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SrTiO3 is a unique example of a system which exhibits both quantum paraelectricity and superconductivity.
Thus, it is expected that the superconducting state is closely related to the intrinsic ferroelectric instability.
Indeed, recent experiments suggest existence of a coexistent phase of superconductivity and ferroelectricity in
Ca-substituted SrTiO3. In this paper, we propose that SrTiO3 can be a platform of the ferroelectric superconduc-
tivity, which is characterized by a ferroelectric transition in the superconducting state. By analyzing a multiorbital
model for t2g electrons, we show that the ferroelectric superconductivity is stabilized through two different
mechanisms which rely on the presence of the spin-orbit coupling. First, the ferroelectric superconducting state
is stabilized in the dilute carrier density regime due to a ferroelectricity-induced Lifshitz transition. Second,
it is stabilized under a magnetic field independent of the carrier density. The importance of the multiorbital
or multiband nature for the ferroelectric superconductivity is clarified. Then, we predict a topological Weyl
superconducting state in the ferroelectric superconducting phase of SrTiO3.

DOI: 10.1103/PhysRevB.100.094504

I. INTRODUCTION

The origin of the superconductivity in SrTiO3 (STO)
has remained a long-standing problem of condensed-matter
physics for more than half a century. The superconductivity in
doped STO begins to emerge at an extraordinary low carrier
density on the order of 1017 cm−3 [1,2], where the Fermi
energy εF is smaller than the characteristic phonon energy ωD.
Therefore, conventional BCS or Migdal-Eliashberg theories
are invalid for this superconducting state since the retardation
condition (εF � ωD) is not satisfied. To reveal the origin of
the dilute superconducting state, various pairing glues have
been proposed theoretically, e.g., plasmons [3,4], localized
longitudinal optical phonons [5], and soft transverse optical
phonons [6–10]. However, there is still no consensus about
the pairing mechanism in STO.

Recently, the superconductivity in STO has also received
extensive attention in terms of the ferroelectric (FE) quantum
criticality. STO is a quantum paraelectric (PE) [11] which
exists in the vicinity of the FE quantum critical point [12].
The avoided FE ordering can be activated by some chemical
or physical operations, e.g., isovalent substitution of Sr with
Ca [13], isotopic substitution of 16O with 18O [14], and
application of tensile strain [15] or electric field [16]. Inci-
dentally, doped STO exhibits metallic behavior at very low
carrier densities on the order of 1016 cm−3 [1,17,18] thanks to
the quantum paraelectricity and resulting long effective Bohr
radius [19]. Thus, it is naturally considered that the dilute
superconductivity and the FE quantum criticality are closely
related. Indeed, enhancement of the superconducting transi-
tion temperature Tc by a FE quantum fluctuation was proposed
theoretically [6], and later confirmed experimentally [20–24].
Furthermore, a phase transition structurally indistinguishable
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from the FE phase transition was observed in metallic
Sr1−xCaxTiO3−δ [21], similar to a FE metal LiOsO3 [25]. This
experimental observation suggests existence of the supercon-
ducting phase which coexists with the ferroelectricity. There-
fore, STO is a candidate of a FE superconductor in which
FE-like phase transition occurs in the superconducting state.

Another extensively debated issue about the superconduct-
ing STO is its multiband nature. Early tunneling measure-
ments on doped STO observed two peaks in the local density
of states (DOS) [26], which implies the multiple supercon-
ducting gaps. This result is supported by recent quantum
oscillation measurements [2] and thermal conductivity data
[27]. Thus, it has been suggested that STO is a multiband su-
perconductor with multiple nodeless gaps, and the multiband
effect has been theoretically discussed [28–30]. In contrast,
recent tunneling experiments [31] and optical conductivity
data [32] indicate only single superconducting gaps.

Although multiband nature in the superconducting STO is
still under debate, it is certainly true that the superconducting
state has multiorbital features. The conduction bands in STO
originate from three Ti t2g orbitals. Threefold degeneracy
of the t2g orbitals is lifted by the spin-orbit coupling and
the tetragonal crystal field due to antiferrodistortive (AFD)
rotation of TiO6 octahedra below 105 K [33]. Thus, STO has
three distinct bands all centered at the �-point and constructed
from multiple orbitals [Fig. 1]. Therefore, the multiorbital
features may affect superconductivity even in the dilute carrier
density regime with a single Fermi surface. Consequently, the
superconductivity in doped STO has multiorbital character
regardless of the carrier density.

Considering all the unique aspects of the superconduct-
ing STO, in this paper, we show that STO can be a plat-
form of the FE superconductivity through two different
mechanisms that rely on the antisymmetric spin-orbit cou-
pling (ASOC). The first mechanism originates from the
ferroelectricity-induced Lifshitz transition in dilute carrier
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FIG. 1. Band structure of bulk STO around the �-point in the
PE phase (dashed line; γ = 0) and the FE phase (solid line; γ =
27.7 meV). The Lifshitz transitions occur when the Fermi level
crosses black dashed lines. Different colored areas show different
carrier density regimes, which are distinguished by the topology of
Fermi surfaces.

density regimes. Another one is the magnetic-field-induced
FE superconductivity caused by spin-momentum locking in
the FE phase. It is shown that, in both mechanisms, the FE
superconductivity is strongly influenced by the multiorbital or
multiband nature of STO. In particular, we predict a Weyl FE
superconducting state arising from the multiorbital effect.

This paper is constructed as follows. In Sec. II, a three-
orbital model describing the electronic structure and super-
conductivity of bulk STO is introduced. We analyze the model
within the mean-field BCS theory. The energy of polar lattice
distortion is also included phenomenologically to discuss the
FE-like structural phase transition. In Sec. III, we discuss the
multiorbital effect in STO. It is shown that the electronic
structure and the Pauli depairing effect of the FE STO are
strongly affected by the unconventional Rashba spin-orbit
coupling due to the multiorbital effect. In addition, a coop-
erative relationship between multiple Lifshitz transitions in
multiorbital electronic structure and FE superconductivity is
clarified. In Sec. IV, we show the phase diagrams for the FE
superconductivity in three different carrier density regimes in
STO. It is demonstrated that the FE superconducting state is
stabilized at zero magnetic field only in a dilute carrier density
regime. On the other hand, the FE superconducting state is
stabilized under the magnetic field irrespective of the carrier
density. Furthermore, we show that a topological Weyl FE
superconducting state is stabilized in a dilute density regime,
thanks to the multiorbital effect. Finally, a brief summary and
conclusion are given in Sec. V.

