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Impurity-induced subgap states in superconductors with inhomogeneous pairing
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We study subgap states induced by a single impurity in an s-wave superconductor with suppressed pairing.
For concreteness, we consider a bulk superconductor containing a normal spherical region. We find that a point
impurity in this system induces two Yu-Shiba-Rusinov states inside the minigap instead of one, which one would
have in a homogeneous superconductor. Moreover, the subgap states appear even if the impurity is nonmagnetic.
We prove that this result actually holds almost for any superconductor with a real and spatially inhomogeneous
order parameter, if the quasiparticle spectrum is gapped.
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I. INTRODUCTION

Magnetic impurities are known to produce a pair-breaking
effect in superconductors, as has been demonstrated by
Abrikosov and Gor’kov in their seminal work [1]. Later,
a more subtle effect has been discovered: the existence of
subgap states localized by magnetic impurities—the so-called
Yu-Shiba-Rusinov states [2–4] (or Shiba states, in short). In
recent years, there has been an increased interest in systems
hosting subgap Shiba states and bands. The interest stems
from the realization that chains of magnetic atoms on su-
perconductors can give rise to zero energy Majorana modes
[5–9] and indications of experimental observations of these
modes [10–13] (see also Ref. [14] for review of experimental
progress in studying Shiba states). Majorana modes are con-
sidered as potential building blocks for topological quantum
computers [15–18].

Another property of magnetic impurities, which is of
practical significance, is their ability to trap nonequilibrium
quasiparticles. Such quasiparticles are generated during oper-
ation of superconducting devices [19–30] (including qubits,
photon counters, and coolers) and typically degrade their per-
formance. Degradation appears mainly due to quasiparticles
with energies close to or larger than the bulk gap �, which can
move freely in the superconductor. In a Josephson junction,
for example, such quasiparticle can get stuck in a current-
carrying Andreev state (“poison” it), which will change the
current-phase characteristic of the junction. To avoid this,
quasiparticle can be trapped far from the junction area. Mag-
netic impurities, providing Shiba states with energies lying
well below the gap �, may act as such traps. Indeed, a quasi-
particle captured in a Shiba state is very unlikely to escape, if
the temperature is much lower than �. Eventually such quasi-
particle will recombine with another one. Theoretical consid-
erations show, in fact, that trapping results in an enhanced
quasiparticle-quasiparticle recombination rate [31–33]. Note
also that free quasiparticles are the source of Ohmic losses
in superconductors, and trapping them in Shiba states will
reduce the losses at low frequencies [34]. A paper by
Barends et al. [35] provides experimental evidence that mag-
netic disorder indeed can reduce the quasiparticle lifetimes

in superconductors. Remarkably, nonmagnetic disorder seems
to produce the same effect, which cannot be directly explained
by the trapping mechanism, because nonmagnetic scatterers
do not induce subgap states in a homogeneous superconductor
[36].

It should be noted that the most commonly used type of
quasiparticle trap is a normal drain in contact with the su-
perconducting device [19,20,24,28]. Sufficiently large normal
drains have deep subgap Andreev states, such that quasiparti-
cles trapped in these states are unlikely to escape from the nor-
mal region (the same trapping principle can be implemented
by suppressing superconductivity locally with a magnetic
field [29,30,37,38]). The idea of combining two trapping
mechanisms—magnetic impurities and normal regions—has
not been previously considered in literature. In the present
paper, we address this idea and find that in a superconductor
the combination of a region with suppressed pairing and of
an impurity (not necessarily magnetic) results in synergetic
behavior, displaying features that are not present in each of
these systems separately.

Specifically, we calculate the subgap electronic density of
states in an s-wave superconductor with a normal inclusion
in the shape of a ball (a normal bubble) and with a pointlike
impurity. Similar systems with the impurity located in the cen-
ter of the region with suppressed superconductivity have been
studied theoretically before [39–42]. Flatté and Byers [39,40]
calculated numerically and self-consistently the local density
of states in an s-wave superconductor with a finite-sized
magnetic impurity. They found multiple impurity states whose
energies are almost independent of the product kF ξ as long as
kF ξ � 1, where kF is the Fermi wave number and ξ is the
coherence length. This result agrees with the analytical cal-
culations of Rusinov [4], who found that in the limit kF ξ�1,
the energy of the Shiba state with orbital momentum l is given
by

ESl = �0| cos(αl↑ − αl↓)|, (1)

where �0 is the bulk gap and αl↑ and αl↓ are the scatter-
ing phases of the impurity in the normal state for electrons
with orbital momentum l and spin up (↑) or spin down
(↓), respectively. Note that none of the quantities in the
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right-hand side of Eq. (1) depend on the coherence length.
Thus it appears that self-consistency has a very weak effect on
Shiba states in typical s-wave superconductors. Remarkably,
for a relatively low value of kF ξ = 10, it has been found
[40] that a nonmagnetic impurity hosts a subgap state, which
appears due to local suppression of the gap. However, the
energy of this state is extremely close to the gap edge, so that
this state is highly delocalized.

In Ref. [41], a self-consistent calculation of impurity states
in s-wave and d-wave superconductors has been performed
within a tight-binding model. In Ref. [42], Andreev states
localized at a nonmagnetic impurity with a pairing amplitude
� distorted on a scale L� � ξ have been studied (note that
self-consistent calculations typically yield L� ∼ k−1

F and not
L� ∼ ξ [39,40,43]). It has been found that an impurity with
a suppressed pairing amplitude � hosts an infinite number of
subgap states (if the superconductor is unbounded), whose en-
ergies approach the bulk gap exponentially fast with growing
orbital momentum l .

Contrary to previous works, here we consider a supercon-
ductor containing a spherical region with suppressed pairing
which appears not due to an impurity but has rather external
causes, e.g., a normal inclusion or local heating. We assume
that the superconducting gap is completely suppressed in a
bubble with radius a � k−1

F , with the most interesting case
corresponding to a ∼ ξ . The spectrum of such system without
impurities has been studied in a number of papers [42,44–46].
It has been found that the spectrum contains a large number
(strictly speaking, an infinite number [42]) of subgap states.
This situation may be reasonably well described within the
quasiclassical approximation, where the orbital momentum
l varies continuously, such that the spectrum is continuous
and has a minigap Eg < � [46]. In the present work, we
add a point impurity to this system. According to Eq. (1),
for a magnetic impurity in a homogeneous superconductor,
this yields one Shiba state, since only scattering with l = 0
takes place. In the presence of a normal bubble, one might
expect one impurity state with energy E < Eg. This is in-
deed the case when the impurity is situated in the center of
the bubble. However, when the impurity is shifted from the
center and even put outside the bubble, we generally find
two Shiba states with different energies inside the minigap.
Moreover, these states are present even if the impurity is
nonmagnetic—then, these states have equal energies (due to
spin degeneracy), which can be still well below Eg. This result
means that a region with suppressed pairing may significantly
enhance the ability of impurities to trap quasiparticles and
even allows nonmagnetic scatterers to act as quasiparticle
traps. At first sight, the appearance of subgap states in the
presence of a nonmagnetic impurity may seem inconsistent
with Anderson’s theorem [36], however, this theorem does not
apply to spatially inhomogeneous superconductors. We also
want to point out that a closely related phenomenon has been
previously found in one-dimensional SNS junctions: here, the
energy of the lowest Andreev state may become even lower in
the presence of a potential barrier [47,48].

The specificity of the system that we consider may suggest
that our results are mostly of academic significance, however,
we show that they can be generalized for a broad class of
system. In particular, we prove that a point impurity (no matter

whether magnetic of not) in an s-wave superconductor with an
inhomogeneous and real order parameter and with a gap in the
quasiparticle spectrum almost always induces two localized
subgap states.

The paper is organized as follows. In Sec. II, we describe
our technique (based on the Gor’kov equation) and provide
a general expression for the Green function in the presence
of a point impurity. In Sec. III, we review the known re-
sults concerning the spectrum of a normal bubble inside a
superconductor without impurities. In Sec. IV, we analyze
the impurity-induced states, calculate their energies and wave
function. In the conclusion, the main results are summa-
rized. The appendices contain most technical details of the
calculations.

II. BASIC EQUATIONS

The system that we study is an infinite s-wave supercon-
ductor containing a point impurity whose position is given
by ri and a region with suppressed pairing with radius a �
k−1

F . As an approximation, we use a steplike order parameter
profile:

�(r) =
{

0 when r � a,

� = const > 0 when r > a.
(2)

Of course, such profile is not self-consistent and hence one
should not expect accurate quantitative prediction from this
model. However, we will prove that the main qualitative
results captured by this model are quite general and hold even
for profiles of �(r) that are not spherically symmetric.

