

Jb = πδ2
0

h̄

∫
dω ωP1(ω)P2(−ω). (86)

This expression has a clear physical meaning: the correction
to the heat flux is the net contribution of elementary events,
in which a photon is absorbed by the junction from the bath 2
and then re-emitted into the bath 1. The same expression has
been recently derived for a two level system in Ref. [50].

Interestingly, the correction (86) can be transformed to
the Landauer form (2) with the aid of the detailed balance
relations

P j (ω) = eh̄ω/kBTjP j (−ω). (87)

The corresponding contribution to the transmission probabil-
ity has the form

τ b(ω) = 2π2δ2
0

h̄2 [P1(ω) − P1(−ω)][P2(ω) − P2(−ω)].

(88)

This expression provides the generalization of the weak-
coupling expression for the intraband transmission probabil-
ity (62). Indeed, the low-frequency δ peak now acquires a
finite width, which depends on the bath spectra and may also
depend on temperatures T1,2. The validity condition of the
expressions (86) and (88) is δ0 � kBT1,2 � h̄ωJ . However, for
sufficiently strong coupling, one can use them even at T = 0.

The computation of the functions P j (ω) for arbitrary
impedances Z1,2(ω) is complicated. However, in the weak-
coupling limit (41), one can obtain relatively simple expres-
sions by expanding the integrals in Eqs. (83) to the first order

in small functions F j (t ) and K j (t ). In this approximation, one
finds

P j (ω) − P j (−ω) = π h̄

e2
Re

[
1

Zj (ω)

]
1

ω
. (89)

Hence, the correction to the transmission probability (88)
simplifies to

τ b(ω) = 2π2δ2
0

e4

Re
[
Z−1

1 (ω)
]
Re
[
Z−1

2 (ω)
]

ω2
. (90)

Let us now consider the two examples, which we have
introduced before. First, we consider resonant environments
with the impedances (15). For high-quality factor resonators
with Rj � Zr j , one can approximate the transmission proba-
bility (90) at ω � ω1,2, ωJ as

τ (ω) ≈ h̄4R1R2C2
1C2

2 ω6

4e4E2
J

+ 2π2δ2
0

e4
R1R2C

2
1C2

2 ω2, (91)

where the first term comes from the transmission probabil-
ity (21) and the second from the phase slip correction (88).
The total heat flux takes the form

J = π7

15

R1R2C2
1C2

2

h̄3e4E2
J

[(kBT2)8 − (kBT1)8]

+π5

15

δ2
0R1R2C2

1C2
2

h̄3e4
[(kBT2)4 − (kBT1)4]. (92)

The first term comes from the harmonic approximation
[Eqs. (2) and (21)] and dominates at relatively high tem-
peratures kBT1,2 �

√
δ0EJ/π , where the junction acts as an

inductor. In contrast, at low temperatures kBT1,2 �
√

δ0EJ/π ,
the phase slip contribution (86) dominates the heat transport,
and the junction more resembles a capacitor.

Our second example is the case of Ohmic environ-
ments with Zj (ω) = Rj . At low frequencies and temperatures
h̄ω, kBT1,2 � h̄ωJ , the functions (83) acquire the form [51]

P j (ω) = h̄eh̄ω/2kBTj

4π2kBTj�(α j/2)

(
2πe−γ kBTj

h̄ωJ

) α j
2

×
∣∣∣∣�
(

α j

4
+ i

h̄ω

2πkBTj

)∣∣∣∣
2

. (93)

Here we assumed that despite strong coupling to the en-
vironments the junction remained underdamped, which is
possible if α1 + α2 � π

√
8EJ/EC . In this case, one obtains

the transmission probability in the form

τ (ω) = τ b(ω) + τ ib(ω), (94)

where τ b(ω) is given by Eq. (88) and the interband con-
tribution results form the low-frequency expansion of the
transmission (21),

τ ib(ω) = 4ω2

R1R2C2ω4
J

. (95)

One can now estimate the low-temperature heat conductance
of the system

κ = ∂J

∂T2

∣∣∣∣
T1=T2=T

=
∫ ∞

0

dω

2π

h̄2ω2τ (ω)

4kBT 2 sinh2 h̄ω
2kBT

. (96)
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It reads

κ = κ ib + κb, (97)

where the interband part follows from Eq. (34)

κ ib = πα1α2

120

k4
BT 3

h̄E2
J

, (98)

and the intraband one is given by

κb = π2e−γ

2

α1α2

α1 + α2

kBδ2
0

h̄2ωJ

(
2πe−γ kBT

h̄ωJ

) α1+α2
2 −1

. (99)

The latter formula is valid for α1,2 � 4. One can verify that
for δ0 � kBT � h̄ωJ and α1 � α2 � 1, Eq. (99) matches
the thermal conductance in the weak-coupling limit (72). It
also agrees with the results of Refs. [14,18], where the heat
transport through a two level system has been studied, if
one identifies the parameter α, introduced there, with the
combination (α1 + α2)/4.