II. MODEL AND FORMULATION

A. Three-orbital model for bulk SrTiO3

To describe the three distinct band structure in tetragonal
STO, we introduce a three-orbital tight-binding model for t2g

electrons as follows:

H0 =
∑
k,l,σ

(εl (k) − μ)c†
k,lσ ck,lσ + λ

∑
i

Li · Si, (1)

where ck,lσ is the annihilation operator for an electron with
momentum k, orbital l = yz, xz, xy, and spin σ = ↑,↓. The
first term is the kinetic-energy term of t2g orbitals including

TABLE I. Model parameters for bulk STO. We choose the unit of
energy as t1 = 1. The values of 
T and λ are set to be larger than the
literature values [35–37] for simplicity of the numerical calculations.
The value of γ at the SrTiO3/LaAlO3 interface [37] is also shown
for reference.

Literature values [35–37] This paper

t1 277 meV 1
t2 31 meV 0.11
t3 76 meV 0.27

T 3.2 meV 0.03
λ 12 meV 0.12
γ 20 meV (SrTiO3/LaAlO3) �0.20

the chemical potential μ. The single-electron kinetic energy
εl (k) is described as

εyz(k) = −2t1(cos ky + cos kz )

− 2t2 cos kx − 4t3 cos ky cos kz, (2)

εxz(k) = −2t1(cos kx + cos kz )

− 2t2 cos ky − 4t3 cos kx cos kz, (3)

εxy(k) = −2t1(cos kx + cos ky)

− 2t2 cos kz − 4t3 cos kx cos ky + 
T. (4)

Here, 
T expresses the tetragonal crystal field for the AFD
transition, which lifts the energy of the dxy orbital. Although
the intersite hybridization term has been generally considered
for perovskite oxides [34] in addition to the above three
terms, first-principles band calculations have shown that it
is negligible in the bulk STO [35–37]. The second term of
Eq. (1) represents the LS coupling of Ti ions. The band
structure of tetragonal STO is reproduced by H0 with the
parameter set listed in Table I, which is determined based on
the first-principles calculations [35–37].

Then, we discuss effects of the ferroelectricity on the
electronic structure. Since the electric polarization is not
well defined in metallic or superconducting states, we define
the ferroelectricity in conducting systems as a spontaneous
nonpolar-to-polar inversion symmetry breaking. This FE tran-
sition is realized by opposite displacement of Sr/Ti cation and
O anion, and thus the crystal symmetry descends to one of the
polar space groups. Although STO has two FE modes parallel
and perpendicular to the AFD rotation axis [38], we only
consider the former for simplicity. Thus, the crystallographic
space group of tetragonal STO descends to I4cm (C10

4v ) from
I4/mcm (D18

4h) as a consequence of the FE ordering along the
[001] axis [39]. In this mirror symmetry broken FE phase, an
orbital hybridization term,

Hpol =
∑
k,σ

∑
l=yz,xz

[ζl (k)c†
k,lσ ck,xyσ + H.c.], (5)

is induced in addition to H0 [36]. Here, ζyz,xz(k) =
2iγ sin kx,y. Equation (5) describes the intersite hybridization
between dxy and dyz,xz orbitals, which have different mirror
parity along the [001] axis. Combination of Hpol and the LS
coupling leads to the Rashba ASOC [37,40], and thus spin-
orbit splitting in the band structure is induced in the FE phase
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[Fig. 1]. Since this orbital parity mixing is considered to be
enhanced under a large polar crystal field [36], we assume that
the odd-parity hopping integral γ is proportional to the polar
lattice displacement P, i.e., γ ∝ P. Hence, we treat γ as an or-
der parameter which characterizes the ferroelectricity in STO.

Although the origin of superconductivity in STO is unclear,
thermodynamic properties such as the specific heat jump [27]
are in good agreement with the BCS theory. Therefore, we
investigate an interplay of superconductivity and ferroelec-
tricity by adopting a simple BCS-type model, and focus on
the multiorbital effect on the FE superconductivity in STO.
More precise studies including a realistic dynamical electron-
phonon coupling and Coulomb interactions are left for future
work. The BCS-type static attractive interaction is introduced
as follows:

Hpair = −Vs

N

∑
k,k′,q,l

c†
k,l↑c†

−k+q,l↓c−k′+q,l↓ck′,l↑, (6)

where N is the number of Ti sites and q is the
center-of-mass momentum of Cooper pairs. Since the
s-wave superconductivity in STO has been confirmed [27],
we assume momentum-independent intraorbital pairing
interaction. The pairing interaction strength Vs is determined
to satisfy Tc � ESO, where Tc is the superconducting
transition temperature and ESO is a typical energy of the
spin-orbit splitting. This condition is reasonable in STO
since the superconducting transition temperature is extremely
small, i.e., about 0.3 K. Then, the effect of the Rashba splitting
in the FE phase is reflected to the superconductivity. Here, we
neglect the interorbital pairing because the interorbital inter-
action is generally weak and does not alter qualitative results.
Furthermore, we ignore the parity mixing of Cooper pairs in
the FE phase, since the stability of FE superconductivity is
hardly affected by an induced p-wave component.

The impact of the applied magnetic field is included as the
Zeeman coupling term,

HZ = −μB

∑
k,l,σ,σ ′

H · σσσ ′c†
k,lσ ck,lσ ′ , (7)

where σ is the Pauli matrix and μB is the Bohr magneton. In
the superconducting STO, the superfluid density ns is small
[41], and hence the penetration depth λL ∝ n−1/2

s is large.
Thus, STO is a superconductor close to type-II limit with an
extremely large Ginzburg-Landau parameter κGL � 1. There-
fore, it is justified to assume a uniform magnetic field in the
bulk superconducting STO. It would be desirable to include
the gauge interaction with the vector potential in addition
to the Zeeman coupling term HZ. The importance of the
orbital depairing effect is represented by the Maki parameter
αM ∝ 
/εF, where 
 is the superconducting gap and εF is the
Fermi energy. When αM > 1, the orbital depairing effect is
suppressed and the superconducting state is destroyed mainly

due to the Pauli depairing effect. In the superconducting STO,
εF is extremely small and hence αM can be large. Thus, we
assume that the orbital depairing effect is not qualitatively
important in the dilute superconducting STO. Indeed, the
upper critical field exceeding the Pauli limit in some doped
STO [24,42] indicates a strong impact of the Pauli depairing
effect on the superconductivity. In the following, we fix the
magnetic field in a direction parallel to the polar [001] axis,
i.e., H = (0, 0, Hz ). Thus, an asymmetric deformation of the
Rashba split Fermi surface, which is destructive for the FE su-
perconductivity [43], is not induced under the magnetic field.