We analyze the density of states in our system using
the Green functions technique. The retarded Green function
ǦE (r, r′) is determined from the Gor’kov equation [49]:{

H0(r) + U (r − ri ) + τ̂z[J(r − ri )σ̂ − E − iη+]

+
(

0 −�(r)
�∗(r) 0

)}
ǦE (r, r′) = δ(r − r′), (3)

H0(r) = − h̄2∇2

2m
− μ. (4)

Here, τ̂z is a Pauli matrix in Nambu space, U (r) is the
electrical potential of the impurity, and J(r) is its exchange
field, σ̂ = {σ̂x, σ̂y, σ̂z} are the Pauli matrices in spin space, E is
the energy, η+ is an infinitely small positive quantity, m is the
electron mass, and μ = h̄2k2

F /(2m) is the chemical potential.
The 4×4 Green function has the following block structure in
Nambu space:

ǦE (r, r′) =
(

ĜE (r, r′) F̂E (r, r′)
−F̂ †

E (r, r′) ˆ̄GE (r, r′)

)
. (5)

Each block is a 2×2 matrix in spin space. We use the same
definitions of the blocks in terms of electron field operators as
in Ref. [50].

The local density of states is given by

ν(E , r) = π−1Im[GE↑↑(r, r) + GE↓↓(r, r)], (6)

where the arrows are the spin indices.
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Let us specify the properties of the point impurity. We
assume that the range of the potentials U (r) and J(r)σ̂ is much
smaller than the electron wavelength. Then the impurity is
essentially a spherical scatterer. For a nonmagnetic defect with
J(r) = 0, in particular, this means that the solution of the scat-
tering problem for a plane wave in vacuum has the form [51]

ψ (r) = eikr + eikr+iα sin α

kr
. (7)

Here, the defect is located at the origin, and k and
α ∈ [−π/2, π/2] are the energy dependent wave number
and scattering phase, respectively. For a magnetic impurity,
one can choose the spin quantization axis in such a way that
spin-up and spin-down electrons would be scattered without
spin rotation and would have some scattering phases α↑ and

α↓, respectively. With this choice of the spin quantization axis
one can see that the equations for Green functions with spin
indices ↑↑ and ↓↓ decouple, and the Green functions with
indices ↑↓ and ↓↑ vanish. This greatly simplifies the solution
of the Gor’kov equation.

To study the subgap spectrum of our system, we need to
solve Eq. (3) only for |E | < �. Typically, � � μ, so that
it is reasonable to neglect the variations of α↑ and α↓ with
energy for |E | < �. Within this approximation Eq. (3) has
been solved in Ref. [50] in terms of the Green functions of the
system without the impurity. In particular, it has been found
that the function GE↑↑(r, r′) has the form

GE↑↑(r, r′) = G(0)
E (r, r′) + G(1)

E↑↑(r, r′), (8)

where

G(1)
E↑↑(r, r′) = D−1

↑ (E )

(
G(0)

E (r, ri )

{
G(0)

E (ri, r′)
[

mkF

2π h̄2 cot α↓ − G(0)∗
−ER(ri, ri )

]
− F †(0)∗

−E (ri, ri )F
†(0)

E (ri, r′)
}

− F †(0)∗
−E (r, ri )

{
F †(0)

E (ri, r′)
[

mkF

2π h̄2 cot α↑ − G(0)
ER(ri, ri )

]
+ F †(0)

E (ri, ri )G
†(0)
E (ri, r′)

})
, (9)

D↑(E ) =
[

mkF cot α↑
2π h̄2 − G(0)

ER(ri, ri )

][
mkF cot α↓

2π h̄2 − G(0)∗
−ER(ri, ri )

]
+ F †(0)

E (ri, ri )F
†(0)∗
−E (ri, ri ), (10)

G(0)
ER(r, r′) = G(0)

E (r, r′) − m

2π h̄2|r − r′| . (11)

The functions G(0)
E (r, r′) and F †(0)

E (r, r′) solve the Gor’kov equation without the impurity:[
H0(r) − τ̂z(E + iη+) +

(
0 −�(r)

�∗(r) 0

)](
G(0)

E (r, r′)

−F †(0)
E (r, r′)

)
=
(

δ(r − r′)
0

)
. (12)

Thus, to calculate the density of states in the presence of an
impurity, one should first find the Green functions of a pure
system.

III. GREEN FUNCTIONS AND DENSITY OF STATES
IN A PURE NORMAL BUBBLE

A. Global subgap spectrum

The subgap spectrum of a normal bubble inside a super-
conductor has been studied using the Bogoliubov-de Gennes
(BdG) equations formalism in several papers [42,44–46].
Here, we will outline the main results. Clearly, the energy
levels below the bulk gap are discrete. Due to the spherical
symmetry, it is convenient to describe the spectrum by three
quantum numbers: the orbital momentum l , its projection lz
and a third number n. Since the Hamiltonian does not depend
on lz, each energy level is at least 2l + 1 times degenerate.
Within the Andreev approximation, a relatively simple equa-
tion for the energy levels Eln has been obtained in Ref. [46]:

Eln = 2�ξ ′

πL(l )
[πn + γ (Eln)], (13)

where

L(l ) = 2
√

a2 − (l + 1/2)2k−2
F , (14)

γ (E ) = arccos

(
E

�

)
, (15)

ξ ′ = π h̄vF /(2�), vF =h̄kF /m is the Fermi velocity, l=0, 1,

2, . . . , and n is any integer such that a real solution of Eq. (13)
exists. There are also some restrictions on l , namely kF L(l ) �
1 and [kF L(l )]3 � (l + 1/2)2.1 Note that for a given l , the
spectrum (13) is the same as in a one-dimensional SNS
Josephson junction with the length of the normal region equal
to L(l ) [53,54]. This is explained by the fact that a quasipar-
ticle with orbital momentum l passes a path of approximately
L(l ) inside the normal bubble between two consecutive An-
dreev reflections. Another consequence of this is that the low-
est quasiparticle energy in our system is the same as in a SNS
junction with the length of the normal region equal to 2a. We
denote this energy, which is by definition the minigap of the
system, as Eg. It satisfies Eq. (13) with n = 0 and l = 0 [46]:

Eg

�

a

ξ ′ = 1

π
arccos

(
Eg

�

)
. (16)

According to Eq. (13), the energy is a monotone function
of l , since ∂Eln/∂l > 0 for Eln > 0. However, when go-
ing beyond the Andreev approximation the situation appears
to be more complicated. In Ref. [42], the spectrum of a

1These restrictions are the applicability conditions for Debye’s
approximation for Bessel functions [52], which has been used when
deriving Eq. (13).
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normal bubble inside a superconductor has been calculated
by expanding the quantity (� − Eln)/� in powers of a/ξ ′ in
the limit a � ξ ′. In this limit, the quantum number n can only
take the value 0 (for Eln > 0), and the spectrum is

� − El0 ≈ 2�
π2

ξ ′2k2
F

F 2
l (kF a), (17)

Fl (z) =
∫ z

0
x2 j2

l (x)dx = z3

2

[
j2
l (z) − jl+1(z) jl−1(z)

]
, (18)

where jl (z) are the spherical Bessel functions. For l = 0 and
1, one has

� − E00 = �
π2a2

2ξ ′2

[
1 − sin(2kF a)

2kF a

]2

, (19)

� − E10 = �
π2a2

2ξ ′2

[
1 + sin(2kF a)

2kF a
− 2

sin2(kF a)

(kF a)2

]2

. (20)

One can see that the energies of Andreev states are oscillating
functions of a, which is a consequence of the abrupt order
parameter profile, Eq. (2). Moreover, for large enough kF a,
it appears that E0,0 > E1,0 when sin(2kF a) > 0, which con-
tradicts Eqs. (13) and (14). Thus Eq. (13) fails to predict the
detailed structure of the subgap spectrum. We suppose that
this happens due to the inability of the Andreev approximation
to resolve such small energies as El+1,n − Eln, which can be
estimated as

|E00 − E10| ∼ �2

μ

a

ξ ′ , (21)

according to Eqs. (19) and (20).
Another feature that is not captured by the Andreev ap-

proximation is the existence of subgap states with l > kF a.
In fact, for the order parameter given by Eq. (2), subgap
states with arbitrary large l exist [42], with their energies
approaching the gap edge exponentially fast as l → ∞. It can
be seen that the subgap spectrum of a normal bubble is rather
complicated even without an impurity. To study the impurity
induced states, knowledge of the fine details of the subgap
spectrum is not necessary, so we will stick to the quasiclassical
approach, which has the form of the Andreev approximation
and of the Eilenberger equations [49,55] when applied to
the BdG equation and to the Green functions, respectively.
Within the formalism of the Eilenberger equations, the quan-
tum number l changes continuously, and thus the density of
states becomes continuous, too. In addition, subgap states
with l > kF a are still not resolved. However, this is not really
relevant for the study impurity states (Sec. IV), since we will
make use of the Green functions with such arguments (energy
and coordinates) that the local density of states vanishes, and
hence it is not important whether the spectrum is discrete or
continuous. Additionally, we do not consider impurity states
with energies close to �. Then, the quasiclassical approach is
quite reliable. One more artifact of the Eilenberger equations
is the appearance of local minigaps in the density of states, as
discussed in Sec. III B.