B. Heat transport at EJ � kBT1,2

In this section, we assume that EJ is smaller than the
bath temperatures T1,2. Performing the expansion in the small
parameter EJ/kBT , we obtain the phase-phase correlation
function in the form (see Appendix E for details)

Sϕ (ω) = 8e2

h̄ω

Re
[ 1+N1(ω)

Z1(ω) + 1+N2(ω)
Z2(ω)

]+ πI2
C

2h̄ω
P(ω)∣∣−iωC + 1

Z1(ω) + 1
Z2(ω) + 1

ZJ (ω)

∣∣2 . (100)

Here, ZJ (ω) is the effective impedance of the Josephson
junction in presence of strong phase fluctuations [52]

1

ZJ (ω)
= I2

C

h̄

∫ ∞

0
dt

1 − eiωt

−iω
e−F (t ) sin[K (t )] (101)

and

P(ω) =
∫

dt

2π
eiωt 〈eiϕ̂(t )e−iϕ̂(0)〉 =

∫
dω P1(ω − ω′)P2(ω′)

(102)

is the probability for the junction to emit a photon with the
frequency ω into the environment. This function resembles
the function P (ω) defined in Eq. (81), but differs from it
because the charge q and the phase ϕ fluctuate in a different
way. The absorption probabilities of the two baths, Pj (ω), are
given by Eqs. (83) with the functions F j (t ), K j (t ) replaced by
similar functions describing phase fluctuations,

Fj (t ) = 4e2

π h̄

∫ ∞

0
dωR j (ω) coth

h̄ω

2kBTj

1 − cos ωt

ω
, (103)

Kj (t ) = 4e2

π h̄

∫ ∞

0
dωR j (ω)

sin ωt

ω
. (104)

Here, the effective spectra of the environments R j (ω) are

R j (ω) = Re
[
Z−1

j (ω)
]

∣∣−iωC + Z−1
1 (ω) + Z−1

2 (ω)
∣∣2 . (105)

The functions Fj (t ) and Kj (t ) are well known from the theory
of environmental Coulomb blockade [49,53,54].

The substitution of the correlation function (100) in the
general expression for the heat flux (9) gives the result

J = Jel
1 + J in

1 , (106)

where the elastic contribution to the heat flux Jel
1 is given by

Landauer formula (2) with the transmission probability (21)
containing the modified junction impedance (101), and J in

1
describes the contribution coming from the inelastic scattering
of photons on the junction,

J in = πE2
J

h̄

∫
dω ω P1(ω)P2(−ω). (107)

The inelastic heat flux (107) has the same form as the in-
traband contribution (86), which is the manifestation of the
phase—charge duality well known in the theory of Josephson
junctions.

The probabilities Pj (ω) also satisfy detailed balance rela-
tions (87), which allows us to express the total heat flux (106)
in the Landauer form (2) with the transmission probability
given by the sum of elastic and inelastic contributions,

τ (ω) = τ el(ω) + τ in(ω). (108)

The elastic part τ el(ω) is given by Eq. (21) with Z−1
J (ω)

defined in Eq. (101), and the inelastic one reads

τ in = 2π2E2
J

h̄2 [P1(ω) − P1(−ω)][P2(ω) − P2(−ω)]. (109)

As in the previous sections, we consider two examples.
First, we assume that the junction is coupled to the two
resonators with the impedances (15) and that the coupling is
sufficiently weak, |R j (ω)| � Rq. In this case, one can derive
the following approximations for the functions Pj (ω) and the
junction impedance (101):

Pj (ω) − Pj (−ω) = 4e2

π h̄

ω

ω2 + �2
j,T

R j (ω),

1

ZJ (ω)
= 2e2I2

C

−ih̄2ω

[
ZS (i�T )

�T
− ZS (ω + i�T )

�T − iω

]
.

(110)

Here, we have introduced the effective total impedance of the
environment seen by the junction

ZS = 1

−iωC + Z−1
1 + Z−1

2

− 1

−iωC

, (111)

and used the approximation Fj (t ) = � j,T |t | for the func-
tions (103). The rates of phase diffusion are

� j,T = 4e2kB

h̄2C2


RjC
2
j Tj . (112)

Equation (110) contains the total phase diffusion rate

�T = �1,T + �2,T = 4e2kB

h̄2

R1C2
1 + R2C2

2

C2


TJ , (113)

where the effective temperature of the junction is

TJ = R1C2
1 T1 + R2C2

2 T2

R1C2
1 + R2C2

2

. (114)
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FIG. 13. Heat flux vs magnetic flux in the regime EJ � kBT1,2.
The parameters of the system are: Zr1 = Zr2 = 50 �, R1 = 1 �, R2 =
30 �, C1 = 5 fF, C2 = 10 fF, C = 1 fF, EC/2π = 1.21 GHz, EJ =
0.7EC = 0.847 GHz, and ω1/2π = ω2/2π = 5 GHz.