B. Mean-field theory for superconductivity

We investigate the superconductivity in STO by means of
the mean-field theory. In the following discussion, we fix q =
0 since Fulde-Ferrell-Larkin-Ovchinnikov superconductivity
with finite q is not stabilized in our model when the magnetic
field is applied along the polar axis. The pairing interaction
Hpair is approximated as

Hpair = −Vs

N

∑
k,k′,l

c†
k,l↑c†

−k,l↓c−k′,l↓ck′,l↑

≈
∑
k,l

(
l c
†
k,l↑c†

−k,l↓ + H.c.) + N

Vs

∑
l

|
l |2, (8)

by introducing the orbital-dependent superconducting order
parameters,


l = −Vs

N

∑
k

〈c−k,l↓ck,l↑〉. (9)

To describe the total Hamiltonian H = H0 + Hpol + HZ +
Hpair in a matrix form, we define the vector operator as
follows:

Ĉ†
k = (c†

k,yz↑, c†
k,xz↑, c†

k,xy↑, c†
k,yz↓, c†

k,xz↓, c†
k,xy↓, c−k,yz↑,

c−k,xz↑, c−k,xy↑, c−k,yz↓, c−k,xz↓, c−k,xy↓). (10)

Then, we obtain the mean-field Hamiltonian in the matrix
form

H = 1

2

∑
k

Ĉ†
k ĤBdG(k)Ĉk

+ N

Vs

∑
l

|
l |2 +
∑
k,l

(εl (k) − μ). (11)

The Bogoliubov-de Gennes (BdG) Hamiltonian ĤBdG(k) is
described as

ĤBdG(k) =
(
ĤN(k) 
̂


̂† −ĤT
N(−k)

)
, (12)

by using the normal state part

ĤN(k) =

⎛
⎜⎜⎜⎜⎜⎝

ξyz(k) − hz iλ/2 ζyz(k) 0 0 −λ/2
−iλ/2 ξxz(k) − hz ζxz(k) 0 0 iλ/2
ζ ∗

yz(k) ζ ∗
xz(k) ξxy(k) − hz λ/2 −iλ/2 0

0 0 λ/2 ξyz(k) + hz −iλ/2 ζyz(k)
0 0 iλ/2 iλ/2 ξxz(k) + hz ζxz(k)

−λ/2 −iλ/2 0 ζ ∗
yz(k) ζ ∗

xz(k) ξxy(k) + hz

⎞
⎟⎟⎟⎟⎟⎠, (13)
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and the pairing part,


̂ =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 
yz 0 0
0 0 0 0 
xz 0
0 0 0 0 0 
xy

−
yz 0 0 0 0 0
0 −
xz 0 0 0 0
0 0 −
xy 0 0 0

⎞
⎟⎟⎟⎟⎟⎠.

(14)

Here, we abbreviate as ξl (k) ≡ εl (k) − μ and hz ≡ μBHz.
Then, we carry out the Bogoliubov transformation,

ck,lσ =
∑
ν,τ

(
u(ντ )

k,lσαk,ντ − v
(ντ )∗
−k,lσ α

†
−k,ντ

)
, (15)

c†
−k,lσ =

∑
ν,τ

(
v

(ντ )
k,lσ αk,ντ + u(ντ )∗

−k,lσ α
†
−k,ντ

)
, (16)

where αk,ντ is the annihilation operator for a Bogoliubov
quasiparticle with momentum k, pseudoorbital ν = yz, xz, xy,
and pseudospin τ = ↑,↓. Thus, Eq. (9) is rewritten as


l = −Vs

N

∑
k,σ,ν,τ

σzv
(ντ )∗
k,lσ u(ντ )

k,lσ f [σzEντ (k)], (17)

where f [E ] is the Fermi-Dirac distribution function and
Eντ (k) is the energy of a Bogoliubov quasiparticle. σz = ±1
for σ = ↑,↓. Equation (17) is the simultaneous gap equation
to be solved numerically. In the Bogoliubov quasiparticle
picture, the total Hamiltonian is described as

H =
∑
k,ν,τ

Eντ (k)

(
α

†
k,ντ

αk,ντ − 1

2

)

+ N

Vs

∑
l

|
l |2 +
∑
k,l

ξl (k). (18)

Therefore, the electronic free energy per Ti site is obtained as

Fele[�, P] = − 1

Nβ

∑
k,ν,τ

[
ln(1 + e−βEντ (k) ) + βEντ (k)

2

]

+ 1

Vs

∑
l

|
l |2 + 1

N

∑
k,l

ξl (k) + μn, (19)

where � = (
yz,
xz,
xy) and β = 1/T is the inverse tem-
perature. The last term of Eq. (19) is necessary since the
carrier density per Ti site is fixed as n instead of the chemical
potential μ. Using � obtained by solving Eq. (17), we cal-
culate the electronic part of the free energy Fele[�, P] from
Eq. (19).

C. Polar instability

To discuss the FE-like structural phase transition, we take
into account the Landau free energy arising from polar lattice
distortion as follows:

Flat[P] = 1
2κ2P2 + 1

4κ4P4 + 1
6κ6P6, (20)

where κ2, κ4, and κ6 are the lattice parameters which describe
the elasticity of the lattice. The temperature dependence of
the lattice parameters is ignored, consistent with the fact

that the dielectric constant is almost temperature independent
in the quantum PE STO [11].

The total free energy including the contributions of both
electrons and lattice is given by

F[�, P] = Fele[�, P] + Flat[P]. (21)

The thermodynamically stable state is determined by mini-
mizing the free energy F[�, P] with respect to � and P.
The FE superconducting state is realized when both � and
P have finite values. The values of the phenomenological
lattice parameters κ2, κ4, and κ6 are determined as follows.
The lattice parameters κ4 and κ6 are introduced to cut off the
FE order parameter γ ∝ P in a realistic regime. In this study,
we set κ4 and κ6 so as to satisfy γ /t1 � 0.20 in agreement with
the first-principles estimation of γ for the SrTiO3/LaAlO3

interface [37]. The choice of κ4 and κ6 hardly alters the
results of this paper. The value of κ2 is determined so as to
realize a PE normal state near a FE phase transition point.
This condition expresses a situation of the PE STO which is
moved toward the vicinity of the FE quantum critical point,
for example, by Ca substitution [13] or isotopic substitution of
O [14]. Then, we investigate the feasibility of a FE transition
caused by the superconductivity.

