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Spectroscopic signatures of phonons in high pressure superconducting hydrides
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The discovery of superconductivity at 203 K in SH3 is an important step toward higher values of critical
temperature Tc. Predictions based on state-of-the-art density functional theory for the electronic structure, in-
cluding one preceding experimental confirmation, showed the mechanism to be the electron-phonon interaction.
This was confirmed in optical spectroscopy measurements. In the range of photon energies between ∼450 and
600 meV in SH3, the reflectance in the superconducting state is below that in its normal state. This difference
decreases as temperature approaches Tc. Decreasing absorption with increasing temperature is opposite to what
is expected in ordinary metals. Such an anomalous behavior can be traced back to the energy dependence of
the superconducting density of states, which is highly peaked at the energy gap value � but decays back to the
constant normal state value as energy is increased, on a scale of a few �, or by increasing temperature towards
T = Tc. The process of phonon-assisted optical absorption is encoded with a knowledge of the temperature
dependence of �, which is also the order parameter characteristic of the superconducting state. Should the
energy of the phonon involved be very large, of order 200 meV or more, this process offers the possibility of
observing the closing of the superconducting order parameter with temperature at correspondingly very large
energies. The very recent experimental observation of a Tc � 250 K in LaH10 has further heightened interest in
the hydrides. Here, we compare the relevant phonon structure seen in optics with related features in the real and
imaginary part of the frequency dependent gap, the quasiparticle density of states, the reflectance, the absorption,
and the optical scattering rate. The phonon structures all carry information on the Tc value and the temperature
dependence of the order parameter, and can be used to confirm that the mechanism involved in superconductivity
is the electron-phonon interaction.
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I. INTRODUCTION

Drozdov et al. [1,2] first reported superconductivity in the
sulfur hydrides at a record 203 K under a pressure of 155 GPa.
In the cuprates, the maximum critical temperature is Tc =
133 K at ambient pressure [3] which can be raised [4] to 164 K
under quasihydrostatic pressure of 45 GPa. These materials
are, however, unconventional in that their superconducting
order parameter has d-wave symmetry [5,6] and their conden-
sation into Cooper pairs is driven by correlations [7]. This is
in contrast to the conventional superconducting materials of
BCS theory which have an s-wave order parameter, possibly
with some anisotropy [8]. The driving mechanism is the
electron-phonon interaction in this case.

For many years it was not possible to raise the value of
Tc in conventional superconductors beyond 23.2 K in Nb3Ge,
which led to the idea [9] that, due to lattice instability as the
electron-phonon interaction increased, the Tc may be limited
to a maximum of 30 K or so. This all changed in 2001 with the
discovery [10] of superconductivity in MgB2 with Tc ≈ 40 K
which was rapidly established [11–15] to be a two-band sys-
tem [16] with strong coupling of the quasi-two-dimensional σ

band to optical B-B (boron-boron) bond stretching phonons at
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600 cm−1. This leads to a large superconducting energy gap
on this band with a smaller one on the π band.

The possibility of high temperature electron-phonon super-
conductivity in metallic hydrogen was discussed by Ashcroft
[17]. Very recently, many papers, mostly based on density
functional theory, have determined the electronic band struc-
ture, lattice dynamics, and electron-phonon spectral density
α2F (ω) in hydrides [18–25]. The superconducting phase in
the experiments of Ref. [1] was expected to be SH3 with
Im-3m structure, as was verified in experiment [26].

Recovery of detailed information on the electron-phonon
spectral density from tunneling data has a long history which
started with McMillan and Rowell [27] for the specific case
of Pb. This has allowed us to understand in great detail
the properties of the superconducting state in many conven-
tional materials [28] which deviate significantly from simple
BCS expectations. It has also been possible to retrieve the
same information on α2F (ω) in the case of Pb using optical
techniques [29,30]. Optics has been particularly useful for
the cuprates [31] and has also been applied to other cases
[32,33], including MgB2 [34]. Very recently, Capitani et al.
[35] measured the reflectance of SH3 at 155 GPa in a dia-
mond anvil cell (DAC) and so probed the electron-phonon
interaction in the system, establishing a new high energy
scale for its superconductivity. These experiments leave no
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doubt that we are dealing with conventional electron-phonon
superconductivity [36].