For now, to determine the global density of states per
spin projection, ν (0)

g (E ), we do not need the solution of the
Eilenberger equations, as we can make use of Eqs. (13)

and (14). Let us start with the general expression:

ν (0)
g (E ) =

∑
l,n

l∑
lz=−l

δ(E − Eln)
∫ ∣∣ul,lz,n(r)

∣∣2d3r. (22)

Here, ul,lz,n(r) is the electron component of the BdG wave
function ψl,lz,n = (ul,lz,n(r), vl,lz,n(r))T . For the wave func-
tions found in Ref. [46], one has∫ ∣∣ul,lz,n(r)

∣∣2d3r ≈
∫ ∣∣vl,lz,n(r)

∣∣2d3r ≈ 1

2
. (23)

Allowing l to change continuously in Eq. (22), we obtain

ν (0)
g (E ) = 1

2

∫
dl
∑

n

(2l + 1)δ(E − Eln). (24)

Here, Eln can be taken from Eq. (13). Note that the quasi-
classical approximation is valid only in the limit kF a � 1, so
that the main contribution to the integral in Eq. (24) comes
from l � 1, hence one can neglect 1/2 as compared to l . For
positive energies, this yields

ν (0)
g (E ) ≈

∫ kF a

0

∞∑
n=0

lδ(E − Eln)dl = 1

2

nm (E )∑
n=0

dl2
n

dE
, (25)

where

nm(E ) =
⌊

E

�

a

ξ ′ − 1

π
γ (E )

⌋
, (26)

l2
n (E ) = k2

F a2

{
1 −

[
�ξ ′

πaE
(πn + γ (E ))

]2}
, (27)

and �x� denotes the floor function (the greatest integer less
than or equal to x). For nm(E ) = −1 one has ν (0)

g (E ) = 0. In
expanded form Eq. (25) reads

ν (0)
g (E )

ν0V
= 3ξ ′3

π2a3

nm (E )∑
n=0

{
πn + arccos ε

ε2

×
(

πn + arccos ε

ε
+ 1√

1 − ε2

)}
, (28)

where ε = E/�, ν0 = mkF /(2π2h̄2) is the normal density of
states (per spin projection), and V = 4πa3/3 is the volume of
the normal region.

It can be seen that the density of states [Eq. (28)] vanishes
for E < Eg, and for Eg < E < � it exhibits a sawtooth shape,
as can be seen in Fig. 1. The number of peaks on each
curve equals �a/ξ ′�, where �x� stands for the ceiling function
(the least integer greater than or equal to x).

B. Local density of states and Green functions

To determine the local density of states ν (0)(E , r), the
Green function with coinciding coordinates is required. It is
known [50] that

G(0)
ER(r, r) = imkF

2π h̄2

∫
gE (r, n)

d2n
4π

, (29)

F †(0)
E (r, r) = imkF

2π h̄2

∫
f †
E (r, n)

d2n
4π

, (30)
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where gE (r, n) and f †
E (r, n) are quasiclassical Green functions, which satisfy the Eilenberger equations, n is a unit vector, and

the integrals are over a unit sphere. Explicit expressions for gE (r, n) and f †
E (r, n) as well as derivations of further equations in

this subsection are given in Appendix A.
The local density of states is given by the imaginary part of G(0)

ER(r, r), according to Eq. (6). When E � 0, we find that

ν (0)(E , r) = 2

π
Im
[
G(0)

ER(r, r)
] = 2ν0ξ

′

ε2r

⌊
ε a

ξ ′ − arccos ε
π

⌋∑
n=
⌊

ε

ξ ′
√

a2−r2− arccos ε
π

⌋
+1

n + arccos ε
π√

r2−a2

ξ ′2 + 1
ε2

(
n + arccos ε

π

)2
(31)

for r < a, and

ν (0)(E , r) = 2ν0ξ
′

ε2r

⌊
ε a

ξ ′ − arccos ε
π

⌋∑
n=0

n + arccos ε
π√

r2−a2

ξ ′2 + 1
ε2

(
n + arccos ε

π

)2

× exp

{
− π

√
1 − ε2

[√
r2 − a2

ξ ′2 + 1

ε2

(
n + arccos ε

π

)2

− 1

ε

(
n + arccos ε

π

)]}
(32)

for r > a. In Eqs. (31) and (32), if the upper limit of
summation is smaller than the lower limit, one should put
ν (0)(E , r) = 0. Some profiles on ν (0)(E , r) are shown in
Fig. 2.

It can be seen that ν (0)(E , r) vanishes not only at E < Eg,
but also at E > Eg for some range of distances r:

r <

√
a2 − ξ ′2

ε2

(⌊
ε

a

ξ ′ − arccos ε

π

⌋
+ arccos ε

π

)2

, (33)

which can be derived from Eq. (31). The energies satisfying
Eq. (33) lie inside the local minigaps. Let us discuss the origin
of this peculiar spectrum. Within the quasiclassical approx-
imation, the density of states in a given point is, roughly
speaking, the superposition of local spectra of all classical
straight trajectories passing through this point. For a normal
inclusion in a superconductor, inside the inclusion on each of
these trajectories, we have effectively a one-dimensional SNS
junction. The subgap spectrum of such junction contains one
or several Andreev levels [53,54]. Taking the superposition

FIG. 1. Global density of states in a clean normal bubble
[Eq. (28)].

of these spectra (integrating over n), we obtain a set of one
or several energy bands, which may or may not overlap.
For example, in Fig. 2(c), one can see three bands which
broaden and begin to overlap as r grows. In the energy range
between two neighboring nonoverlapping bands, the density
of states vanishes, which means that we have a local minigap.
In addition, there may be a minigap between the band with
the highest energy and the bulk gap �. This explanation
of local minigaps does not rely on spherical symmetry, and
hence these spectral features should be common in various
systems with locally suppressed superconductivity. However,
one can come up with such shapes of normal inclusions in a
superconductor that there are no local minigaps except for the
one around E = 0 in any point of space. An example of such
shape is a cylinder with a radius of the order of ξ ′ and a length
much larger than ξ ′.

It should be noted that some features of the obtained
density of states [Eqs. (31) and (32)] are indeed caused by the
spherical symmetry. First, the width of the minigap around
E = 0 does not depend on position in space—in the general
case, this is not so. Second, local minigaps are present for
relatively small distances from the center of symmetry. This
is explained by the fact that the subgap spectrum in the center
is discrete, since the spectra of all classical trajectory passing
through the center are the same. If there is at least one Andreev
level, there will be a minigap at energies above this level.
Specifically for our system, one can see also that the spectral
weight in Fig. 2(a) is pushed to the periphery of the bubble
when the energy approaches �. This effect is relatively easy
to explain. The spectrum at a distance r from the center of the
bubble is the superposition of spectra of one-dimensional SNS
junctions with the length of the normal region ranging from
2(a2 − r2)1/2 to 2a. For a = ξ ′, such junctions host only one
(spin-degenerate) Andreev state, whose energy increases and
approaches � as the length of the N region decreases. Hence,
to obtain a nonzero density of states for energies close �, one
needs to approach the periphery of the bubble, since only there
the spectrum is contributed by trajectories with short enough
normal segments.
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FIG. 2. Local densities of states in the presence of normal bubbles with different radii [Eqs. (31) and (32)]: (a) a = ξ ′, (b) 2ξ ′, (c) 3ξ ′, and
(d) 10ξ ′.

Strictly speaking, the density of states does not completely
vanish inside the local minigaps (though it is exactly equal to
zero for |E | < Eg). For a given distance r from the origin, the
density of states inside the minigaps is contributed by Andreev
states with orbital momenta l > kF r. The wave functions
of these states have exponential tails at r < k−1

F l , and thus
their contribution to the local density of states and Green
functions is exponentially small and can be neglected in our
context.

The final ingredients that we will need to analyze the
impurity-induced states are the Green functions G(0)

E (r, r′) and
F †(0)

E (r, r′) with noncoinciding coordinates. Here, different
expressions exist for kF |r − r′| � 1 and kF |r − r′| � 1 [50].
In our problem all length scales are much larger than the Fermi
wavelength, so we are mainly interested in the range of pa-
rameters kF |r − r′| � 1, for which the following approximate
relations exist [56]:

G(0)
E (r, r′) = m

2π h̄2|r − r′|
[
g̃E (r′, |r − r′|, n)eikF |r−r′ |

− g̃E (r′,−|r − r′|,−n)e−ikF |r−r′ |], (34)

F †(0)
E (r, r′) = m

2π h̄2|r − r′|
[

f̃ †
E (r′, |r − r′|, n)eikF |r−r′ |

− f̃ †
E (r′,−|r − r′|,−n)e−ikF |r−r′ |]. (35)

Here, n = (r − r′)/|r − r′|, and the functions g̃E and f̃ †
E

satisfy inhomogeneous Andreev equations (A27) and (A28).

IV. IMPURITY-INDUCED STATES

A. Impurity states within the minigap

Now we are ready to study the properties of the system with
a point impurity. To remind, the impurity is characterized by
its position ri and the scattering phases α↑ and α↓ for spin-up
and spin-down electrons, respectively. We have already de-
termined the Green function GE↑↑(r, r′)—see Eqs. (8)–(11).
One interesting feature of this function is that it has poles at
such energies that D↑(E ) = 0. If these poles appear at real
energies, they correspond to localized discrete states. The
function D↑(E ) is generally complex, however it becomes
real when G(0)

ER(ri, ri ) is real. This happens within the global
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minigap—at |E | < Eg, and also at Eg < |E | < � within local
minigaps, where the local density of states vanishes. The real
solutions of D↑(E ) = 0 should be sought in these energy
intervals, because otherwise we fall in the continuous part of
the energy spectrum, where the appearance of discrete states
is very unlikely. In this section, we will concentrate on the
global minigap, i.e., |E | < Eg.