The phenomenological parameters κ2, κ4, and κ6 might
be derived from the microscopic Hamiltonian for the optical
phonon excitations coupled to the conduction electrons, in
which the FE transition should be driven by the dipolar
interaction [9,44]. They are phenomenologically introduced in
this study, and more microscopic study for the ferroelectricity
in the superconducting STO is left for future work.

III. MULTIORBITAL AND MULTIBAND EFFECT

Before showing results for the FE superconductivity, we
here clarify effects of the multiorbital and multiband elec-
tronic structure in STO.

A. Unconventional Rashba spin-orbit coupling

First, we investigate the multiorbital effect on the Rashba
spin-orbit splitting in the FE STO. We elucidate the na-
ture of the Rashba ASOC by calculating the energy spec-
trum in the normal state Em(k) [Em(k) � Em′ (k) for m <

m′] and wave functions. In the presence of the inver-
sion symmetry (γ = 0), the twofold degeneracy holds as
E1(k) = E2(k), E3(k) = E4(k), and E5(k) = E6(k). On the
other hand, Rashba-type spin-orbit splitting is induced by
the polar inversion symmetry breaking (γ = 0) as E1(k) <

E2(k), E3(k) < E4(k), and E5(k) < E6(k) except for at the
time-reversal invariant momentum. Spin direction of each
Rashba split bands is calculated by taking the average Sα (k) =
〈∑l

∑
σ,σ ′ σσσ ′c†

k,lσ ck,lσ ′ 〉α for the wave function of the αth
band. Figures 2(a)–2(c) show the magnitude of the spin-orbit
splitting δEα (k) = E2α (k) − E2α−1(k) (α = 3, 2, 1) and the
direction of the g-vector defined as gα (k) = δEα (k)Sα (k) for
each Rashba split band. Note that the upper, middle, and lower
bands are denoted by α = 3, 2, and 1, respectively. We see that
the k-dependence of the Rashba spin-orbit splitting in STO is
significantly different from that of the conventional Rashba
ASOC with g(k) = (sin ky,− sin kx, 0) [Fig. 2(d)]. The
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(c) Lower Band

kx

k y

-π 0 π
-π

0

π
(d) Conventional Rashba

kx

 0

 0.005

 0.01

 0.015

 0.02

(eV)

-π 0 π

(b) Middle Band

kx

 0

 0.01

 0.02

 0.03

(eV)

-π 0 π

(a) Upper Band

kx

k y

-π 0 π
-π

0

π

FIG. 2. The magnitude of the spin-orbit splitting in the (a) upper
band, (b) middle band, and (c) lower band at kz = 0 with γ /t1 =
0.105. The arrows show the direction of the g-vector. (d) k depen-
dence of the conventional Rashba ASOC given by Eq. (23) with
γ /t1 = 0.105.

spin-orbit splitting in the lower band is large at k slightly away
from the �-M line, whereas that in the middle or upper band
is large at k slightly away from the �-X line. In particular,
the spin-orbit splitting in the lower band is maximized near
the �-point where the spin-orbit splitting of the conventional
Rashba ASOC is tiny. Moreover, the g-vectors of the lower
and middle bands are almost parallel to the [100] or [010]
axis, and rapidly rotate by π/2 at the �-M line. The origin of
this unconventional Rashba ASOC is explained by combined
analysis of the perturbation expansion for the LS coupling
and the basis transformation to the total angular momentum
space (see Appendix). The unconventional Rashba ASOC
characteristic of the multiorbital system gives impacts on
superconductivity, as we show below.

B. Enhanced upper critical field of dilute superconductivity

Next, we discuss an impact of the multiorbital electronic
structure on the dilute superconductivity in STO. As shown
in Sec. III A, unconventional Rashba ASOC is induced by
ferroelectricity as a consequence of the multiorbital effect.
Unlike the conventional Rashba effect, the Rashba splitting
in the lower band is maximized near the �-point [Fig. 2(c)].
On the other hand, the Pauli depairing effect of a Rashba su-
perconductor is suppressed under a magnetic field parallel to
the polar axis [45–49]. This is because the BCS-type Cooper
pairing is possible even under the magnetic field thanks to
the Rashba-type spin-momentum locking. Thus, it is implied
that the Pauli depairing effect in a dilute superconducting state

 0

 2

 4

 6

 8

 10

 12

 0  0.2  0.4  0.6  0.8  1

μ B
H c

2 /
T c

T /Tc

Three-orbital t2g model
Simple Rashba model

No ASOC (γ = 0)

(a)

(b) Three-orbital t2g model

kx

k y
0 π/6-π/6

0

π/6

-π/6

(c) Simple Rashba model

kx

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

(eV)

0 π/6-π/6

FIG. 3. (a) The temperature dependence of the upper critical
field μBHc2. The magnetic filed is applied along the [001] axis. The
green solid line (purple dashed line) shows the upper critical field
calculated for the three-orbital model (simple Rashba model). The
gray dotted line shows the upper critical field of the three-orbital
model with γ = 0. (b), (c) Illustration of the Fermi surface and
the magnitude of the spin-orbit splitting of the lower band for the
(b) three-orbital model and (c) simple Rashba model. The carrier
density and odd-parity hopping integral are set to n = 5.0 × 10−5

and γ /t1 = 0.105, respectively.

with a tiny Fermi surface should be strongly suppressed com-
pared to the case of a conventional Rashba superconductor.