Recent important new developments include, among oth-
ers, work [37] on LaH10, a hydrogen-rich superhydride with
clathrate-type structure [38] in which the H-H distance is
∼1.1 Å at a pressure of ∼210 GPa, with an expected Tc value
of order 220 K for La-H and 300 K for Y-H. Hydrogen-rich
crystals in this series have already been synthesized in at least
two laboratories [38–40]. The samples have somewhat differ-
ent values of Tc, which also vary with pressure. In Ref. [40],
the crystal structure is Fm-3m at a pressure of ∼170 GPa with
Tc = 250 K, as determined through measurements of zero
resistance, isotope shift, and reduction in Tc on application of
an external magnetic field.

In this paper, we describe how optical conductivity data,
taken as a function of photon energy � at various temperatures
up to Tc and beyond, can be employed to derive informa-
tion on the electron-phonon spectral density α2F (ω) versus
phonon energy. Within Migdal-Eliashberg theory [28,36], this
function has built into it all the information on the electrons,
phonons, and electron-phonon coupling strength needed to
fully characterise the mechanism which drives the conden-
sation into Cooper pairs. In particular, we emphasize how
the phonon structure becomes embedded in the supercon-
ducting gap function itself, which acquires nontrivial energy
dependence of its own and has both real and imaginary parts.
The complex gap function �(T, ω) follows from the solution
of the Eliashberg equations, which are a set of two nonlin-
ear coupled integral equations [28,36]. The gap determines
spectroscopic properties and consequently phonon structure
appears in such properties and, as we will argue, provides a
mechanism by which the energy and temperature variation
of the gap, which is on the scale of 50 meV in the high-Tc

hydrides, can be seen at much higher energies of order 2�

plus the maximum phonon energy ωmax.
Eliashberg theory is well documented in the literature, to

which the reader is referred [28,36]. The details of the theory
will not be repeated here. In Sec. II, we present our solutions
of the Eliashberg equations for the specific case of SH3. The
solutions of these equations involve the gap renormalization
function �(T, ω) and the renormalization function Z (T, ω),
both of which are complex functions. The electron-phonon
spectral density α2F (ω), which is input to these equations, is
taken to be the one that was used before in our previous work
[24,35] on SH3 at 200 GPa and is based on the anharmonic
density functional results of Errea et al. [20]. We compare
phonon structures which appear in both the real and imaginary
parts of the output functions �(T, ω) and Z (T, ω), with
particular emphasis on the energy scale. In Sec. III, we con-
sider the temperature dependencies for the energy gap �0(T )
obtained from the solution of the equation �0 = Re�(T, ω =
�0) and find that it deviates somewhat from the classic BCS
mean field result. This also holds when the normalized inverse
squared penetration depth [λ(0)/λ(T )]2 is considered. These
two temperature variations are compared with dependencies
of both the real and imaginary parts of �(T, ω) taken at some
fixed value of ω. Section IV is devoted to a discussion of the
quasiparticle density of states in the superconducting state,
N (T, ω)/N (0), with N (0) the normal state value at the Fermi

energy. Section V involves the optics, and we show results
for the reflectance R(T, ω), the absorption A(T, ω), and the
optical scattering rate 1/τop(T, ω). We provide a summary and
conclusion in Sec. VI.