Within the quasiclassical approximation, Eq. (10) can be
simplified. Indeed, one can see that for a real order parameter
�, we have

G(0)
−ER(ri, ri ) = −G(0)∗

ER (ri, ri ), (36)

F †(0)
−E (ri, ri ) = F †(0)∗

E (ri, ri ), (37)

which follows from Eqs. (29), (30), (A31), and (A32).
Moreover, for energies lying in the minigap, G(0)

ER(ri, ri ) and
F †(0)

E (ri, ri ) are real (the imaginary part iη+ of the energy
is not relevant then, so that the Gor’kov equation becomes
purely real). Hence, for |E | < Eg, D↑(E ) takes the form

D↑(E ) =
[

mkF cot α↑
2π h̄2 − G(0)

ER(ri, ri )

]

×
[
mkF cot α↓

2π h̄2 +G(0)
ER(ri, ri )

]
+F †(0)2

E (ri, ri ). (38)

In Appendix B, we prove that for α↑ �= 0, α↓ �= 0, and ri �= 0,
the equation D↑(E ) = 0 has two solutions for |E | < Eg. Each
positive solution corresponds to a spin-up impurity state, and
each negative solution corresponds to a spin-down state (if
GE↑↑(r, r′) has a pole at E = E0, then GE↓↓(r, r′) has a pole
at E = −E0). Thus an impurity generally induces two discrete
subgap states, even if it is nonmagnetic. The appearance of im-
purity states inside the minigap is closely related to a similar
phenomenon in narrow SNS junctions. Indeed, such junctions
are one-dimensional analogues of our system, if there is no
phase difference between the superconducting banks. The
subgap spectrum of such junction consists of discrete Andreev
states. The effect of a nonmagnetic point impurity (barrier)
on these states has been studied in Refs. [47,48]. It has been
found that a point impurity generally lowers the energy of the
lowest Andreev state, unless the defect is placed exactly in
the center of the junction—in this case, the subgap spectrum
remains unchanged. It can be seen that our three-dimensional
system exhibits very similar behavior. In this context, it is
also worth mentioning an analogous result obtained by Liu
et al. [57], who predicted impurity-induced subgap states in a
superconductor-normal metal heterostructure.

Returning to our system, for a given pair of scattering
phases α↑ and α↓ we can figure out the number of positive
and negative solutions of D↑(E ) = 0. According to consider-
ations from Appendix B, D↑(E ) = 0 has solutions with both
signs when D↑(0) > 0 [then D↑+(0) and D↑−(0), given by
Eq. (B8), have opposite signs]. The quantity D↑(0) is easy to
evaluate:

D↑(0) =
(

mkF

2π h̄2

)2

(1 + cot α↑ cot α↓). (39)

Hence, the condition for the existence of impurity states with
opposite spins has the form

sin α↑ sin α↓ > 0 or cos(α↑ − α↓) < 0. (40)

FIG. 3. Energies of spin-up impurity states [solutions of
D↑(E ) = 0] vs ri. We take a = ξ ′, so that Eg = 0.377�. The upper
boundary of the graphs corresponds to E = Eg. (a) The impurity is
nonmagnetic: α↑ = α↓ = α. For each positive solution of D↑(E )=0,
there is also a negative solution with the same modulus, which is
not shown. (b) The case of a magnetic impurity. The upper curve for
α↑ = π/6, α↓ = −π/12 lies very close to Eg.

Consider the range of parameters

α↑ > 0, α↓ < 0, cos(α↑ − α↓) > 0. (41)

Here, we have two spin-up impurity states [because
D↑±(0)<0]. Correspondingly, for the parameters

α↑ < 0, α↓ > 0, cos(α↑ − α↓) > 0, (42)

there are two spin-down states. Some dependencies of the
solutions of D↑(E ) = 0 versus ri are shown in Fig. 3.

In some special cases, there may be only one impurity state.
For example, let us take α↑ �= 0, α↓ = 0. Then, to find the
spin-up impurity states, one should solve

mkF cot α↑
2π h̄2 − G(0)

ER(ri, ri ) = 0. (43)

This equation has one solution, because of the monotony
of the G(0)

ER(ri, ri ) versus E dependence [see Eq. (B6)]. This
solution is positive for α↑ > 0, and hence there is a spin-up
impurity state. For α↑ < 0, there is a spin-down state. If one
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puts α↑ = α↓ = 0, one has effectively no impurity and hence
no impurity states.

Another special case is when ri = 0, i.e., the impurity is in
the center of the normal bubble. Then

D↑(E ) =
(

mkF

2π h̄2

)[
1 + cot

(
γ − 2Ea

h̄vF

)
(cot α↑ − cot α↓)

+ cot α↑ cot α↓

]
. (44)

The equation D↑(E ) = 0 can be reduced to

cot

(
γ (E ) − 2Ea

h̄vF

)
= cot(α↑ − α↓). (45)

For cot(α↑ − α↓) �= 0, this equation has one solution, because
the left-hand side is monotonous in E and it takes all real
values when E ∈ (−Eg, Eg). For cot(α↑ − α↓) > 0, we have
a spin-up impurity state, and for cot(α↑ − α↓) < 0, there
is a spin-down state. When tan(α↑ − α↓) = 0 (nonmagnetic
impurity), there are no impurity states.

Now we will analyze the local structure of the density of
states at E ∈ (−Eg, Eg). Let us consider the most common
case when there are two impurity states. We denote as E1↑
and E2↑ the solutions of D↑(E ) = 0, and as (u1↑(r), v1↑(r))T

and (u2↑(r), v2↑(r))T the corresponding normalized solutions
of the BdG equations. In the general case, the quasiparticle
wave functions have also spin-down components, u↓(r) and
v↓(r), however, in our situation they vanish. The density of
states for spin-up electrons at |E | < Eg is

ν↑(E , r) = δ(E − E1↑)|u1↑(r)|2 + δ(E − E2↑)|u2↑(r)|2. (46)

The function GE↓↓(r, r′) has poles at E1↓ = −E1↑ and E2↓ =
−E2↑. We denote the corresponding wave functions of spin-
down quasiparticles as (u1↓, v1↓)T and (u2↓, v2↓)T . These
functions can be chosen in such a way that u1↓ = v1↑ and
u2↓ = v2↑ (also note that all wave functions can be chosen
real). Then the density of states of spin-down electrons is

ν↓(E , r) = δ(E + E1↑)|v1↑(r)|2 + δ(E + E2↑)|v2↑(r)|2. (47)

The explicit form of u1↑(r) and v1↑(r) is given by
Eqs. (B15)–(B19). For kF |r − ri| � 1, using Eqs. (34), (35),
and (A29)–(A32), we can rewrite u1↑(r) and v1↑(r) as fol-
lows:

u1↑(r) = meikF |r−ri|

2π h̄2|r − ri|
[A↑g̃E (ri, |r − ri|, n)

− B↑ f̃ †
E (ri, |r − ri|, n)] + c.c., (48)

v1↑(r) = meikF |r−ri|

2π h̄2|r − ri|
[A↑ f̃ †

E (ri, |r − ri|, n)

+ B↑g̃†
−E (ri, |r − ri|, n)] + c.c., (49)

where n = (r − ri )/|r − ri| and c.c. stands for the complex
conjugate. It can be seen that the wave functions oscillate on
the scale 2πk−1

F , and thus the density of states has ripples.
Below we will plot the density of states averaged over an
oscillation period, bearing in mind that this average also gives

the amplitude of the ripples. We denote the spatially averaged
quantities as 〈. . . 〉. For the wave functions, we have

〈|u1↑(r)|2〉 = 2

(
m

2π h̄2|r − ri|

)2

|A↑g̃E (ri, |r − ri|, n)

− B↑ f̃ †
−E (ri, |r − ri|, n)|2, (50)

〈|v1↑(r)|2〉 = 2

(
m

2π h̄2|r − ri|

)2

|A↑ f̃ †
E (ri, |r − ri|, n)

+ B↑g̃−E (ri, |r − ri|, n)|2. (51)

It follows from Eqs. (A31), (A32), and (A34) that
〈|u1↑(r)|2〉 = 〈|v1↑(r)|2〉, and one can prove the same relation
for u2↑(r) and v2↑(r). This proves that

〈ν↓(E , r)〉 = 〈ν↑(−E , r)〉, (52)

and hence it is sufficient to plot 〈|u1↑(r)|2〉 and 〈|u2↑(r)|2〉 to
get an understanding of the behavior of the density of states.
Some profiles of these functions are shown in Fig. 4.