To test the above expectation, we introduce a simple
Hamiltonian with conventional Rashba ASOC as follows:

H̃ =H̃0 + HZ + Hpair, (22)

H̃0 =
∑
k,l,σ

(εl (k) − μ)c†
k,lσ ck,lσ

+ α
∑

k,l,σ,σ ′
g(k) · σσσ ′c†

k,lσ ck,lσ ′ , (23)

where the g-vector is assumed to be g(k) =
(sin ky,− sin kx, 0) and diagonal in the orbital space.
Based on the perturbation analysis for the LS coupling
[see Eq. (A8) in Appendix], we assume α = 2λγ /t1 in the
following discussion. Here, we compare this model with our
three-orbital model for STO to illuminate the multiorbital
effect which is appropriately taken into account in the
latter. Figure 3(a) shows the temperature dependence of the
upper critical field μBHc2 in the dilute single-band regime
(n = 5.0 × 10−5) where the Fermi surface is only composed
of the lower band. Since the lattice constant of STO ∼
3.905 Å is chosen as the unit of length, n = 5.0 × 10−5
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corresponds to 8.40 × 1017 cm−3. The paring interaction is
chosen to Vs/t1 = 0.28, hence the superconducting transition
temperature is set to Tc = 0.00098t1 ∼ 3.0 K at γ = 0 and
Hz = 0. When we adopt γ = 0.105t1, a typical energy of
spin-orbit splitting is ESO ∼ λγ /t1 ∼ 0.01. Then, Tc � ESO

is satisfied and the effect of the Rashba splitting is reflected
to the superconductivity. Note that the superconducting
transition temperature is set to be larger than the realistic
value Tc ∼ 0.3 K of doped STO to reduce the cost of
numerical calculation. In both models, the upper critical field
of the noncentrosymmetric superconductivity with Rashba
splitting (green solid line and purple dashed line) is enhanced
compared to that of the centrosymmetric superconductivity
without ASOC (gray dotted line). Furthermore, we see that
the upper critical field of the three-orbital model for STO
[Eqs. (1) and (5)] is larger than that of the simple Rashba
model [Eq. (22)]. The origin of this enhanced upper critical
field can be attributed to the Fermi surface anisotropy and
large spin-orbit splitting. As shown in Figs. 3(b) and 3(c),
the Fermi surfaces of the lower band show dx2−y2 -wave
like anisotropy. The unconventional Rashba ASOC in the
three-orbital model induces a large spin-orbit splitting
particularly in the region near k ‖ [100]. The DOS at the
Fermi energy mainly comes from this region. Furthermore,
the magnitude of the spin-orbit splitting is maximized near
the �-point, where the Fermi surfaces in the dilute region
are located [Fig. 3(b)]. Therefore, the upper critical field is
drastically enhanced thanks to the strong spin-momentum
locking on the Fermi surface. In contrast, the conventional
Rashba ASOC induces a small spin-orbit splitting around the
�-point as shown in Fig. 3(c). Thus, the enhancement of the
upper critical field by spin-orbit splitting is less pronounced
than that in the three-orbital model.

C. Lifshitz transitions and superconductivity

In this section, we discuss the ferroelectricity-induced
Lifshitz transition and its effect on superconductivity. Upon
decreasing the carrier density in the FE phase, the Fermi
energy becomes lower than the crossing point of the spin-orbit
split bands at the �-point [see Fig. 1], and thus the topol-
ogy of Fermi surfaces is changed in stages. These Lifshitz
transitions enhance the DOS due to an effective reduction
of dimensionality [50], and leads to the stabilization of a FE
superconducting state [43].

Figure 4 shows the DOS at the Fermi energy ρ(0) as a
function of γ . In the single-band regime (n = 5.0 × 10−5),
ρ(0) is maximized at the Lifshitz transition point of the lowest
band γ = γc1 [Fig. 4(a)], thanks to the effective reduction
of the dimensionality. Consequently, the superconductivity
is enhanced at the Lifshitz transition point γc1. Figure 5(b)
shows the γ ∝ P dependence of the FE superconducting con-
densation energy δF[�, P] = F[�, P] − F[0, 0] for various
values of the cutoff lattice parameter κ6. Here, � is optimized
under fixed P. We see that the stabilization condition of the
FE superconducting sate, i.e., δF[�, P] < δF[�, 0] < 0, is
satisfied in a wide range of lattice parameters, although the
normal state is PE [see Fig. 5(a)]. This means that the FE
superconductivity is stable at zero magnetic field in the dilute
region.
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FIG. 4. DOS at the Fermi energy ρ(0) as a function of the odd-
parity hopping integral γ . The partial DOS for the Rashba split t2g

bands are also shown. The black dashed vertical lines represent the
Lifshitz transition point. Different colored regions indicate different
phases which are distinguished by the Lifshitz transitions. The colors
correspond to the background colors in Fig. 1. The carrier density
is set to (a) n = 5.0 × 10−5, (b) n = 2.0 × 10−4, and (c) n = 1.0 ×
10−2, respectively.

Next, we discuss the effects of Lifshitz transitions of the
middle and upper bands. When the Fermi energy in the PE
phase is slightly higher than the bottom of the bands, the
Lifshitz transition is induced by the ferroelectricity. However,
we see that these Lifshitz transitions are not significantly
reflected in the total DOS ρ(0) [Figs. 4(b) and 4(c)]. Although
the partial DOS for the middle or upper band is enhanced as
approaching the Lifshitz transitions, the contribution of the
partial DOS is very small compared to that of the lower band.
Therefore, the total DOS ρ(0) is not drastically enhanced by
these Lifshitz transitions, and hence the FE superconducting
state is hardly stabilized at zero magnetic field in relatively
high carrier density two- or three-band regimes. The phase
diagram of the FE superconductivity depends on what band
causes the Lifshitz transition.
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FIG. 5. The free energy as a function of the odd-parity hopping
integral γ for several values of the cutoff lattice parameter κ6.
The carrier density is set to n = 5.0 × 10−5, i.e., a single-band
regime. The other lattice parameters are chosen as (κ2, κ4) = (6.75 ×
10−5, 0). The temperature and magnetic field are set to T = 1.0 ×
10−10 and H = 0, respectively. The black dashed vertical line shows
the Lifshitz transition point. (a) γ ∝ P dependence of δF[0, P] =
F[0, P] − F[0, 0]. Since δF[0, P] > 0 is satisfied in the whole
range of κ6, the PE normal state is realized. (b) γ ∝ P dependence
of δF[�, P] = F[�, P] − F[0, 0]. The stabilization condition of
the FE superconducting state, i.e., δF[�, P] < δF[�, 0] < 0, is
satisfied under the red horizontal line.