The approximation (110) is valid if

EJ � kBTJ . (115)

In Fig. 13, we show the dependence of the heat flow (106)
on magnetic flux for a certain choice of system param-
eters. For these parameters, the effect of the junction
impedance (101) on the transmission probability (21) is in-
significant, and the cosine flux dependence of the heat power
predominantly comes from the prefactor E2

J ∝ cos2(π�/�0)
in front of the inelastic term (107). We have chosen an
asymmetric coupling, that is why the heat flux (107) exhibits
weak rectification. At low temperatures kBT1,2 � h̄ω1,2, the
inelastic contribution to the heat flux (107) can be estimated
as

J in ≈ I2
CR1R2C2

1C2
2 (T2 − T1)

2C2


(
R1C2

1 T1 + R2C2
2 T2

) . (116)

Figure 13 also shows that magnetic field independent back-
ground heat flux has strong temperature dependence. This
background comes from the heat transport between two ca-
pacitively coupled resonators [Eqs. (28) and (30)].

Our second example is again the case of Ohmic dissipation.
In this case, one can derive analytic expressions for the
photon absorption probabilities [51] Pj (ω) and the effective
impedance of the junction (101),

Pj (ω) = h̄eh̄ω/2kBTj

4π2kBTj�
(
8α j/α

2


)(2π2e−γ kBTj

αEC

) 8α j

α2


×
∣∣∣∣�
(

4α j

α2


+ i
h̄ω

2πkBTj

)∣∣∣∣
2

, (117)

1

ZJ (ω)
= π I2

C

2h̄ω

[
P(ω) − P(−ω) − i(P(ω) + P(−ω)

−2P(0)
)

tan
4π

α

]
, (118)

where α = α1 + α2. The expression (117) is valid pro-
vided πkBT1,2 � αEC and the approximation for the

impedance (118) requires the temperatures to be in the in-
terval EJ � kBT1,2 � αEC/π . Within this model one can
analytically derive the correction to the thermal conductance.
Assuming that α � 8, we find

κ ≈ 2π

3

α1α2

α2


k2
BT

h̄
− 4πα1α2

α3


E2
J

h̄T

(
2π2e−γ kBT

αEC

) 8
α

. (119)

The first term in this expression comes from the heat current
at EJ = 0 given by Eq. (38), and the second term provides
a negative correction to it. This correction is a combined
effect of the inelastic contribution (107), which gives positive
correction to κ , and of the junction impedance ZJ (ω), which
suppresses the transmission probability together with the ther-
mal conductance.

VI. SUMMARY

We have studied the photonic heat transport across a
Josephson junction coupled to the two linear electric cir-
cuits, acting as thermal baths, which are characterized by the
impedances Z1(ω), Z2(ω) and by temperatures T1, T2. We have
shown that linear approximation, in which the nonlinear junc-
tion is replaced by an inductor, provides a rather good estimate
of the heat flux between the thermal baths for any relation
between the parameters EJ , EC, and kBT1,2, for any coupling
strength and for any frequency dependence of the impedances
Z1,2(ω). This approximation fully accounts for hybridization
between the modes of the junction and of thermal baths.

However, simple harmonic approximation cannot capture
subtle effects such as thermal rectification, for example.
Therefore we have developed more elaborate approximations,
which take into account the nonlinear nature of the Josephson
junction. In the weak-coupling limit, the photon transmission
probability of the system is determined by the Bloch band
structure of the junction energy spectrum. At low frequencies,
it is predominantly determined by the transitions between
the junction states within one energy band, while at high
frequencies—by the transitions between different bands.

In the limit EJ � EC and at weak coupling, the photon
transmission probability is given by a series of narrow peaks
with the positions corresponding to the splitting between the
energy levels in the Josephson potential well. At stronger cou-
pling between the junction and the environment, these peaks
overlap forming a single broad peak. An additional peak asso-
ciated with the intraband transitions is formed at low frequen-
cies. Its shape is determined by the impedances Z1,2(ω), see
Eq. (88). The heat flux at strong coupling is given by the sum
of harmonic contribution (2) and the contribution of phase
slips (86), with the latter dominating at low temperatures.

