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Results are presented for the quench dynamics of a clean and interacting electron system, where the
quench involves varying the strength of the attractive interaction along arbitrary quench trajectories. The initial
state before the quench is assumed to be a normal electron gas, and the dynamics is studied in a regime
where long-range order is absent, but nonequilibrium superconducting fluctuations need to be accounted for.
A quantum kinetic equation using a two-particle irreducible formalism is derived. Conservation of energy,
particle number, and momentum emerge naturally, with the conserved currents depending on both the electron
Green’s functions and the Green’s functions for the superconducting fluctuations. The quantum kinetic equation
is employed to derive a kinetic equation for the current, and the transient optical conductivity relevant to
pump-probe spectroscopy is studied. The general structure of the kinetic equation for the current is also
justified by a phenomenological approach that assumes model F in the Halperin-Hohenberg classification,
corresponding to a nonconserved order parameter coupled to a conserved density. Linear response conductivity
and the diffusion coefficients in thermal equilibrium are also derived, and connections with Aslamazov-Larkin
fluctuation corrections are highlighted. Results are also presented for the time evolution of the local density of
states. It is shown that Andreev scattering processes result in an enhanced density of states at low frequencies.
For a quench trajectory corresponding to a sudden quench to the critical point, the density of states is shown to
grow in a manner where the time after the quench plays the role of the inverse detuning from the critical point.
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I. INTRODUCTION

Recent years have seen impressive advances in ultrafast
measurements of strongly correlated systems [1–8]. In these
experiments, a pump field strongly perturbs the system, while
a weak probe field studies the eventual time evolution over
timescales that can range from femtoseconds to nanoseconds.
Thus, one can study the full nonequilibrium dynamics of
the system from short times to its eventual thermalization at
long times. Moreover, the access to probe fields ranging from
x rays to midinfrared allows one to probe dynamics from
short length and timescales to longer length and timescales
associated with collective modes.

Among the various pump-probe studies, notable examples
are experiments that show the appearance of highly conduct-
ing, superconducting-like states that can persist from a few
to hundreds of picoseconds [9–12]. The microscopic origin
of this physics is not fully understood. Explanations range
from destabilization by the pump laser of a competing order
in favor of superconductivity [13,14] to selective pumping
of phonon modes that can engineer the effective electronic
degrees of freedom so as to enhance the attractive Hubbard U,
and hence Tc [15–19]. There are also theoretical studies that
argue that the metastable highly conducting state observed in
experiments may not have a superconducting origin [20].

The resulting superconducting-like states are transient in
nature, where traditional measurements of superconductivity,
such as the Meissner effect [21], cannot be performed. On
the other hand, time-resolved transport and angle-resolved
photoemission spectroscopy (tr-ARPES) are more relevant

probes for such transient states. Thus, a microscopic treatment
that makes predictions for transient conductivity and spectral
features of a highly nonequilibrium system, accounting for
dynamics of collective modes, is needed. This is the goal of
the paper.

In what follows, we model the pump field as a quantum
quench [22,23] in that it perturbs a microscopic parameter of
the system, such as the strength of the attractive Hubbard U.
We assume that, as in the experiments [10], the electronic
system is initially in the normal phase. The quench involves
tuning the magnitude of the attractive Hubbard U along dif-
ferent trajectories. How superconducting fluctuations develop
in time and how they affect transient transport and spectral
properties are studied. Denoting the superconducting order
parameter as �, we assume that all throughout the dynamics,
the system never develops true long-range order, 〈�(t )〉 = 0.
Thus, our approach is complementary to other studies where
the starting point is usually a fully ordered superconducting
state, and the mean-field dynamics of the order parameter
〈�(t )〉 is probed [24–29]. In our case, the nontrivial dynamics
appears in the fluctuations 〈�(t )�(t ′)〉 which we study using
a two-particle irreducible (2PI) formalism. We justify the
selection of diagrams using a 1/N approach, where N denotes
an orbital degree of freedom. The resulting choice of diagrams
is equivalent to a self-consistent random-phase approximation
(RPA) in the particle-particle channel. The physical meaning
of the RPA is that the superconducting fluctuations are weakly
interacting with each other.