IV. FERROELECTRIC SUPERCONDUCTIVITY

A. Phase diagram

Figure 6 shows the magnetic field versus temperature phase
diagrams in three different carrier density regimes which are
distinguished by the number of Fermi surfaces [see Fig. 7(a)].
In the single-band regime, the FE superconducting state is
stabilized at zero magnetic field [Fig. 6(a)]. This is a conse-
quence of a Lifshitz transition induced by the ferroelectricity
as shown in Sec. III C. On the other hand, the zero field FE
superconductivity is not realized in the two- or three-band
regime due to the small contribution of the middle or upper
band to the total DOS. Because of the multiband nature of
STO, the zero field FE superconductivity is possible only in
the dilute region where the Lifshitz transition of the lower
band can be induced by the ferroelectricity.

Irrespective of the carrier density, the FE superconducting
state is stabilized under the magnetic field, despite an absence
of the zero-field FE superconducting phase in the two- or
three-band regime [Figs. 6(b) and 6(c)]. This magnetic-field-
induced FE superconductivity originates from the anomalous
Pauli depairing effect in noncentrosymmetric superconductors
[45–49]. To avoid the Pauli depairing effect, superconductiv-
ity induces the FE order, giving rise to the Rashba ASOC.
Then, the upper critical field is enhanced compared to the PE
state.

In particular, the enhancement of the upper critical field is
remarkable in the single-band regime [Fig. 6(a)]; μBH/Tc ∼
5.5 far exceeds the Pauli limit ∼1.25. This is owing to
the Lifshitz transition and the multiorbital effect discussed
in Sec. III B. For low carrier densities, the free energy is
minimized at a large value of γ so the Lifshitz transition of the
lower band occurs [Fig. 5(b)]. Consequently, the first-order
FE transition occurs at the same time as the superconducting
transition. Furthermore, the Rashba spin-orbit splitting of the
lower band particularly becomes large around the �-point
thanks to the multiorbital effect [see Figs. 2(c) and 7(b)].
Therefore, the Pauli depairing effect is strongly suppressed
and the upper critical field is strongly enhanced as shown in
Sec. III B. On the other hand, the γ and resulting spin-orbit
splitting are small in a higher carrier density regime, and thus
the upper critical field is not significantly enhanced [Figs. 6(b)
and 6(c)].

B. Weyl superconductivity

As a consequence of the drastically enhanced upper critical
field, the dilute superconducting state in STO may realize
a topological Weyl superconductor. In a two-dimensional
Rashba superconductor, a gapped topological superconduct-
ing state in class D can be realized under a perpendicular
magnetic field [51,52]. In our three-dimensional case, a Weyl
superconducting state, which is characterized by topologically
protected Weyl nodes, is realized in the FE phase for a wide
range of the magnetic field along the polar axis. We identify
Weyl nodes by calculating kz-dependent Chern number,

ν(kz ) = 1

2π

∫
dkxdkyFz(k), (24)

on a two-dimensional kx-ky plane [53–55]. The Berry flux
Fa(k) is defined as

Fa(k) = −iεabc
∑

Em (k)<0

∂kb 〈um(k)|∂kc um(k)〉 , (25)

where the wave function of a Bogoliubov quasiparticle with
energy Em(k) is denoted as |um(k)〉. Since a jump in ν(kz ) is
equivalent to the sum of Weyl charges at kz, we can detect
Weyl charges by counting point nodes and comparing it with
the jump. As shown in Fig. 8(a), the Chern number jumps by
+1 and −4. Thus, we identify five pairs of Weyl nodes and we
illustrate the distribution of Weyl charges in the momentum
space in Fig. 8(b). One of them is located at poles of the
Fermi surface. The rest of Weyl nodes, which are protected by
C4 symmetry, surround the above Weyl nodes with opposite
Weyl charges. These four pairs of Weyl nodes arise as a
consequence of the anisotropic Fermi surfaces due to the
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FIG. 6. Phase diagrams in a (a) single-band regime (n = 5.0 × 10−5), (b) two-band regime (n = 3.2 × 10−3), and (c) three-band regime
(n = 1.8 × 10−2). Band structures corresponding to these carrier densities are shown in Fig. 7. The yellow or red solid (dotted) line shows
the first-order (second-order) FE phase transition line. The black dashed line indicates the PE superconducting transition line obtained by
assuming γ = 0. The red colored region in (a) illustrates the Weyl superconducting phase. The pairing interaction and the lattice parameters
are set to (a) (Vs/t1, κ2, κ4, κ6) = (0.28, 6.75 × 10−5, 0, 0.50), (b) (Vs/t1, κ2, κ4, κ6) = (0.51, 1.00 × 10−2, 0, 0), and (c) (Vs/t1, κ2, κ4, κ6) =
(0.77, 5.30 × 10−2, 0, 0), respectively. The temperature T and the magnetic field μBHz are normalized by the superconducting transition
temperature Tc at zero magnetic field.

multiorbital effect. Therefore, a Weyl superconducting state
with Chern number ν(kz ) = (+1) × 1 + (−1) × 4 = −3 is
obtained. Thus, multiorbital nature of STO leads to topo-
logical property distinct from the single-orbital topological
Rashba superconductor with Chern number ν = ±1 [51,52].
It gives rise to three Majorana arcs in the surface state, and
the zero-field thermal conductivity κ ′

xy ∼ T
∫

dkzν(kz ) [56] in
STO should be larger than that in the single-orbital Rashba
model.

V. SUMMARY AND CONCLUSION

In summary, we have studied an interplay of FE order and
superconductivity in STO. In particular, we have proposed
that the FE superconductivity is realized in STO near a FE
transition point. The superconductivity triggers the coexisting
FE order. A key ingredient is the Rashba ASOC in the FE
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horizontal lines illustrate the Fermi energy in a single-band regime
(n = 5.0 × 10−5), two-band regime (n = 3.2 × 10−3), and three-
band regime (n = 1.8 × 10−2), respectively. (b) Illustration of the
Rashba split Fermi surfaces of the lower band (γ = 29.1 meV) in
the single-, two-, and three-band regime, overwritten on the magni-
tude of spin-orbit splitting. Color of Fermi surfaces corresponds to
the colored lines in (a).
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phase. By analyzing the realistic three-orbital model, we
showed that the zero-field FE superconductivity is stabilized
only in the dilute regime where the Lifshitz transition of
the lower band can be induced by the ferroelectricity. This
result is consistent with the experimental observation in
Sr1−xCaxTiO3−δ [21], which indicates the FE superconduct-
ing phase only in a dilute carrier density regime. Furthermore,
we revealed that the FE superconducting state is stabilized
under a magnetic field independent of the number of Fermi
surfaces. This magnetic-field-induced phase appears because
of the suppression of the Pauli depairing effect thanks to
the Rashba-type spin-momentum locking. Consequently, the
upper critical field is enhanced by the FE transition. The
upper critical field is particularly large in the dilute carrier
density regime, because the multiorbital effect leads to a large
spin-orbit splitting distinct from the conventional Rashba
model. Furthermore, the high magnetic field region of dilute
superconducting STO is identified as a Weyl superconducting
state. This topological phase transition is realized as a result of
the multiorbital effect and Lifshitz transition, in sharp contrast
to the two-dimensional single-orbital model where the FE
topological superconductivity is unstable [43]. These results
are based on a simple BCS-type pairing interaction. Although
we think that inclusion of dynamical electron-phonon cou-
plings and Coulomb interactions will not dramatically alter
the results, such calculation is desired and left for a future
study.