II. THE GAP AND RENORMALISATION FUNCTIONS

The Eliashberg equations written on the real [28,36] fre-
quency axis deal with a frequency and temperature depen-
dent gap [41] �(T, ω) and renormalization Z (T, ω). Both
are complex functions. The inputs to these equations, which
characterise the material involved, are the electron-phonon
spectral function α2F (ω) of density functional theory [20] and
a Coulomb repulsion denoted by μ∗, here taken to be 0.18
[24]. In our work here, we begin by solving the Eliashberg
equations on the imaginary frequency axis and then analyt-
ically continue to the real frequency axis. The Eliashberg
equations on the imaginary frequency axis are given as [28]

ω̃n = ωn + πT
∑

m

λ(n − m)
ω̃m√

ω̃2
m + �̃2

m

(1)

and

�̃n = πT
∑

m

[λ(n − m) − μ∗θ (ωc− | ωm |)] �̃m√
ω̃2

m + �̃2
m

,

(2)
with

λ(n − m) =
∫ ∞

0

2�α2F (�)

�2 + (ωn − ωm)2
d�, (3)

where ω̃n ≡ ω̃(iωn) ≡ Z (iωn)ωn and �̃n ≡ �̃(iωn) ≡
Z (iωn)�(iωn). Here, ωn = πT (2n − 1) are the fermionic
Matsubara frequencies for n = 0,±1,±2, . . . and ωc is
a high-frequency cutoff typically taken as six times the
maximum phonon frequency in the α2F (ω) spectrum. For
a particular α2F (�) and μ∗, these equations are iterated to
convergence for a chosen temperature and then the solutions
for ω̃n and �̃n are analytically continued to the real axis forms
via iterating the following equations [41]:

ω̃(ω) = ω + iπT
∞∑

m=0

[λ(ω − iωm) − λ(ω + iωm)]

× ω̃(iωm)√
ω̃2(iωm) + �̃2(iωm)

+ iπ
∫ +∞

−∞
dzα2F (z)

× [n(z) + f (z − ω)]
ω̃(ω − z)√

ω̃2(ω − z) − �̃2(ω − z)
(4)

and

�̃(ω) = iπT
∞∑

m=0

[λ(ω − iωm) + λ(ω + iωm) − 2μ∗]

× �̃(iωm)√
ω̃2(iωm) + �̃2(iωm)

+ iπ
∫ +∞

−∞
dzα2F (z)

× [n(z) + f (z − ω)]
�̃(ω − z)√

ω̃2(ω − z) − �̃2(ω − z)
, (5)
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FIG. 1. The real and imaginary part of the Eliashberg gap func-
tion �(T, ω) as a function of energy ω, top and bottom frames,
respectively. Shown are curves for 10 temperatures up to t = T/Tc ∼
1 as labeled in the figure. These curves are dominated in their ω

dependence by the phonon structures coming from the electron-
phonon spectral density α2F (ω). At fixed frequency, their tempera-
ture dependence is encoded with information on the mean field order
parameter.

with

λ(ω) = −
∫ +∞

−∞

d�α2F (�)

ω − � + i0+ , (6)

where n(ω) = 1/[exp(βω) − 1] and f (ω) = 1/[exp(βω) +
1] are the Bose-Einstein and Fermi-Dirac distributions, re-
spectively, with β = 1/(kBT ) and kB the Boltzmann constant.
Here, �̃(ω) ≡ �(T, ω) and ω̃(ω) ≡ ωZ (T, ω). To access the
BCS limit numerically through these equations, one can take
α2F (�) to be a delta function positioned at very high fre-
quency or, as aluminum is a classic BCS superconductor, one
may use the aluminum α2F (�) spectrum [28]. In the BCS
limit Z (T, ω) is replaced by the normal state renormalization
function ZN . For the electron-phonon problem, this would
be the value 1 + λ, where λ is the electron-phonon mass
renormalization parameter. If the normal state renormaliza-
tions are ignored then Z (T, ω) = 1. Also, in the BCS limit,
Re�(T, ω) = �0(T ) (a constant at each temperature) up to
a cutoff which is the Debye energy, and zero thereafter.
Im�(T, ω) is zero in this limit. One can take the imaginary
axis equations above and apply a “two-square-well” model,
which leads to a renormalized BCS form for the BCS gap and
Tc equations [16,28]. Further discussion about reducing the
real-axis equations to BCS can be found in Ref. [28].