To conclude, we note that the existence of two impurity
states, as demonstrated in Appendix B, follows from some
quite general analytical properties of the Green functions with
coinciding arguments and of D↑(E ). It turns out that these
properties hold for an arbitrary superconductor with a real
spatially inhomogeneous gap in the absence of a magnetic
field, if the impurity is placed in a position that is not a
center of inversion symmetry for �(r). This statement in
proved in Appendix C. Thus the emergence of two localized
states induced by a point impurity should be quite common,
and our main qualitative results hold for a normal sphere
inside a superconductor with a realistic (self-consistent) order
parameter profile.

B. Impurity states outside the minigap

Remarkably, discrete impurity states appear not only inside
the minigap, but also in the continuous spectrum, i.e., at
E > Eg. This is possible because of the existence of local
minigaps, where the local density of states vanishes and the
Green functions become real. It is proved in Appendix B that
for a given impurity position ri the defect induces from two
to four discrete states inside each local minigap [i.e., in each
energy interval where ν (0)(E , ri ) = 0]. A numerical solution
of the equation D↑(E ) with different parameters (a/ξ ′, ri/ξ

′,
α↑, and α↓) for |E | > Eg has been performed. For all used
parameters, inside each local minigap four discrete states have
been found for a nonmagnetic impurity, and either three or
four impurity states in the case of a magnetic impurity. Two
impurity states have never been found.

Speaking of impurity-induced subgap features, we have to
mention the ordinary Shiba state. One may expect this state to
exist when a magnetic impurity is located sufficiently far from
the normal bubble. For a magnetic point impurity in a bulk su-
perconductor, the energy of the Shiba state is given by Eq. (1)
with l = 0. If ES0 < Eg, we identify one of our impurity state
as the Shiba state. When ES0 > Eg, a discrete Shiba cannot
appear because there are no local minigaps at distances r > a.
Thus the Shiba state becomes a resonance with a finite lifetime
due to the possibility of quasiparticle tunneling between the
magnetic impurity and the normal bubble.
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FIG. 4. Profiles of impurity states in a plane passing through the center of the normal bubble and through the impurity. u↑ stands for either
u1↑ or u2↑ (or both, if the impurity is nonmagnetic). The normal bubble is circled in red and has a radius a = ξ ′. Dimensions of the area shown
are 3ξ ′×3ξ ′. Characteristics of the impurity—ri, α↑, and α↓—and the energies E of impurity states are written in each graph.

094507-9



A. A. BESPALOV PHYSICAL REVIEW B 100, 094507 (2019)

V. CONCLUSION

To sum up, we have analyzed the subgap density of states
in a bulk superconductor with a normal spherical inclusion
in the presence of a point impurity. We found that the impu-
rity, whether magnetic or not, generally induces two discrete
quasiparticle states with energies E < Eg, where Eg is the
minigap of the clean system. Additional discrete states may
appear at higher energies. We have calculated the energies
of the impurity states and their wave function for various
positions of the impurity and scattering phases. Finally, we
have demonstrated that the emergence of two discrete states
induced by a point impurity should be a quite common
feature of superconducting systems with a real and spatially
inhomogeneous order parameter.

The obtained results are relevant in view of the problem
of quasiparticle poisoning in superconducting devices. We
have shown that when the order parameter is inhomogeneous,
additional subgap states are induced by impurities, which
should result in enhanced quasiparticle trapping due to the
increased number of localized states for quasiparticles. This
scenario might explain the enhanced quasiparticle recombina-
tion rate in the presence of nonmagnetic disorder [35]. Also,
the qualitative modification of the spectrum of Shiba states
that we have found might be relevant for engineering magnetic
chains hosting Majorana modes [5–9].
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APPENDIX A: QUASICLASSICAL GREEN FUNCTIONS

In this Appendix, we obtain the quasiclassical Green func-
tions for our system, transform the Green functions with
coinciding arguments [Eqs. (29) and (30)] and derive Eqs. (31)
and (32).

FIG. 5. Explanatory image for Eqs. (A2)–(A10).

We start with the functions gE (r, n) and f †
E (r, n), which

satisfy the Eilenberger equations. For our system these equa-
tions have the same form as for a Josephson SNS junction, and
their solution can be found in a textbook [58]. Let us denote as
θ the angle between r and n. Then, the impact parameter of a
classical (straight) trajectory with a direction vector n passing
through the point r is h = r sin θ . If h > a, the trajectory does
not cross the normal region, so that the Green functions are
the same as in a bulk superconductor:

gE (r, n) = − iE√
�2 − E2

, f †
E (r, n) = − i�√

�2 − E2
. (A1)

If h < a, the trajectory passes through the normal region. Such
trajectory has three sections, where different expressions for
the Green functions are valid. First, consider the section that
lies inside the normal bubble, e.g., assume that r = r0—see
Fig. 5. Then the Green functions are

gE (r, n) = i cot

(
EL(r, cos θ )

h̄vF
− γ (E ) + iη+

)
, (A2)

f †
E (r0, n) = ie

iE [L1 (r,cos θ )−L2 (r,cos θ )]
h̄vF

sin
(EL(r,cos θ )

h̄vF
− γ (E ) + iη+) , (A3)

where

L1,2(r, cos θ ) = ∓r cos θ +
√

a2 − r2 + r2 cos2 θ, (A4)

L(r, cos θ ) = 2
√

a2 − r2 + r2 cos2 θ. (A5)

Next, consider r = r1 (see Fig. 5). Then

gE (r, n) =
[

i cot

(
EL(r, cos θ )

h̄vF
− γ (E ) + iη+

)
+ iE√

�2 − E2

]
e− 2

√
�2−E2

h̄vF
x1(r,cos θ ) − iE√

�2 − E2
, (A6)

f †
E (r, n) =

[
i

e− iEL(r,cos θ )
h̄vF

sin
(EL(r,cos θ )

h̄vF
− γ (E ) + iη+) + i�√

�2 − E2

]
e− 2

√
�2−E2

h̄vF
x1(r,cos θ ) − i�√

�2 − E2
, (A7)

where

x1(r, cos θ ) = r cos θ −
√

a2 − r2 + r2 cos2 θ. (A8)
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Finally, for r = r2 (see Fig. 5), the Green functions are

gE (r, n) =
[

i cot

(
EL(r, cos θ )

h̄vF
− γ (E ) + iη+

)
+ iE√

�2 − E2

]
e− 2

√
�2−E2

h̄vF
x2(r,cos θ ) − iE√

�2 − E2
, (A9)

f †
E (r, n) =

[
i

e
iEL(r,cos θ )

h̄vF

sin
(EL(r,cos θ )

h̄vF
− γ (E ) + iη+) + i�√

�2 − E2

]
e− 2

√
�2−E2

h̄vF
x2(r,cos θ ) − i�√

�2 − E2
, (A10)

where

x2(r, cos θ ) = −r cos θ −
√

a2 − r2 + r2 cos2 θ. (A11)

Using Eqs. (A1)–(A11), we can transform Eqs. (29) and (30). For r < a, we find that

G(0)
ER(r, r) = imkF

4π h̄2

∫ π

0
gE (r, n) sin θdθ = − mkF

2π h̄2

∫ 1

0
cot

(
EL(r, t )

h̄vF
− γ (E ) + iη+

)
dt . (A12)

where we used the integration variable t = cos θ . Similarly, for F †(0)
E (r, r), we have

F †(0)
E (r, r) = − mkF

2π h̄2

∫ 1

0

cos
(

2Er
h̄vF

t
)

sin
(EL(r,t )

h̄vF
− γ (E ) + iη+)dt . (A13)

For r > a, we obtain

G(0)
ER(r, r) = mkF

2π h̄2

{
E√

�2 − E2
−
∫ 1

√
1−a2/r2

[
cot

(
EL(r, t )

h̄vF
− γ (E ) + iη+

)
+ E√

�2 − E2

]
e− 2

√
�2−E2

h̄vF
x1(r,t )dt

}
, (A14)

F †(0)
E (r, r) = mkF

2π h̄2

{
�√

�2 − E2
−
∫ 1

√
1−a2/r2

[
cos

(EL(r,t )
h̄vF

)
sin
(EL(r,t )

h̄vF
− γ (E ) + iη+) + �√

�2 − E2

]
e− 2

√
�2−E2

h̄vF
x1(r,t )dt

}
. (A15)

Generally, the integrals in Eqs. (A12)–(A15) cannot be eval-
uated analytically, however, for the local density of states, we
need only the imaginary part of G(0)

ER(r, r). To evaluate this
quantity, the following identity will be useful:

Im[cot(x + iη+)] = −π

+∞∑
n=−∞

δ(x − πn). (A16)

Applying this to Eqs. (A12) and (A14), we obtain Eqs. (31)
and (32).