The results of this paper suggest a tunable crystal symme-
try through superconductivity, in the presence of a coupling
between spin, orbital, and lattice degrees of freedom. Most of
the interplay of FE-like polar inversion symmetry breaking
and superconductivity was uncovered in the dilute carrier
density region. The dilute superconductivity in STO provides
an ideal platform for the FE superconductivity.
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APPENDIX: EFFECTIVE RASHBA SPIN-ORBIT
COUPLING

In the Appendix, we clarify the origin of the unconven-
tional Rashba ASOC in STO by deriving the effective Hamil-
tonian from two approaches.

1. Perturbation analysis for LS coupling

First, we carry out the perturbation analysis for the LS
coupling λ and the odd-parity hybridization γ . This analysis

is valid when λ is much smaller than other energy scales such
as the bandwidth. As a result of the first-order perturbation ex-
pansion for λ, we obtain a new k-dependent basis as follows:

|dyz, σ 〉k,λ
= |dyz, σ 〉

+ λσz

2

( |dxy, σ 〉
δxy,yz(k)

+ i |dxz, σ 〉
δxz,yz(k)

)
, (A1)

|dxz, σ 〉k,λ = |dzx, σ 〉

+λ

2

(
i |dxy, σ 〉
δxy,xz(k)

+ iσz |dyz, σ 〉
δxz,yz(k)

)
, (A2)

|dxy, σ 〉k,λ
= |dxy, σ 〉

+λ

2

(
σz |dyz, σ 〉
δxy,yz(k)

+ i |dxz, σ 〉
δxy,xz(k)

)
, (A3)

where |t2g, σ 〉 (t2g = dyz, dxz, dxy, σ = ↑,↓) is the wave func-
tion of the local t2g orbitals and δl,l ′ (k) ≡ εl (k) − εl ′ (k). Then,
we carry out the k-dependent basis transformation for H0 +
Hpol from the local t2g orbital space |t2g, σ 〉 to the renormal-
ized t2g orbital space |t2g, σ 〉k,λ

. In addition, we perform a
block diagonalization for up and down pseudospin sectors to
derive the effective ASOC. Finally, we neglect the interorbital
component since the orbital hybridizations by λ and γ are
assumed to be small. Thus, in the case of a weak spin-orbit
coupling, the effective Hamiltonian is described as

H̃L
0 =

∑
k,α,σ

(
εL
α (k) − μ

)
c†

k,ασ
ck,ασ

+
∑

k,α,σ,σ ′
gL
α (k) · σσσ ′c†

k,ασ
ck,ασ ′ , (A4)

where the lower, middle, and upper bands are denoted by
the band index α = 1, 2, 3. The renormalized single-particle
energy εL

α (k) is described as

εL
1 (k) = 1

2 (εyz(k) + εxz(k) − |δxz,yz(k)|), (A5)

εL
2 (k) = 1

2 (εyz(k) + εxz(k) + |δxz,yz(k)|), (A6)

εL
3 (k) = εxy(k), (A7)

and the effective g-vector gL
α (k) is obtained as

gL
1 (k) = 2λγ

⎛
⎜⎜⎝

sin ky

(
1−sgn[δxz,yz (k)]

δxy,xz (k)

)
− sin kx

(
1+sgn[δxz,yz (k)]

δxy,yz (k)

)
0

⎞
⎟⎟⎠, (A8)

gL
2 (k) = 2λγ

⎛
⎜⎜⎝

sin ky

(
1+sgn[δxz,yz (k)]

δxy,xz (k)

)
− sin kx

(
1−sgn[δxz,yz (k)]

δxy,yz (k)

)
0

⎞
⎟⎟⎠, (A9)

gL
3 (k) = −2λγ

⎛
⎜⎜⎝

sin ky

(
1

δxy,xz (k)

)
− sin kx

(
1

δxy,yz (k)

)
0

⎞
⎟⎟⎠. (A10)

Figure 9 shows the k-dependence of the effective g-vector
gL
α (k) for each Rashba split band at kz = 0. We see that the

unconventional Rashba spin-orbit splitting in the bulk STO
[Fig. 2] is well reproduced by the above perturbation analysis.
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FIG. 9. The magnitude of the spin-orbit splitting, which is derived by the perturbation analysis for λ and γ , in the (a) lower band, (b) middle
band, and (c) upper band at kz = 0. The odd-parity hopping integral is set to γ /t1 = 0.105. The arrows show the direction of the effective
g-vector gL

α (k).

According to Eqs. (A8), (A9), and (A10), the multior-
bital effect is reflected in the ASOC through the energy
difference δll ′ (k) in two ways. One is the denominators, i.e.,
δxy,yz(k) and δxy,xz(k), and the other is the numerator, i.e.,
1 ± sgn[δxz,yz(k)]. The origin of the unconventional Rashba
splitting in the upper band δE3(k) is explained by the former
multiorbital effect in the denominator of Eq. (A10) [34]. The
magnitude of δE3(k) is small on the line k ‖ [100] [Fig. 9(c)]
since δxy,yz(k) is large and the y component of the g-vector
gL

3 (k) is small. On the other hand, a large x component of
gL

3 (k) appears upon moving slightly away from the �-X line
because of the small value of its denominator δxy,xz(k). Thus,
the spin-orbit splitting in the upper band is large at k slightly
away from the �-X line as shown in Figs. 2(a) and 9(c).