In Fig. 1, top frame, we show results for Re�(T, ω) as
a function of ω for various values of reduced temperature
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FIG. 2. Same as for Fig. 1 but now the real and imaginary parts
of the renormalization function Z (T, ω) are shown.

t ≡ T/Tc (as labeled in the figure) up to t ∼ 1 (or T ∼
Tc). The lower frame gives the corresponding results for
Im�(T, ω). In Fig. 2, we present equivalent results for the real
and imaginary parts of the renormalization Z (T, ω). First, as
mentioned above, for a BCS superconductor the real part of
the gap would have no ω dependence, except for a cutoff at
the Debye energy ωD, and its imaginary part would be zero.
This is in sharp contrast to what we have in SH3. The large
amount of structure is due to the electron-phonon spectral
density α2F (ω) and reflects its ω dependence. In SH3, the
maximum phonon energy is about 250 meV while the gap
edge at zero temperature is 36.5 meV. This is defined by the
solution of the equation �0(T ) = Re�[T, ω = �0(T )]. Note
that there are two separate regions of variation for the phonon-
induced structure in Re�(T, ω). Below about 370 meV the
boson structure is largest (positive) at the lowest temperature,
while above it is most negative at t = 0.1. Also note that the
variations of these structures with temperature are most rapid
as T approaches Tc, which is characteristic of a second order
phase transition. In the lower frame of Fig. 1 we see very
much the same behavior for Im�(T, ω) although the crossing
of the curves from one region to the other is at a different
energy (∼625 meV). Finally, we note that the renormalization
function Z (T, ω) shown in Fig. 2 also shows considerable
phonon structure, but this is confined to a lower energy range.
As mentioned earlier, in unrenormalized BCS, ReZ (T, ω) = 1
and ImZ (T, ω) = 0. In Eliashberg theory, we see at very high
frequency ReZ (T, ω) approaches the unrenormalised value of
1 and at ω → 0 and T → 0, ReZ (T, ω) → 1 + λ.
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FIG. 3. The temperature dependence of the normalized BCS
energy gap �(T ) (red curve) compared with the SH3 gap edge
(black dots with connecting curve). Also shown are results for the
corresponding normalized inverse square of the penetration depth
λ(T ), with the BCS case in green and the SH3 result in blue.

III. TEMPERATURE DEPENDENCES

Next we concentrate on temperature dependencies in-
volved in the gap variations. In BCS, the gap edge �(T )
carries information on the second-order phase transition that
is involved in the Cooper pair condensation. In such a case,
the order parameter (or the gap) will be flat, almost temper-
ature independent, at low T but then decrease rapidly as T
approaches Tc. This is shown in Fig. 3. The black curve with
the dots is the result of our Eliashberg equations for the gap
edge compared with the BCS result (red curve). We see that
these variations, while not quite the same in magnitude, never-
theless track each other well. Indeed, the slight enhancement
of the SH3 gap is typical of strong electron-phonon coupling
superconductors, a class to which SH3 belongs. Also, shown
in the same figure are additional results for the London
penetration depth λ(T ), plotted in the form of the superfluid
density [λ(0)/λ(T )]2. This quantity is evaluated from [28]

[
λ(0)

λ(T )

]2

= T

2

∞∑
n=1

�2(iωn)

Z (iωn)
[
ω2

n + �2(iωn)
]3/2 , (7)

where 1/λ2(0) = ω2
p = 4πne2/m, with e and m the electron

charge and effective mass, respectively, and n the electron
density. The blue curve is our calculation for SH3 while the
green curve is the classic BCS result. Again, SH3 deviates
in a manner consistent with strong coupling effects. What is
important to emphasize here is that while �(T )/�(0) and
[λ(0)/λ(T )]2 do not have exactly the same T dependence,
both could be taken to be the underlying order parameter
associated with the superconducting state.