While in this paper we study a clean system, a complemen-
tary study of the transient optical conductivity of a disordered
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system appears in Ref. [30], where a Kubo formalism ap-
proach was employed, and the quench dynamics arising from
fluctuation corrections of Aslamazov-Larkin (AL) [31,32] and
Maki-Thompson (MT) [33–35] types was explored. We avoid
a Kubo-formalism approach in this paper because conserving
approximations are harder to make, as compared to a quan-
tum kinetic equation approach. This is an observation well
known from other studies for transport in thermal equilibrium
performed, for example, in the particle-hole channel [36].
Since we are in a disorder-free system, our quantum kinetic
equations conserve momentum. Thus, to obtain any nontriv-
ial current dynamics, we have to break Galilean invariance.
We do this through the underlying lattice dispersion, while
neglecting Umpklapp processes.

Complementary studies of transient conductivity involve
phenomenological time-dependent Ginzburg-Landau (TDGL)
theories [37,38] and microscopic approaches based on a
Bardeen-Cooper-Schrieffer (BCS) mean-field treatment of the
order-parameter dynamics [39]. A microscopic mean field ap-
proach has also been used to study transient spectral densities
[40], while nonequilibrium dynamical mean field theory has
been used to study transient spectral properties of a BCS
superconductor [41].

The outline of the paper is as follows. In Sec. II, we
present the model. In this section, we also outline a qual-
itative analysis for the transient conductivity employing a
classical model-F [42] scenario for the fluctuation dynamics.
In Sec. III, we derive the quantum kinetic equations using a
two-particle irreducible (2PI) formalism and outline how the
transient dynamics respects all the conservation laws (particle,
energy, momentum) of the system. In Sec. IV, we simplify
the 2PI quantum kinetic equation to that of an effective
classical equation for the decay of the current employing
a separation of timescales. In the process, we justify the
model-F scenario discussed in Sec. II. In Sec. V, we assume
thermal equilibrium and derive the conductivity and diffusion
constants. We discuss these in the context of Aslamazov-
Larkin (AL) and Maki-Thompson (MT) corrections [43]. In
Sec. VI, we present results for the transient conductivity for
some representative quench profiles. In Sec. VII, we present
results for the transient local density of states, and finally
in Sec. VIII, we present our conclusions. Many intermediate
steps of the derivations are relegated to the Appendixes.

II. MODEL

The Hamiltonian describes fermions with spin and an
additional orbital degree on a regular lattice in d spatial di-
mensions. Fermions are created by the operator c†

σn(ri), where
σ = ±1 labels spin, n = 1 . . . N labels the orbital index, and
ri gives the lattice site. These have the Fourier transform
c̃σn(k) = ∑

ri
ei�k·�ri cσn(ri). The dynamics of the fermions is

governed by the Hamiltonian,

H (t ) ≡ H0 + Hint (t ), (1)

H0 ≡
∫

BZ

dd k

(2π )d

∑
σ,n

(εk − μ)c̃†
σn(k)c̃σn(k), (2)

Hint ≡ U (t )

N

∑
ri,n,m,σ

c†
σ,n(ri )c

†
−σ,n(ri )c−σ,m(ri )cσ,m(ri ), (3)

where εk is the dispersion and μ is the chemical potential.
We will assume for simplicity that at this chemical potential
there is only a single Fermi surface. We explicitly allow for
the interaction U (t ) to vary with time.

In addition, to probe current dynamics, we introduce an
electric field �E = −∂t �A by minimal coupling �k → �k − q �A.
Accounting for the charge of the electron q = −e, this appears
in the Hamiltonian via �k → �k + e �A, or equivalently, �∇/i →
�∇/i + e �A. In the microscopic derivation, we will set h̄ = 1.