The unconventional Rashba splitting in the lower and
middle bands are explained by the combination of two multi-
orbital effects represented by the denominator and numerator
of Eqs. (A8) and (A9). Since the denominators of Eqs. (A8)
and (A9) are the same as those of Eq. (A10), the Rashba
splitting different from that of the upper band originates
from the numerator 1 ± sgn[δxz,yz(k)]. The k dependence of
1 ± sgn[δxz,yz(k)] at kz = 0 is described as follows:

η±(kx, ky) ≡ 1 ± sgn[δxz,yz(kx, ky, kz = 0)]

=

⎧⎪⎨
⎪⎩

0 (|kx| ≶ |ky|)
1 (|kx| = |ky|)
2 (|kx| ≷ |ky|).

(A11)

Since η−(kx, ky) = 0 (η+(kx, ky) = 0) in |kx| > |ky| (|kx| <

|ky|), the x (y) component of gL
1 (k) becomes zero. Thus, gL

1 (k)
is parallel to the [100] or [010] axis in most of the region of
Brillouin zone, and rapidly rotates by π/2 when going across
the line |kx| = |ky| as shown in Figs. 2(c) and 9(a). Figure 9(a)
also shows that the spin-orbit splitting is maximized near the
�-point, and rapidly decreases by increasing the distance from
the �-point. From similar discussions, we understand that
gL

2 (k) is perpendicular to gL
1 (k) except for the line |kx| = |ky|.

Consequently, the Rashba splitting in the middle band be-
comes similar to that of the upper band, except the rapid π/2-
rotation of the g-vector at |kx| = |ky| [Figs. 2(b) and 9(b)].

2. Total angular momentum description

Although the above perturbation analysis for the LS cou-
pling reproduces many features of unconventional Rashba
spin-orbit splitting in STO, it is not valid in the vicinity of
the �-point. In particular, the disappearance of the spin-orbit
splitting in the lower band near the �-point [Fig. 2(c)] is not
reproduced by the perturbation analysis [Fig. 9(a)]. This is
because the wave function is appropriately labeled by the total
angular momentum J = L + S and the perturbation analysis
breaks down. Therefore, it is desirable to derive the effective
ASOC in the total angular momentum description. Generally
speaking, the following analysis is valid for the strong spin-
orbit coupling compared to other energy scales such as the
bandwidth. Actually, we will see that it is valid only near the
�-point.

In the t2g orbital subspace, the orbital angular momentum
can be treated as L = 1. Thus, the total angular momentum
J = 3/2 or J = 1/2 is obtained as a composition of the angu-
lar momentum L = 1 and S = 1/2. The basis wave functions
in the total angular momentum space |J, M〉 are obtained as
follows: ∣∣∣∣3

2
,

3

2

〉
= − 1√

2
(|dyz,↑〉 + i |dxz,↑〉), (A12)∣∣∣∣3

2
,

1

2

〉
= 1√

6
(2 |dxy,↑〉 − |dyz,↓〉 − i |dxz,↓〉), (A13)∣∣∣∣3

2
,−1

2

〉
= 1√

6
(|dyz,↑〉 − i |dxz,↑〉 + 2 |dxy,↓〉), (A14)∣∣∣∣3

2
,−3

2

〉
= 1√

2
(|dyz,↓〉 − i |dxz,↓〉), (A15)∣∣∣∣1

2
,

1

2

〉
= 1√

3
(|dxy,↑〉 + |dyz,↓〉 + i |dxz,↓〉), (A16)∣∣∣∣1

2
,−1

2

〉
= 1√

3
(|dyz,↑〉 − i |dxz,↑〉 − |dxy,↓〉), (A17)

where M = ±3/2,±1/2 is the total magnetic quantum num-
ber. Then, we carry out the k-independent basis transforma-
tion for H0 + Hpol from the local t2g orbital space |t2g, σ 〉 to
the total angular momentum space |J, M〉. From the procedure
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FIG. 10. The magnitude of the spin-orbit splitting, which is derived by the basis transformation to the total angular momentum space, in
the (a) lower band, (b) middle band, and (c) upper band at kz = 0. The odd-parity hopping integral is set to γ /t1 = 0.105. The arrows show the
direction of the effective g-vector gJ

α (k).

similar to the previous subsection, the effective Hamiltonian
is derived as

H̃J
0 =

∑
k,α,σ

(
εJ
α (k) − μ

)
c†

k,ασ
ck,ασ

+
∑

k,α,σ,σ ′
gJ
α (k) · σσσ ′c†

k,ασ
ck,ασ ′ . (A18)

Here, the renormalized energy dispersion εJ
α (k) is obtained as

follows:

εJ
1 (k) = 1

2 (εyz(k) + εxz(k) − λ), (A19)

εJ
2 (k) =1

4

(∑
l

εl (k) + λ

)
−

√
f J (k), (A20)

εJ
3 (k) =1

4

(∑
l

εl (k) + λ

)
+

√
f J (k), (A21)

where

f J (k) = 2γ 2(sin2 ky + sin2 kx ) +
(

δxy,yz(k) + δxy,xz(k)−λ

4

)2

.

(A22)

The effective g-vector gJ
α (k) is described as

gJ
1(k) = 0, (A23)

gJ
2(k) = −gJ

3(k) = λγ√
f J (k)

⎛
⎝ sin ky

− sin kx

0

⎞
⎠. (A24)

Interestingly, the spin-orbit spitting vanishes in the lower
band, i.e., gJ

1(k) = 0. The lower band is labeled by J = 3/2
and M = ±3/2 in the total angular momentum picture, and
|3/2,±3/2〉 do not contain the dxy orbital [see Eqs. (A12)
and (A15)]. This means that the orbital parity mixing effect
[34], which is a necessary condition for the Rashba spin-
orbit splitting, does not occur in the lower band. Therefore,
Rashba splitting does not occur in the lower band, and indeed,
the Rashba splitting in the full Hamiltonian disappears near
the �-point [Fig. 2(c)] where the total angular momentum
description is valid. On the other hand, Eq. (A24) shows that
the magnitude of Rashba splitting in the middle band is finite
and the same as that in the upper band, although the sign of
the g-vector is opposite. The k-dependence of gJ

2(k) = −gJ
3(k)

is similar to that of the conventional Rashba ASOC with
g(k) = (sin ky,− sin kx, 0), except that the magnitude of the
spin-orbit splitting is maximized around the �-point [Fig. 10].
These momentum dependencies are different from the results
of numerical diagonalization [Fig. 2]. This means that the
perturbation analysis for the LS coupling is better at most
k-points in the Brillouin zone.
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