Temperature dependencies that give information on the
superconducting state are not confined to the zero energy limit
but are also embedded in the gap at finite frequencies. This is
shown in Fig. 4 where we show our results for Re�(T, ω)
and Im�(T, ω) at ω = 600 meV (black with dots and red
with dots, respectively) and compare with BCS temperature
variations that have been scaled to approximately match the
curves (blue curves). These results make it clear that we
can see the order parameter involved at large energies way

0 0.2 0.4 0.6 0.8 1
T/Tc

-80

-60

-40

-20

0

20

Δ(
T,

ω
=6

00
m

eV
)

ImΔ
ReΔ

0 0.2 0.4 0.6 0.8 1

-50

0

50
ReΔ(ω=30)
ReΔ(ω=200)
ReΔ(ω=250)
ReΔ(ω=600)

FIG. 4. The temperature variation for the Eliashberg gap function
obtained from numerical data in Fig. 1 at a fixed energy ω =
600 meV. Shown are Re�(T, ω = 600 meV) (black dots connected
by the black curve) and Im�(T, ω = 600 meV) (red dots with
connecting red curve). The blue curves are scaled BCS temperature
variations for comparison. The inset shows further numerical results
for only Re�(T, ω) at fixed energy ω = 600 meV (black) (repeated
from the main frame), 250 meV (orange dashed), 200 meV (dark
green dashed), and 30 meV (violet dashed).

beyond the scale of the energy gap ∼36 meV. The inset of
Fig. 4 presents additional results for the case of Re�(T, ω) for
different choices of fixed ω, namely ω = 600 meV (repeated
from the main frame), 250 meV, 200 meV, and 30 meV.

IV. QUASIPARTICLE DENSITY OF STATES

The superconducting quasiparticle density of states
N (T, ω) is given by [27]

N (T, ω)

N (0)
= Re

{
ω√

ω2 − �(T, ω)2

}
, (8)

where N (0) is the density of states at the Fermi energy in
the normal state. It has played a central role in our knowl-
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FIG. 5. The quasiparticle density of states N (T, ω) as a function
of energy ω for the ten temperatures labeled in the figure, ranging
from t = T/Tc = 0.1 to t = 0.995. The low energy region around
the gap is emphasized. In SH3, the gap at low t is 36.5 meV. Note the
small (in comparison) structures at higher energies ∼100 meV or so.
These will be emphasized in Fig. 6.
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FIG. 6. The quasiparticle density of states N (T, ω) as a function
of energy ω for the same temperatures as in Fig. 5. Here, the structure
in this quantity up to 300 meV is emphasized. In the inset, the
temperature variation of N (T, ω) is shown for two values of fixed
ω: ω = 150 meV (black dashed) and 300 meV (red dashed). Both
are equal to 1 at T = Tc (normal state) as the superconducting order
parameter has closed.

edge of the electron-phonon spectral density in conventional
superconductors [27,28,36]. In Fig. 5, we show the results
for SH3 for N (T, ω)/N (0) as a function of energy ω at the
ten different temperatures labeled in the figure. The emphasis
is on the low energy region around the gap edge. At low
T (t = T/Tc = 0.1, black curve), we see a prominent peak
in the density of states at the energy gap value (basically
zero temperature). As temperature is increased towards Tc,
the peak smears and is shifted to lower values. The curves
clearly contain information on the temperature variation of
the underlying order parameter on the energy scale of a few �

in the range T � Tc. Similar information, however, can also
be found when one looks at higher energy, and this has not
been emphasized in the past. In Fig. 6, we show the region of
N (T, ω) beyond ω ∼ 100 meV on a scale that emphasizes the
phonon structure. Below ω ≈ 250 meV, the boson structure
decreases as T increases and N (T, ω)/N (0) tends towards
1 from above, while in the region above 250 meV, it tends
towards 1 from below. The inset gives values of N (T, ω)/N (0)
versus T at fixed value of ω, namely, ω = 150 meV (black
dashed curve) and 300 meV (red dashed curve). It is clear
that information on the second-order phase transition is also
encoded in the density of states at high ω values much larger
than the energy gap scale, and measurements in this range
would provide an alternate route to this information.