In the opposite limit, EJ � EC , the Bloch bands become
wide and the energy gaps between them almost vanish. In
this case, the dominating contribution to the heat flux comes
from the Landauer formula (2), in which one should put
IC = 0. In addition, there exists a small correction depending
on the Josephson energy EJ . If EJ � kBT1,2 this correction
can be split into two parts: the elastic one, coming from the
junction impedance averaged over phase fluctuations (101),
and the inelastic correction (107), which is associated with
the absorption and re-emission of the photons by the junction.
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Many of our predictions can be experimentally tested.
Indeed, with reasonable values of the system parameters we
have obtained the heat fluxes in the range 10–100 aW (0.03%–
0.3% of the maximum value corresponding to a single thermal
conductance quantum), see, e.g., Figs. 4 and 10(b). Such
heat fluxes can be reliably detected [9]. This opens up a
possibility for quantum thermodynamics experiments with
tunable Josephson junctions.
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APPENDIX A: HEAT TRANSPORT AND LINEARIZED
LANGEVIN EQUATION

In this Appendix, we will demonstrate how one can derive
the Landauer formula for the heat current (2) by solving the
Langevin equations, which exactly describe quantum dynam-
ics of a linear system [42,43]. Here, we follow Nyquist [55]
and Pascal, Courtois, and Hekking [22].

Kirchhoff’s equations for the circuit of Fig. 14 read

I1(t ) =
∫ t

−∞
dt ′Y1(t − t ′)V (t ′) + ξ1(t ), (A1)

I2(t ) =
∫ t

−∞
dt ′Y2(t − t ′)V (t ′) + ξ2(t ), (A2)

IJ (t ) = CV̇ (t ) + IC sin ϕ, I1(t ) + I2(t ) + IJ (t ) = 0. (A3)

Here the admittances of the environments 1 and 2 in the
time domain are defined as Yj (t ) = ∫

dω e−iωt/2πZj (ω), the
voltage drop V across the junction is related to the phase by
means of the Josephson relation V = h̄ϕ̇/2e, the noises ξ1 and
ξ2 are the Gaussian stochastic processes fully characterized by
their pair correlators

〈ξi(t
′)ξ j (t

′′)〉 =
∫

dω

2π

〈|ξ j |2ω
〉

cos[ω(t ′ − t ′′)]δi j, (A4)

〈|ξ j |2ω
〉 = Re

[
1

Zj (ω)

]
h̄ω coth

h̄ω

2kBTj
. (A5)

FIG. 14. Equivalent circuit representation of the system shown
in Fig. 1 with the SQUID been replaced by a linear lumped element
with the impedance ZJ (ω). Current sources generating the noise
currents ξ1(t ) and ξ1(t ), which carry the information about the
temperatures T1 and T2.

The currents I1(t ) and I2(t ) flow through the impedances
Z1(ω) and Z2(ω), respectively. The heat flux in this framework
is given by the Joule heating released in the circuit 1 and
averaged over the noises ξ j ,

J = 〈I1V 〉ξ . (A6)

Equations (A1)–(A3) can be readily solved by means of
Fourier transformation. We find the Fourier component of the
voltage, Vω = ∫

dt eiωt V (t ) in the form

Vω = − ξ1,ω + ξ2,ω

−iωC + 1
Z1(ω) + 1

Z2(ω) + 1
ZJ (ω)

. (A7)

The heat flux (A6) can now be transformed as

J =
∫

dω

2π
〈I1,ωV−ω〉ξ =

∫
dω

2π

〈(
Vω

Z1(ω)
+ ξ1,ω

)
V−ω

〉
ξ

.

Combining this expression with Eq. (A7), we obtain

J = Re
∫

dω

2π

〈|ξ2|2ω〉
Z1

− 〈|ξ1|2ω〉
ZJ

− 〈|ξ1|2ω〉
Z2∣∣−iωC + 1

Z1
+ 1

Z2
+ 1

ZJ

∣∣2 . (A8)

Using the expressions (A5) for the spectral power of the
noises, one can show that this expression is equivalent to the
Landauer formula (2) with the transmission probability having
the form (21).

APPENDIX B: WKB APPROXIMATION
IN THE LIMIT EJ � EC

Let us consider the junction with EJ � EC . It is well
known that in this regime the eigenenergies of the 2π -periodic
junction Hamiltonian ĤJ form Bloch bands with the cosine
dispersion (65). The approximation (65) applies if En < 2EJ ,
i.e., for the wave functions localized inside the potential
wells and having eigenenergies smaller than the height of
the barrier separating neighboring wells. In this Appendix,
we summarize approximate analytical expressions for both
energy levels En and half-bandwidth δn of the corresponding
Bloch bands, which can be derived by means of the Wentzel-
Kramers-Brillouin (WKB) approximation.