The quasiclassical treatment of Green functions with non-
coinciding coordinates is described in Ref. [56]. There, the
functions G(0)

E (r, r′) and F †(0)
E (r, r′) are expressed in terms

of retarded quasiclassical functions denoted as gR
±(r, r′) and

f †R
± (r, r′):

G(0)
E (r, r′) = m

2π h̄2|r − r′|
[
gR

+(r, r′)eikF |r−r′|

+ gR
−(r, r′)e−ikF |r−r′ |], (A17)

F †(0)
E (r, r′) = m

2π h̄2|r − r′|
[

f †R
+ (r, r′)eikF |r−r′ |

+ f †R
− (r, r′)e−ikF |r−r′ |]. (A18)

If one puts r = r′ + sn, the functions gR
±(r, r′) and f †R

± (r, r′)
will satisfy Andreev equations:

∓ih̄vF
∂gR

±
∂s

− (E + iη+)gR
± + �(r′ + sn) f †R

± = 0, (A19)

±ih̄vF
∂ f †R

±
∂s

+ �∗(r′ + sn)gR
± − (E + iη+) f †R

± = 0. (A20)

Here, s is positive. The boundary conditions are

gR
±(r′ + sn, r′)|s=+0 = 1

2 [1 ± gE (r′,±n)], (A21)

f †R
± (r′ + sn, r′)|s=+0 = ± 1

2 f †
E (r′,±n). (A22)

From this, it follows that

gR
+(r′ + sn, r′)|s=+0 + gR

−(r′ − sn, r′)|s=+0 = 1, (A23)

f †R
+ (r′ + sn, r′)|s=+0 + f †R

− (r′ − sn, r′)|s=+0 = 0. (A24)

Let us define the functions g̃E and f̃ †
E as follows:

g̃E (r′, s, n) =
{

gR
+(r′ + sn, r′), s > 0,

−gR
−(r′ + sn, r′), s < 0,

(A25)

f̃ †
E (r′, s, n) =

{
f †R
+ (r′ + sn, r′), s > 0,

− f †R
− (r′ + sn, r′), s < 0.

(A26)

One can see that these functions satisfy the inhomogeneous
Andreev equations

− ih̄vF
∂ g̃E (r′, s, n)

∂s
− (E + iη+)g̃E (r′, s, n)

+�(r′ + sn) f̃ †
E (r′, s, n) = −ih̄vF δ(s), (A27)

ih̄vF
∂ f̃ †

E (r′, s, n)

∂s
+ �∗(r′ + sn)g̃E (r′, s, n)

− (E + iη+) f̃ †
E (r′, s, n) = 0, (A28)

and that Eqs. (A17) and (A18) can be written in the form (34)
and (35).
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Let us list some properties of Eqs. (A27) and (A28). We
note that for |E | < �, the small imaginary term iη+ is only
relevant for a discrete set of energies, which correspond to
subgap Andreev states. Here, we will consider only energies
that are not in this set, so that iη+ can be dropped. For such
energies, one finds that

g̃−E (r′,−s,−n) = −g̃E (r′, s, n), (A29)

f̃ †
−E (r′,−s,−n) = f̃ †

E (r′, s, n), (A30)

If � is real, for all energies (even when iη+ is relevant), we
have

g̃−E (r′, s, n) = g̃∗
E (r′, s, n), (A31)

f̃ †
−E (r′, s, n) = − f̃ †∗

E (r′, s, n). (A32)

Another property that follows from Eqs. (A27) and (A28) is
∂

∂s
(|g̃E |2 − | f̃ †

E |2) = 0 (A33)

for s �= 0. Since at s → ±∞ we have |g̃E |2 − | f̃ †
E |2 → 0, it

follows that

|g̃E | = | f̃ †
E | (A34)

for all s.
Now we write down the solutions of Eqs. (A27) and (A28)

for our system without impurities. Note that these equations
are linear and have piecewise constant coefficients, so solving
them is straightforward. We need to consider several cases
depending on the position of r′ and the direction of n. First,
let r′ be inside the normal bubble (r′ < a)—see Fig. 6(a). For
0 < s < L3, we have then

g̃E = e
iEs
h̄vF

1 − e
2iEL
h̄vF

−2iγ
, (A35)

f̃ †
E = e

2iEL3
h̄vF

−iγ− iEs
h̄vF

1 − e
2iEL
h̄vF

−2iγ
, (A36)

and for s > L3

g̃E = e
iEL3
h̄vF

−
√

�2−E2

h̄vF
(s−L3 )

1 − e
2iEL
h̄vF

−2iγ
, (A37)

f̃ †
E = e

iEL3
h̄vF

−iγ−
√

�2−E2

h̄vF
(s−L3 )

1 − e
2iEL
h̄vF

−2iγ
. (A38)

We will not write down the functions g̃E and f̃ †
E for s < 0,

since they can be obtained using Eqs. (A29) and (A30).
Next, consider r′ > a and assume that the trajectory

parametrized by s crosses the normal region. Let (r′n) be
positive, as in Fig. 6(b). Then the Green functions for s > 0
are

g̃E =

⎡
⎢⎣e− 2

√
�2−E2L4

h̄vF

(
e− 2iEL

h̄vF − 1
)

1 − e− 2iEL
h̄vF

+2iγ
+ 1

⎤
⎥⎦e−

√
�2−E2s
h̄vF

1 − e−2iγ
, (A39)

f̃ †
E =

⎡
⎢⎣e− 2

√
�2−E2L4

h̄vF

(
e− 2iEL

h̄vF − 1
)

1 − e− 2iEL
h̄vF

+2iγ
+ 1

⎤
⎥⎦e−iγ−

√
�2−E2s
h̄vF

1 − e−2iγ
. (A40)

FIG. 6. Explanatory images for the solutions of Eqs. (A27) and
(A28).

Now let the vector n point in the opposite direction—see
Fig. 6(c). The Green functions are

g̃E = 1

1 − e−2iγ

⎡
⎢⎣e− 2

√
�2−E2L4

h̄vF
−2iγ (e 2iEL

h̄vF − 1
)

1 − e−2iγ+ 2iEL
h̄vF

e

√
�2−E2s
h̄vF

+ e−
√

�2−E2s
h̄vF

]
, (A41)

f̃ †
E = e−iγ

1 − e−2iγ

⎡
⎢⎣e− 2

√
�2−E2L4

h̄vF

(
e

2iEL
h̄vF − 1

)
1 − e−2iγ+ 2iEL

h̄vF

e

√
�2−E2s
h̄vF + e−

√
�2−E2s
h̄vF

⎤
⎥⎦

(A42)

for 0 < s < L4,

g̃E = e
iE (s−L4 )

h̄vF
−

√
�2−E2L4

h̄vF

1 − e−2iγ+ 2iEL
h̄vF

, (A43)

f̃ †
E = e

iE
h̄vF

(2L+L4−s)−iγ−
√

�2−E2L4
h̄vF

1 − e−2iγ+ 2iEL
h̄vF

(A44)
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for L1 < s < L + L4, and

g̃E = e

√
�2−E2 (L−s)

h̄vF
+ iEL

h̄vF

1 − e−2iγ+ 2iEL
h̄vF

, (A45)

f̃ †
E = e

√
�2−E2 (L−s)

h̄vF
+ iEL

h̄vF
−iγ

1 − e−2iγ+ 2iEL
h̄vF

(A46)

for s > L + L4.
Finally, there are trajectories that do not pass through

the normal region. To obtain the Green functions on such
trajectories, one may simply substitute L = 0 into Eqs. (A45)
and (A46):

g̃E = e−
√

�2−E2

h̄vF
s

1 − e−2iγ
, (A47)

f̃ †
E = e−

√
�2−E2

h̄vF
s−iγ

1 − e−2iγ
(A48)

for s > 0.

APPENDIX B: IMPURITY-INDUCED STATES:
PROOF OF EXISTENCE AND WAVE FUNCTIONS

In this Appendix, we will prove that D↑(E ) [Eq. (38)] has
two roots at |E | < Eg and we will find the wave functions
of impurity-induced states. Also, impurity states inside local
minigaps will be briefly considered.

We start by deriving a general analytical property of the
Green functions with coinciding arguments. We will make use
of the following relations [49]:

G(0)
E (r, r′) =

∑
n

u(0)
n (r)u(0)∗

n (r′)
En − E − iη+ , (B1)

F †(0)
E (r, r′) =

∑
n

v(0)
n (r)u(0)∗

n (r′)
En − E − iη+ , (B2)

where (u(0)
n (r), v(0)

n (r))T are the quasiparticle wave functions
of the clean system and En are the quasiparticle energies. Let
us differentiate Eqs. (B1) and (B2) with respect to energy,
taking r = r′ and E �= En:

G(0)′
ER (r, r) =

∑
n>0

[ ∣∣u(0)
n (r)

∣∣2
(En − E )2

+
∣∣v(0)

n (r)
∣∣2

(En + E )2

]
, (B3)

F †(0)′
E (r, r) =

∑
n>0

v(0)
n (r)u(0)∗

n (r)

×
[

1

(En − E )2
− 1

(En + E )2

]
, (B4)

where summation goes over states with positive energies, and
we have used the fact that the wave functions of the states with
negative energies −En have the form (v(0)∗

n (r),−u(0)∗
n (r))T .