V. OPTICAL CONDUCTIVITY

Next we consider optical properties. The dynamic longitu-
dinal conductivity σ (T,�) as a function of photon energy �

and temperature T is given by [36,42,43]

σ (T,�) = iω2
p

4π�

{∫ ∞

0
dω tanh

(
ω

2kBT

)
[J1(ω,�) + J2(ω,�)]

+
∫ D

−�

dω tanh

(
ω + �

2kBT

)

× [J∗
1 (ω,�) − J2(ω,�)]

}
, (9)

FIG. 7. Schematic diagram of a phonon-assisted absorption pro-
cess. A photon (dashed arrow) creates a hole-particle pair out of the
Cooper pair condensate while at the same time a phonon of energy
ω0 is created (wiggled arrow). This process could be one where, for
example, in breaking the Cooper pair the photon excites a quasipar-
ticle to high energy, which decays by emitting a phonon. This allows
the energy of the photon involved to be at large energy of order
twice the energy gap plus ω0 so that such processes carry information
both on the condensate and on the energy scale associated with the
phonon spectral density. Consequently, superconductivity is seen on
an energy scale much larger than the gap.

with D a large cutoff taken to infinity for large electronic
bandwidth. ωp is the plasma frequency and

2J1(ω,�) =1 − M(ω)M(ω + �) − P(ω)P(ω + �)

E (ω) + E (ω + �) + i/τimp
, (10)

2J2(ω,�) =1 + M∗(ω)M(ω + �) + P∗(ω)P(ω + �)

E∗(ω) − E (ω + �) − i/τimp
,

(11)

where ∗ indicates the complex conjugate. The static impurity
scattering 1/τimp enters through the denominators of Eqs. (10)
and (11) as shown. The various quantities are

E (ω) =
√

ω̃2(ω) − �̃2(ω), (12)

with E (−ω) = −E∗(ω), and

M(ω) = ω̃(ω)

E (ω)
(13)

and

P(ω) = �̃(ω)

E (ω)
, (14)

with �̃(ω) = Z (ω)�(ω) and ω̃(ω) = ωZ (ω). We have sup-
pressed the label of T for the explicit dependence on tempera-
ture. Both the real and imaginary parts of the conductivity are
given by Eq. (9).

As we will examine here below, the prominent phonon
structures of the previous section also appear in the optical
conductivity and are translated to related quantities: The
reflectance, absorption, and optical scattering rate. To aid in
understanding why this would occur, consider Fig. 7 which is
illustrative and describes phonon-assisted optical absorption
processes. It shows a photon of energy � impinging on a
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FIG. 8. The superconducting state reflectance Rs(T, �) for SH3

as a function of photon energy � shown for the temperatures
t = T/Tc labeled in the figure. The crossing of curves just below
300 meV is close to the energy of twice the gap at zero temperature
plus the maximum phonon energy (ωmax) for the system. In the inset,
Rs(T, � = 400 meV) is plotted as a function of temperature, and this
quantity shows mean field temperature dependence.

Cooper pair condensate with the result that two quasiparticles
(an excited hole-particle pair) are created as well as a phonon
of energy ω0. Even when the energy of the particle-hole pair
is of order twice the energy gap, the energy of the photon
involved can be very large compared with the scale of a few
�. As an example, this can occur because the photon could
excite the quasiparticle to high energy where it decays back to
the gap edge via phonon emission. The availability of phonons
with large value of ω0 effectively boosts the energy scale of
the photon involved in this process (a few � + ω0) thereby
allowing the energy and temperature variations typical of the
superconducting state, a few � in magnitude, to be seen by
probing optical properties at high energies of order 300 meV
or larger. This is the physics we wish to stress in this paper.