The energies of the quasiclassical levels Eqcl
n are deter-

mined by the Bohr-Sommerfeld quantization rule,

∫ ϕ0(Eqcl
n )

−ϕ0(Eqcl
n )

dϕ

√
Eqcl

n − EJ (1 − cos ϕ)

2
√

EC
= π

(
n + 1

2

)
, (B1)

where ϕ0(Eqcl
n ) = arccos (1 − Eqcl

n /EJ ) are the classical turn-
ing points in the Josephson potential. Evaluating the integral
in Eq. (B1), one arrives at the equation for Eqcl

n in the form(
Eqcl

n

2EJ
− 1

)
K

⎛
⎝
√

Eqcl
n

2EJ

⎞
⎠+ E

⎛
⎝
√

Eqcl
n

2EJ

⎞
⎠

= π

2

(
n + 1

2

)√
EC

2EJ
, (B2)

where K(k) and E(k) are the complete elliptic integrals of
the first and the second kind (here, we use the definitions
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of these functions given in the book [46], which differ from
the definitions used in the popular MATHEMATICA package),
and n is the non-negative integer number taking the values
0, 1, 2, . . . Equation (B2) has solutions provided EJ/EC >

π2/32, while for lower values of the ratio EJ/EC no discrete
levels exists in the potential well. The total number of the
energy levels in the well equals to nmax + 1, where nmax is
given by

nmax =
⌊

1

π

√
8EJ

EC
− 1

2

⌋
. (B3)

Here, the brackets �. . . � imply the floor function. Having
found the quasiclassical energy levels Eqcl

n from Eq. (B2), we
correct them as follows:

En = Eqcl
n − EC/8. (B4)

We have numerically verified that the accuracy of the approx-
imation (B4) is 4% for EJ/EC = 3, 0.3% for EJ/EC = 50, and
even better than that for higher values of the ratio EJ/EC . The
maximum error occurs for the top most level Enmax , while the
positions of the low-lying levels are very accurate. Next, we
expand Eq. (B2) at small energies Eqcl

n � 2EJ and keep only
the two leading terms in the small parameter EC/EJ . In this
way, we obtain an approximation for the low-lying energy
levels,

En =
√

8EJEC

(
n + 1

2

)
− EC

2

[(
n + 1

2

)2

+ 1

4

]
. (B5)

It agrees with the well known result of perturbation theory in
weak anharmonicity of the Josephson potential [11].

WKB approximation also allows one to find the half-
bandwidths δn. For the lowest band with n = 0, the result is
well known [38,39],

δ0 = −16

√
EJEC

π

(
EJ

2EC

)1/4

exp

[
−
√

8EJ

EC

]
. (B6)

In order to find δn for 1 � n � nmax, we use the WKB formula
for the level splitting in a double-well potential [56],

δn = h̄ωn√
π

exp

[
−1

2
−
∫ 2π−ϕ0(En )

ϕ0(En )
dϕ

√
EJ (1− cos ϕ)− En

2
√

EC

]
.

(B7)

Here, we have introduced the frequency of classical oscilla-
tions at the bottom the potential well for a particle with the
energy En,

ωn = π
√

2EJEC

h̄K(
√

En/2EJ )
. (B8)

Evaluating the integral in Eq. (B7), we arrive at

δn = (−1)n+1
√

2πEJEC

K(
√

En/2EJ )
exp

{
−1

2
−
√

8EJ

EC

×
[

E

(√
1 − En

2EJ

)
− En

2EJ
K

(√
1 − En

2EJ

)]}
.

(B9)

Comparison with the exact numerical simulation shows that
the approximation (B9) is quite accurate. It has the accuracy
10% or better for all bands with energies below the barrier top
and for ratios EJ/EC > 3. The maximum relative error in δn

again occurs for the highest Bloch band inside the potential
well, namely for δnmax .

Now, we turn to the matrix elements of the phase opera-
tor (B12). We use the well known quasiclassical approxima-
tion for the matrix elements [57,58],

|ϕmn| ≈ ω(ε+
mn)

2π

∫ π/ω(ε+
mn )

−π/ω(ε+
mn )

dt ϕcl(t, ε
+
mn)

× sin[|m − n|ω(ε+
mn)t]. (B10)

Here, ε+
mn = (Eqcl

n + Eqcl
m )/2, the frequency ω(ε+

mn) is given by
Eq. (B8) with En replaced by ε+

mn, and

ϕcl(t, ε
+
mn) = 2 am

(
2
√

ECε+
mn t,

√
2EJ

ε+
mn

)
(B11)

is the solution of the classical equation of motion for a particle
in the Josephson potential well having the energy ε+

mn. It is
expressed in terms of Jacobi amplitude function am(u, k). The
integral (B10) can be solved analytically using the properties
of Jacobi functions[46]. We find ϕmn = 0 if |m − n| is an even
number, and

|ϕmn| = 4

|m − n|
q|m−n|/2

mn

1 + q|m−n|
mn

(B12)

if |m − n| is an odd number. The parameter qmn is known as
the so called nome in the theory of Jacobi functions,

qmn = exp

[
−π

K(
√

1 − εmn/2EJ )