Within the quasiclassical approximation also G(0)
ER(r, r) =

−G(0)
−ER(r, r), which follows from Appendix A [in particular,

from Eq. (A29)]. Hence,

G(0)′
ER (r, r) ≈ 1

2

[
G(0)′

ER (r, r) + G(0)′
−ER(r, r)

]
=
∑
n>0

∣∣u(0)
n (r)

∣∣2 + ∣∣v(0)
n (r)

∣∣2
2

×
[

1

(En − E )2
+ 1

(En + E )2

]
. (B5)

Since

∣∣v(0)
n (r)u(0)∗

n (r)
∣∣ �

∣∣u(0)
n (r)

∣∣2 + ∣∣v(0)
n (r)

∣∣2
2

and

1

(En − E )2
+ 1

(En + E )2
>

∣∣∣∣ 1

(En − E )2
− 1

(En + E )2

∣∣∣∣,
one can see from Eqs. (B4) and (B5) that∣∣F †(0)′

E (ri, ri )
∣∣ < G(0)′

ER (ri, ri ). (B6)

This relation is valid for all E ∈ (−Eg, Eg).
Now we write D↑(E ) in the following form:

D↑(E ) = −D↑+(E )D↑−(E ), (B7)

where

D↑±(E ) = GER(ri, ri ) + mkF

4π h̄2 (cot α↓ − cot α↑)

±
√(

mkF

4π h̄2

)2

(cot α↓ + cot α↑)2 + |F †
E (ri, ri )|2.

(B8)

By direct differentiation and using Eq. (B6), it can be proven
that D↑+(E ) and D↑−(E ) are strictly monotonic functions of
energy.

Let us evaluate G(0)
ER(ri, ri ) and F †(0)

E (ri, ri ) at E → Eg − 0.
For ri < a, we use Eqs. (A12) and (A13). When ri �= 0, the
main contribution to the integrals comes from t ≈ 1. Using
this, we obtain

G(0)
ER(ri, ri ) ≈ mkF

2π h̄2

∫ 1

0

dt

γ (E ) − EL(ri,t )
h̄vF

≈ mkF

2π h̄2

∫ 1

0

dt

γ (E ) − 2Ea
h̄vF

[
1 − r2

i
a2 (1 − t )

]
≈ − k2

F a

4πEr2
i

ln

(
γ (E ) − 2Ea

h̄vF

)
. (B9)

Here, in the denominator, only the first two terms of its Taylor
series in powers of 1 − t have been retained. For F †(0)

E (ri, ri ),
one finds that

F †(0)
E (ri, ri ) ≈ G(0)

ER(ri, ri ) cos

(
2Egri

h̄vF

)
. (B10)
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For ri > a, from Eqs. (A14) and (A15), we find that

G(0)
ER(ri, ri ) ≈ − k2

F a

4πEr2
i

ln

(
γ (E ) − 2Ea

h̄vF

)
e− 2

√
�2−E2

h̄vF
(ri−a)

,

(B11)

F †(0)
E (ri, ri ) ≈ G(0)

ER(ri, ri ) cos

(
2Ega

h̄vF

)
. (B12)

Since 2Ega/(h̄vF ) < π/2, one can see that D↑±(E ) → +∞
as E → Eg − 0. According to Eqs. (36) and (37), for |E |<Eg,

G(0)
ER(ri, ri ) is odd in E and F †(0)

E (ri, ri ) is even in E , so
that D↑±(E ) → −∞ as E → −Eg + 0. Hence each of the
functions D↑+(E ) and D↑−(E ) turns to zero at a single value
of E . This completes the proof of the statement that D↑(E ) =
0 has exactly two roots when E ∈ (−Eg, Eg).

Now we write down the wave function of a spin-up impu-
rity state. Let us take the larger root of D↑(E ) = 0, which we
denote as E = E1↑. This is also the root of D↑−(E ) = 0, since
D↑−(E ) < D↑+(E ). Hence,

D′
↑(E1↑) = −D′

↑−(E1↑)D↑+(E1↑) < 0. (B13)

Equations (8) and (9) yield

GE1↑↑↑(r, r′) ≈ i

η+ u1↑(r)u∗
1↑(r′), (B14)

where

u1↑(r) = A↑G(0)
E1↑ (r, ri ) − B↑F †(0)∗

−E1↑ (r, ri ), (B15)

and the real quantities A↑ and B↑ are given by

A↑ =
√

−D′
↑(E1↑)−1

(
G(0)

E1↑R(ri, ri )+ mkF

2π h̄2 cot α↓

)
, (B16)

B↑ =
√

−D′
↑(E1↑)−1

(
G(0)

E1↑R(ri, ri )− mkF

2π h̄2 cot α↑

)
. (B17)

Here, we have used that

G(0)
E (r′, r) = G(0)∗

E (r, r′), F †(0)
E (r′, r) = F †(0)

−E (r, r′), (B18)

which follows from Eqs. (B1) and (B2). A generalized form
of Eq. (B1) is also applicable to GE1↑↑↑(r, r′), from which we
conclude that u1↑(r) is the electron component of the wave
function of the impurity state. The hole component of the
wave function is then

v1↑(r) = A↑F †(0)
E1↑ (r, ri ) + B↑G(0)∗

−E1↑ (r, ri ). (B19)

This can be checked by substituting (u1↑(r), v1↑(r))T into the
BdG equations. The wave function of the second quasiparticle
state can be obtained in a similar way, so we do not write down
here the corresponding expressions.

Finally, we will prove that discrete impurity states ap-
pear also inside local minigaps (for E > Eg). Let us take
a normal bubble with radius a > ξ ′. A local minigap for
r = ri is an energy interval E ∈ (E (n−1)

A (ri), E (n)
A (0)) with n =

1, . . . , �a/ξ ′�, where E (n)
A (r) is the solution of the following

equation:

2E (n)
A

√
a2 − r2

h̄vF
− γ

(
E (n)

A

) = πn. (B20)

Of course, the energy interval (E (n−1)
A (ri ), E (n)

A (0)) exists only
if E (n−1)

A (ri ) < E (n)
A (0), which is satisfied when ri is suffi-

ciently small:

ri <

√
π h̄vF

E (n)
A (0)

√
a − π h̄vF

4E (n)
A (0)

. (B21)

For E ∈ (E (n−1)
A (ri), E (n)

A (0)), it can be seen from Eqs. (A12)
and (A13) that the Green functions with coinciding arguments
are real. Moreover, they diverge when the energy approaches
the boundaries of the given interval. For E → E (n−1)

A (ri) + 0,
the main contribution to the integrals in Eqs. (A12) and (A13)
comes from t ≈ 0. Then, acting in the same way as when
deriving Eq. (B9), we find that

G(0)
ER(ri, ri ) ≈ −mkF

4h̄2

⎡
⎣
⎛
⎝2E

√
a2 − r2

i

h̄vF
− γ (E ) − π (n − 1)

⎞
⎠

× E (n−1)
A (ri )r2

i

h̄vF

√
a2 − r2

i

⎤
⎦

−1/2

, (B22)

F †(0)
E (ri, ri ) ≈ (−1)n−1G(0)

ER(ri, ri ). (B23)

Thus we have an inverse-square-root divergence. Similarly,
for E → E (n)

A (0) − 0, we obtain

G(0)
ER(ri, ri ) ≈ − k2

F a

4πE (n)
A (0)r2

i

ln

(
πn + γ (E ) − 2Ea

h̄vF

)
,

(B24)

F †(0)
E (ri, ri ) ≈ (−1)n cos

(
2E (n)

A (0)ri

h̄vF

)
G(0)

ER(ri, ri ). (B25)

This means that D↑±(E ) → +∞ [Eq. (B8)] when E →
E (n)

A (0) − 0, unless

cos

(
2E (n)

A (0)ri

h̄vF

)
= ±1. (B26)

In addition, one can see from Eqs. (B22) and (B23)
that D↑−(E ) → −∞ when E → E (n−1)

A (ri ) + 0. Accord-
ing to considerations above, this means that the equation
D↑(E ) = 0 has one or two roots for E ∈ (E (n−1)

A (ri ), E (n)
A (0)).

The same arguments apply to the energy interval E ∈
(−E (n)

A (0),−E (n−1)
A (ri )) [which can be proved using that

G(0)
ER(ri, ri ) and F †(0)

E (ri, ri ) are odd and even in E , respec-
tively]. Hence, there are no less than one and no more than two
impurity states with each spin projection in the given energy
interval.

APPENDIX C: SUFFICIENT CONDITION FOR
THE EXISTENCE OF TWO IMPURITY STATES

In this Appendix, we derive a quite general sufficient
condition for the existence of two impurity levels inside a gap
of an inhomogeneous superconductor with a point impurity.

According to Appendix B, the roots of the equations
D↑+(E ) = 0 and D↑−(E ) = 0 [see Eq. (B8)] yield the en-
ergies of the discrete states induced in a superconducting
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system by a point impurity with scattering phases α↑ �= 0 and
α↓ �= 0. If the system without impurities can be described
within the quasiclassical approximation, D↑+(E ) and D↑−(E )
are monotonically increasing functions of energy. Since
D↑+(E ) � D↑−(E ), the necessary and sufficient conditions
for the existence of two impurity states then read

lim
E→Eg−0

D↑−(E ) > 0, (C1)

lim
E→−Eg+0

D↑+(E ) < 0. (C2)

We will describe a class of systems for which these conditions
are satisfied.