Results for the superconducting state reflectance Rs(T,�)
of SH3 as a function of photon energy � at several temper-
atures are given in Fig. 8. We see that in this quantity there
is a crossing of the curves around ∼300 meV, which also
corresponds roughly to twice the gap value at T = 0 plus
the maximum phonon energy in the electron-phonon spectral
density α2F (ω) of SH3 in the anharmonic approximation,
which is ∼250 meV. We also see boson structures below the
energy scale as well as above, where it extends to 700 meV
or so. In the region 300 to 700 meV, the reflectance shows
an increase with increasing temperature which is precisely
the opposite of what is expected for a normal metal where
increasing T should increase the absorption and so decrease
the reflectivity. Encoded in this temperature dependence of
Rs(T,�) at some well chosen fixed value of �, say � =
400 meV for SH3, is the the mean field temperature depen-
dence of superconducting properties. This is illustrated in
the inset where we have plotted Rs(T,� = 400 meV) versus
temperature. We see a flat behavior at small value of T and
a rapid growth towards value 1 around T � Tc. While this
temperature variation is somewhat different in detail to that
for the gap or for the penetration depth seen in Figs. 3 and
4, it nevertheless could serve as an order parameter, and it
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FIG. 9. Same as for Fig. 8 but now the absorption As(T, �) =
1 − Rs(T, �) is shown.

is this variation characteristic of the superconducting state
which is seen at high energies in the phonon-assisted optical
spectroscopy.

Figs. 9 and 10 illustrate very much the same thing. In Fig. 9
we show results for the absorption in the superconducting
state defined by 1 − Rs(T,�) ≡ As(T,�) as a function of
� for the same set of temperatures as we showed in Fig. 8,
and the inset gives As(T,� = 400 meV) as a function of T .
It has its own temperature dependence but also shows a flat
region at low T and a much sharper dependence on T/Tc as
the phase transition from the superconducting to normal state
is reached.

In Fig. 10, we show additional results for the optical
scattering rate extensively used in the literature to present su-
perconducting state optical data. In terms of the conductivity
σ (T,�), the optical scattering rate is defined as [31–34]

1

τop(T,�)
= ω2

p

4π

Re σ (T,�)

[Re σ (T,�)]2 + [Im σ (T,�)]2
, (15)

where ω2
p is the plasma frequency. In Fig. 10, the results show

that this quantity behaves very much as the absorption of
Fig. 9 with respect to � dependence and temperature variation
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FIG. 10. Same as for Fig. 8 but now the optical scattering rate
1/τop(T, �) is plotted. These last three figures follow the same trends
and all can be used to probe the superconducting state and reveal that
it is electron-phonon-driven with a very high phonon energy scale.
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(see inset to Fig. 10 for the optical scattering rate at fixed
� = 400 meV).

VI. SUMMARY AND CONCLUSIONS

We have presented a detailed account of how phonon
structure in an Eliashberg superconductor manifests itself
in various properties. To be specific, we considered SH3,
a recently discovered, very-high-Tc superconductor. The in-
formation on the electron-phonon interaction enters through
its spectral density α2F (ω) known from density functional
theory (DFT). It is encoded in to the gap function �(T, ω)
which is energy and temperature dependent. Similar structures
are also present in the mass renormalization function Z (T, ω).
For the gap, such structures extend to very high energies much
beyond the BCS gap energy scale and persist to ω of order
several 100 meV. It is shown that for a well-chosen fixed
value of ω, the temperature dependence of both the real and
imaginary parts of �(T, ω) shows variations which reveal the
mean field temperature dependence of a second-order phase
transition, as does the gap edge �(T )/�(0) in BCS or alterna-

tively the inverse square penetration depth [λ(0)/λ(T )]2. For
SH3, these variations are slightly modified by strong coupling
effects.

The boson structures seen in the gap function also are
transferred to other properties such as the quasiparticle density
of states N (T, ω), which can be used to establish that the
superconductivity has its origin in a phonon mechanism with a
very high value of maximum phonon energy ∼250 meV. The
optical properties show the same trends and we discussed in
detail the reflectance, the absorption, and the optical scatter-
ing rate, with particular emphasis on phonon-assisted optical
absorption in the range of photon energy � of order 600 meV.
The temperature dependence of the data in this range reveals
the second-order phase transition involved in the condensation
into Cooper pairs.
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