K(
√

εmn/2EJ )

]
. (B13)

For completeness, we also provide the quasiclassical matrix
elements of the momentum (44) for the odd |m − n| (for even
|m − n| �= 0 they are also equal to zero),

|pmn| =
∣∣∣∣
〈
m

∣∣∣∣−i
∂

∂ϕ

∣∣∣∣n
〉∣∣∣∣ = |Em − En||ϕmn|

8EC

= |Em − En|
2EC |m − n|

q|m−n|/2
mn

1 + q|m−n|
mn

. (B14)

For the low-lying levels with En � 2EJ , one can derive
simpler expressions. In this limit, one can use an approxi-
mation EJ (1 − cos ϕ) ≈ EJ (ϕ2/2 − ϕ4/24) and treat the term
∝ϕ4 as a perturbation. Keeping the two lowest-order terms,
we find

ϕn−1,n = ϕn,n−1 =
(

2EC

EJ

)1/4√
n

[
1 + n

√
EC

32EJ

]
. (B15)

For comparison, we also expand the quasiclassical matrix
element (B12) in the same limit and find

|ϕn,n−1| =
(

2EC

EJ

)1/4√
n

[
1 +

√
EC

32EJ

(
n − 1

8n

)]
. (B16)

The two expressions agree quite well even for n = 1, which
confirms the accuracy of the approximation (B12). Numerics
shows that the approximate expression for the matrix element
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of momentum pn,n−1, given by Eq. (B14), is very accurate.
Namely, for EJ/EC = 3, we find a tiny error of 0.3%, while for
EJ/EC = 50, the maximum error, occurring at n = nmax = 5,
turns out to be 2%.

The matrix element between the states n and n ± 3, derived
by perturbation theory in the quartic term, reads

ϕn−3,n = ϕn,n−3 = −
(

2EC

EJ

)3/4 √
n(n − 1)(n − 2)

48
. (B17)

Expanding the quasiclassical expression (B12) in powers of
the small parameter EC/EJ , we find

|ϕn−3,n| = |ϕn,n−3| =
(

2EC

EJ

)3/4 (n − 1)3/2

48
. (B18)

Again, we note that the two expressions (B17) and (B18)
agree quite well. Numerically, we find that for EJ/EC = 50,
in which case nmax = 5, the maximum relative error for the
matrix element pn,n−3, given by Eq. (B14), equals to 7% and
occurs at n = 3.

APPENDIX C: SOLUTION OF THE MASTER EQUATION
FOR A HARMONIC OSCILLATOR

In this Appendix, we find the stationary solution of the
master equation (67) in harmonic approximation, and use it
to derive the expression (40) for the heat flux. If one replaces
the nonlinear Josephson potential by a harmonic one, EJ (1 −
cos ϕ) → EJϕ

2/2, the energy levels become equidistant, En =
h̄ωJ (n + 1/2), and independent of q. In this approximation,
one finds ωn+1,n = ωJ for all n. The phase matrix elements
connecting neighboring levels are given by

ϕn−1,n = ϕn,n−1 =
(

2EC

EJ

)1/4√
n, n = 1, 2, 3, . . . (C1)

All other matrix elements vanish. Accordingly, the transition
rates between the levels (54) take the form

�
( j)
n,n−1 = nγ

( j)
↑ , �

( j)
n−1,n = nγ

( j)
↓ (C2)

where we have defined

γ
( j)
↑ = 2EC

e2
Re

[
1

Zj (ωJ )

]
Nj (ωJ ),

γ
( j)
↓ = 2EC

e2
Re

[
1

Zj (ωJ )

]
[1 + Nj (ωJ )]. (C3)

In this approximation, the solution of Eq. (67) can be found
analytically,

Wm = um(1 − u), u = (γ (1)
↑ + γ

(2)
↑ )/(γ (1)

↓ + γ
(2)
↓ ). (C4)

Substituting this result in the general expression for the heat
flux (68), one arrives at the formula (40).

If we allow anharmonicity, but consider only the transitions
between the neighboring levels, the occupation probabilities
for an N-level system are

W0 = 1

Nc
, Wm = 1

Nc

m∏
p=1

�p,p−1

�p−1,p
, (C5)

where m = 1, 2, . . . , N − 1, and

Nc = 1 +
N−1∑
m=1

m∏
p=1

�p,p−1

�p−1,p
, �k,l = �

(1)
k,l + �

(2)
k,l

As N → ∞ and with vanishing anharmonicity, (C5) reduces
to (C4).