Consider a clean superconducting system with an inhomo-
geneous real order parameter �(r), such that �(r) → �∞>0
when r → ∞. We will assume that the energy spectrum of
this system has a finite gap Eg � �∞ and that the system can
be described within the quasiclassical approximation. For the
quasiclassical Green functions, a useful Riccati parametriza-
tion exists [59]:

gE (r, n) = 1 − aE (r, n)bE (r, n)

1 + aE (r, n)bE (r, n)
, (C3)

f †
E (ri, n) = − 2ibE (r, n)

1 + aE (r, n)bE (r, n)
. (C4)

fE (ri, n) = − 2iaE (r, n)

1 + aE (r, n)bE (r, n)
. (C5)

In our case, the Riccati amplitudes aE (r, n) and bE (r, n)
satisfy the following equations:

h̄vF n∇aE + [�(r)aE − 2i(E + iη+)]aE − �(r) = 0, (C6)

h̄vF n∇bE − [�(r)bE − 2i(E + iη+)]bE + �(r) = 0. (C7)

These equations should be solved on classical trajectories,
which can be parameterized by a variable s: r = r0 + sn,
where r0 is some point on the trajectory. Then, the boundary
conditions read

aE |s→−∞ = bE |s→+∞

= �∞
−i(E + iη+) +√

�2∞ − (E + iη+)2
. (C8)

For our purpose, the following parametrization is more con-
venient:

aE (r, n) = ieiαE (r,n), bE (r, n) = ieiβE (r,n). (C9)

The functions αE (r, n) and βE (r, n) satisfy the differential
equations

h̄vF
∂αE

∂s
= 2(E + iη+) − 2�(r) cos αE , (C10)

h̄vF
∂βE

∂s
= −2(E + iη+) + 2�(r) cos βE , (C11)

with the boundary conditions

αE |s→−∞ = βE |s→+∞ = − arccos

(
E + iη+

�∞

)
. (C12)

The quasiclassial Green functions are expressed in terms of
αE and βE as follows:

gE = i cot

(
αE + βE

2

)
, (C13)

f †
E = 2eiβE

1 − eiαE +iβE
, (C14)

fE = 2eiαE

1 − eiαE +iβE
. (C15)

It follows from Eqs. (C10)–(C12) that

αE (r,−n) = βE (r, n), (C16)

and hence

gE (r,−n) = gE (r, n), f †
E (r,−n) = fE (r, n). (C17)

Another important property is that αE and βE are mono-
tonically increasing functions of E (when iη+ is not rele-
vant). This follows from the fact that the right-hand sides of
Eqs. (C10)–(C12) are monotonous in energy. For E = 0, we
have αE = βE = −π/2. Then, for given r and n, a single
positive energy E < �∞ may exist, such that αE (r, n) +
βE (r, n) = 0. We denote this energy as εg(r, n). It follows
from Eq. (C16) that

εg(r,−n) = εg(r, n). (C18)

Moreover, by adding Eqs. (C10) to (C11) one finds that

h̄vF
∂ (αE + βE )

∂s
= 4�(r) sin

(
αE − βE

2

)
sin

(
αE + βE

2

)
,

(C19)

which means that if αE + βE = 0 at some point, then this
sum vanishes on a whole classical trajectory passing through
this point. As a consequence, εg(r, n) is constant on each line
parallel to n.

Using Eqs. (29), (30), and (C13)–(C17), we can write the
Green functions with coinciding arguments as

G(0)
ER(r, r) = − mkF

2π h̄2

∫
cot

(
αE (r, n) + βE (r, n)

2

)
d2n
4π

,

(C20)

F †(0)
E (r, r) = imkF

2π h̄2

∫
f †
E (r, n) + f †

E (r,−n)

2

d2n
4π

= − mkF

2π h̄2

∫
cos

(
αE (r,n)−βE (r,n)

2

)
sin
(

αE (r,n)+βE (r,n)
2

) d2n
4π

. (C21)

If |E | < εg(r, n) for all n, the integrand in Eq. (C20) is real
and hence G(0)

ER(r, r) is real. However, if |E | = εg(r, n) for
some n, then the imaginary term iη+ in Eqs. (C9)–(C12)
becomes relevant, and G(0)

ER(r, r) acquires an imaginary part.
From this we conclude that the local gap in the density of
states Eloc(r) (without impurity) is given by

Eloc(r) = min
n

εg(r, n). (C22)

Then, the global gap is

Eg = min
r

Eloc(r). (C23)
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Let us denote as n0(r) a unit vector that satisfies the
equation

Eloc(r) = εg(r, n0(r)). (C24)

According to Eq. (C18), the solutions of Eq. (C24) come in
pairs of n0 and −n0. This equation may have more than two
solutions, however in the absence of rotational symmetry this
is extremely unlikely. For now we will assume that only two
vectors n0 satisfy Eq. (C24). Then, for E ≈ Eloc(r), the main
contributions to the integrals in Eqs. (C20) and (C21) come
from n ≈ ±n0. For E ≈ εg(r, n), we can make use of the
linear in E − εg(r, n) expansion

sin

(
αE (r, n) + βE (r, n)

2

)
≈ A(r, n)[E + iη+ − εg(r, n)],

(C25)
where A(r, n) is a positive function. Then, for E ≈ Eloc(r),
Eq. (C20) yields

G(0)
ER(r, r) ≈ − mkF

8π2h̄2A(r, n0(r))

×
∫

εg(r,n)−Eloc (r)<ε0

d2n
E + iη+ − εg(r, n)

, (C26)

where ε0 is some energy cutoff such that |E − Eloc(r)| �
ε0 � Eg. For the evaluation of the integral in Eq. (C26), let
us use an orthonormal coordinate system xyz such that the z
axis is directed along n0(r), and for n ≈ n0(r), the following
Taylor polynomial approximation holds:

εg(r, n) ≈ Eloc(r) + 1

2

∂2εg

∂n2
x

n2
x + 1

2

∂2εg

∂n2
y

n2
y, (C27)

where ∂2εg/∂n2
x > 0 and ∂2εg/∂n2

y > 0 due to Eq. (C22). To
integrate in Eq. (C26), it is convenient to use the integration
variables N and ϕ, defined via

nx = N

(
∂2εg

∂n2
x

)−1/2

cos ϕ, ny = N

(
∂2εg

∂n2
y

)−1/2

sin ϕ. (C28)

The result of integration is

G(0)
ER(r, r) ≈ mkF

2π h̄2A(r, n0(r))
√

det M(r)

×
[
π i�(E − Eloc(r)) + ln

ε0

|E − Eloc(r)|
]
,

(C29)

where �(x) is the Heaviside step function and

M(r) =
⎛
⎝ ∂2εg

∂n2
x

∂2εg

∂nx∂ny

∂2εg

∂nx∂ny

∂2εg

∂n2
y

⎞
⎠
∣∣∣∣∣∣
n=n0(r)

. (C30)

A direct consequence of Eq. (C29) is the presence of a
finite jump of the local density of states at E = Eloc(r). This
observation is consistent with Eqs. (31) and (32).

Similarly to Eq. (C29), we may obtain from Eq. (C21) that

F †(0)
E (r, r) ≈ G(0)

ER(r, r) cos αE (r, n0(r)) (C31)
for E ≈ Eloc(r). Because of the logarithmic divergence of
G(0)

ER(r, r) at E = Eloc(r), one may see that for ri = r

lim
E→Eg−0

D↑−(E ) = +∞, (C32)

unless αE (r, n0(r)) = 0. Similarly, one can prove that

lim
E→−Eg+0

D↑+(E ) = −∞. (C33)

Thus the assumptions that we made concerning the order
parameter profile provide the sufficient conditions for the
existence of two bound states localized on a point impurity.

The case αE (r, n0(r)) = 0 corresponds to a very specific
placement of the impurity. This happens, for example, when
the position of the impurity is the center of inversion symme-
try for �(r): �(ri + R) = �(ri − R) for any vector R. In this
situation, there may be less than two impurity states, and their
number depends on the values of the scattering phases.

To conclude, we briefly consider the case when the impu-
rity is placed in the center of spherical symmetry of �(r),
such that �(ri + R1) = �(ri + R2) when |R1| = |R2|. Then
the integrands in Eqs. (C20) and (C21) do not depend on n,
and additionally βE (ri, n) = αE (ri, n) ≡ αE (ri ). Then

G(0)
ER(ri, ri ) = − mkF

2π h̄2 cot αE (ri ), (C34)

F †(0)
E (ri, ri ) = − mkF

2π h̄2 sin−1 αE (ri ). (C35)

The equation D↑(E ) = 0 then yields

sin(αE (ri ) − α↓ + α↑) = 0. (C36)

The function αE is a monotonically increasing function of
energy, and at E = ±Eloc(ri ) it takes the values

αEloc (ri )(ri ) = 0, α−Eloc (ri )(ri ) = −π. (C37)

This means that for E ∈ (−Eloc(ri ), Eloc(ri )), Eq. (C36) has
one solution when α↑ �= α↓ and no solutions when α↑ = α↓.
Thus a magnetic impurity induces one subgap state, and a
nonmagntic impurity does not induce subgap states in this
case.
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