APPENDIX D: DERIVATION OF EQ. (86)

In this Appendix, we provide the details of the derivation
of the expression (86) for the intraband contribution to the
heat flux. We ignore the interband transitions and put δn = 0.
In this approximation, the Hamiltonian of the junction, ĤJ ,
drops out from the full Hamiltonian (3). The operator of the
Josephson phase can be expressed as ϕ̂ = −2ie(∂/∂q), hence
the interaction Hamiltonians may be written in the form

Ĥ int
j =

∑
k

(
2iec j,kX̂ j,k

∂

∂q
− 2e2c2

j,k

Mj,kω
2
j,k

∂2

∂q2

)
. (D1)

Since after making these approximations the Hamiltonian
has become quadratic in all operators, one can use Wick’s
theorem and the Baker-Campbell-Hausdorff formula for the
commutators. This leads to

〈eiπ q̂(t )/ee−iπ q̂(0)/e〉 = 〈ei π
e (q̂(t )−q̂(0))〉e π2

2e2 [q̂(t ),q̂(0)]

= e− π2

2e2 〈(q̂(t )−q̂(0))2〉e
π2

2e2 [q̂(t ),q̂(0)]
. (D2)

It is straightforward to show by solving equations of motion
for the quantum operators that for the Hamiltonian of the form
Ĥ1 + Ĥ2 + Ĥ int

1 + Ĥ int
2 , with the interaction terms given by

Eq. (D1), the charge correlators read

π2

2e2
〈(q̂(t ) − q̂(0))2〉 = F1(t ) + F2(t ),

π2

2e2
[q̂(t ), q̂(0)] = −iK1(t ) − iK2(t ), (D3)

where the functions F j (t ) and K j (t ) are given by the inte-
grals (84) and (85). Now one can find the probabilities P j (ω)
from Eq. (83), and P (ω) from Eq. (82).

Next, we substitute the correlation function (80) in Eq. (14)
and find the intraband contribution to the heat flux in the form

Jb =
(

nmax∑
n=0

π3δ2
n

e2
Wn

)∫
dω

2π
Re

[
1

Z1(ω)

]

× (P (−ω)[1 + N1(ω)] − P (ω)N1(ω)). (D4)

We can further transform Jb by applying a useful property of
the function P1(ω), which is derived by applying the Fourier
transformation to both sides of the identity

d

dt
e−F (t )−iK(t ) = −(Ḟ (t ) + iK̇(t ))e−F (t )−iK(t ). (D5)

Since the functions F and K are given by the integrals (84)
and (85), we arrive at the result∫

dω′ Re

[
1 + N1(ω′)

Z1(ω′)

]
P1(ω − ω′) = e2ω

π h̄
P1(ω). (D6)

With the aid of this identity one can easily transform the heat
flux (D4) to the form (86).
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APPENDIX E: DERIVATION OF EQ. (107)

In this Appendix, we derive the expression (100) for the
phase-phase correlation function by means of perturbation
theory in small Josephson energy EJ . Considering the term
−EJ cos ϕ in the full Hamiltonian (3) as a perturbation and
keeping the terms up to E2

J in the expansion, one can express
the time-dependent phase operator ϕ̂(t ) = eiĤt/h̄ϕ̂e−iĤt/h̄ in
the form

ϕ̂(t ) = ϕ̂0(t ) − iEJ

h̄

∫ t

0
dt ′[cos ϕ̂0(t ′), ϕ̂0(t )]

− E2
J

h̄2

∫ t

0
dt ′
∫ t ′

0
dt ′′[cos ϕ̂0(t ′′), [cos ϕ̂0(t ′), ϕ̂0(t )]].

(E1)

Here the time evolution of the operator ϕ̂0(t ) =
eiĤ0t/h̄ϕ̂e−iĤ0t/h̄ is determined by quadratic Hamiltonian
Ĥ0 = limEJ →0 Ĥ . As in the previous Appendix, this ensures
the validity of the Wick’s theorem for various products
involving phase operators. In particular, with the aid of the
Wick’s theorem one can prove that

[cos ϕ̂0(t ′), ϕ̂0(t )] = sin ϕ̂0(t ′)[ϕ̂0(t ), ϕ̂0(t ′)], (E2)

[cos ϕ̂0(t ′′), [cos ϕ̂0(t ′), ϕ̂0(t )]]

= (sin[ϕ̂0(t ′) + ϕ̂0(t ′′)] − sin[ϕ̂0(t ′) − ϕ̂0(t ′′)])

× sinh

(
[ϕ̂0(t ′), ϕ̂0(t ′′)]

2

)
[ϕ̂0(t ), ϕ̂0(t ′)]. (E3)

Here, we have also used the property typical for quadratic
Hamiltonians, namely, we have used the fact that the com-
mutator [ϕ̂0(t ), ϕ̂0(t ′)] is proportional to the identity operator
Ê and commutes with all other operators,

[ϕ̂0(t ), ϕ̂0(t ′)] = −2iK (t − t ′)Ê . (E4)

From the equation of motion for ϕ̂0(t ), or applying path
integral techniques [41], one finds K (t ) = K1(t ) + K2(t ), with
the functions K1,2(t ) having the form (104).

Using the expansion (E1), transforming the commutators
in it according to the rules (E2) and (E3), and taking the long-
time limit, we express the phase-phase correlation function in
the form

〈ϕ̂(t1)ϕ̂(t2)〉
= 〈ϕ̂0(t1)ϕ̂0(t2)〉

+ I2
C

e2

∫
dt ′dt ′′K (t1− t ′)K (t2− t ′′)〈sin ϕ̂0(t ′) sin ϕ̂0(t ′′)〉

− I2
C

2e2

∫
dt ′
∫ t ′

−∞
dt ′′K (t2 − t ′) sin[K (t ′ − t ′′)]

× 〈ϕ̂0(t1) sin[ϕ̂0(t ′) − ϕ̂0(t ′′)]〉

− I2
C

2e2

∫
dt ′
∫ t ′

−∞
dt ′′K (t1 − t ′) sin[K (t ′ − t ′′)]

× 〈sin[ϕ̂0(t ′) − ϕ̂0(t ′′)]ϕ̂0(t2)〉. (E5)

Here, we have omitted the terms containing sin[ϕ̂0(t ′) +
ϕ̂0(t ′′)], which vanish upon averaging because at EJ = 0 the

phase fluctuations are unrestricted. Next, we apply Wick’s
theorem once again and find

〈ϕ̂0(t1) sin[ϕ̂0(t ′) − ϕ̂0(t ′′)]〉
= 〈ϕ̂0(t1)[ϕ̂0(t ′) − ϕ̂0(t ′′)]〉〈cos[ϕ̂0(t ′) − ϕ̂0(t ′′)]〉
= e−F (t ′−t ′′ )〈ϕ̂0(t1)[ϕ̂0(t ′) − ϕ̂0(t ′′)]〉, (E6)

where F (t ) = F1(t ) + F2(t ) and the functions F1,2(t ) are given
by Eqs. (104). Similarly,

〈sin[ϕ̂0(t ′) − ϕ̂0(t ′′)]ϕ̂0(t2)〉
= e−F (t ′−t ′′ )〈[ϕ̂0(t ′) − ϕ̂0(t ′′)]ϕ̂0(t2)〉. (E7)

Substituting these expressions in Eq. (E5), and taking the
Fourier transformation over the time difference t1 − t2, we
find

Sϕ (ω) =
(

1 + i
h̄ωKω

2e2ZJ (ω)
− i

h̄ωK∗
ω

2e2Z∗
J (ω)

)
S(0)

ϕ (ω)

+ I2
C

e2
|Kω|2Ssin ϕ (ω). (E8)

The junction impedance ZJ (ω), appearing here, is defined by
Eq. (101), the function Kω reads

Kω =
∫ ∞

0
eiωt K (t ) = 2e2

−ih̄ω

1

−iωC + 1
Z1(ω) + 1

Z2(ω)

,

(E9)

the Fourier transformed phase-phase correlation function
evaluated at EJ = 0 is given by

S(0)
ϕ (ω) =

∫
dteiωt 〈ϕ̂0(t )ϕ̂0(0)〉

= 2h̄ω

e2
|Kω|2 Re

[
1 + N1(ω)

Z1(ω)
+ 1 + N2(ω)

Z2(ω)

]
,

(E10)

and the correlation function of sin ϕ̂0 is defined as

Ssin ϕ (ω) =
∫

dteiωt 〈sin ϕ̂0(t ) sin ϕ̂0(0)〉. (E11)

One can straightforwardly show that Ssin ϕ (ω) = πP(ω),
where P(ω) is the photon emission probability (102). Compar-
ing Eqs. (E8) and (100), one can verify that they coincide in
the lowest nonvanishing order of the perturbation theory ∼E2

J ,
but Eq. (100) has more compact and physically transparent
form.

The inelastic contribution to the heat flux originates from
the last term in the correlation function (E8) containing
Ssin ϕ (ω). Substituting this term in the general expression (9),
we obtain

J inel
1 = I2

C

∫
dωR1(ω)[1 + N1(ω)]P(−ω). (E12)

One can transform this expression to a more physically mean-
ingful form (107) invoking the property analogous to (D6),∫

dω′ R1(ω′)[1 + N1(ω′)]P1(ω − ω′) = π h̄ω

4e2
P1(ω).

(E13)
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