In thermal equilibrium at a temperature T and for spa-
tial dimension d > 2, the above system becomes super-
conducting below a critical temperature T < TC . At d = 2,
there is a Berezenskii-Kosterlitz-Thouless (BKT) transition at
T < TBKT where the system shows only quasi-long-range or-
der. For T > TBKT, although the system has no long-range or-
der, superconducting fluctuations play a key role in transport.
As the spatial dimensions decrease, the role of fluctuations
becomes more important. In particular, for spatial dimension
d = 2, well-known results for the optical conductivity exist
for a strongly disordered system [43]. While our derivation
is valid in any spatial dimension, we will present results for
spatial dimensions d = 2 where fluctuation effects are most
pronounced. The experiments also study either a layered su-
perconducting system or three-dimensional systems where the
pump field is effectively a surface perturbation. This makes
the spatial dimension d = 2 also experimentally relevant.

Before we go into detail, we note that our microscopic
treatment leads to the following expression (reported in
Ref. [44]) for the dynamics of the current ji, generated by
an applied electric field Ei,

∂t ji(t ) − Ei(t ) = − 1

τr

[
A(t ) ji(t ) − α

∫ t

0
dt ′{B(t, t ′) ji(t ′)

+C(t, t ′)Ei(t ′)}
]
. (4)

Above τr, A, B,C are kinetic coefficients. We have set
e=1, ρ/m̄ = 1, where ρ is the electron density and m̄ is the
electron effective mass. When B = C = 0, the above equa-
tion simply implies a time-dependent Drude scattering rate
τ−1

r A(t ), which in our model arises because electrons scatter
off superconducting fluctuations whose density is changing
with time due to the quench. The appearance of memory terms
B,C is nontrivial, and before deriving them, we will justify the
appearance of these memory terms through a phenomenolog-
ical approach in the next subsection.

A. Model F dynamics

In a finite-temperature phase transition, the dynamics of the
fluctuations may be understood by treating them as classical
stochastic fields. This will be seen by direct calculation later
in the paper. However, for now, we seek to write a Langevin
equation for the (classical) field �. In the theory of dynamical
critical phenomena, we must account not only for the fluctu-
ating mode, �, but also for any conserved quantities which
are coupled to �. The pairing field � couples directly to the
density ρ, as given by the commutator [�,ρ] = 2�. This can
be translated into classical terms by the usual prescription
[·, ·]/ih̄ → {·, ·} where {·, ·} is the classical Poisson bracket.
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In the framework of dynamical critical phenomena, we
specify the static free energy [see Ref. [42], Eq. (6.3)]

F[�,ρ] ≡
∫

dd r

[
e
δρ + 1

2C
(δρ)2 + r(t )|�|2

+ 1

2M
|(i �∇ − 2e �A)�|2 + u|�|4 + γ0(δρ)|�|2

]
.

(5)

Here, δρ is density minus the equilibrium density, 
 is the
scalar potential, C is the compressibility, r(t ) is the time-
dependent detuning from the critical point, �A(t ) is an external
vector potential, and u, γ0 are phenomenological parameters.
Note that model E [42] has γ0 = 0, while model F has γ0 	= 0.

The field � then has the equation of motion,(
∂�

∂t
− {�,ρ}∂F

∂ρ

)
= −�

∂F
∂�∗ + ξ�. (6)

Using Eq. (5), we obtain,[
∂�

∂t
+ 2i�

(
e
 + δρ

C
+ γ0|�|2

)]

= −�

[
r(t ) + γ0δρ + 2u|�|2

+ 1

2M
(i∇ i − 2eAi )2

]
� + ξ�, (7)

where ξ� is a Gaussian white noise obeying
〈ξ�(r, t )ξ�∗ (r′, t ′)〉 = 2T �δ(r − r′)δ(t − t ′), and � is
a dimensionless phenomenological damping.

We will denote the total current by a dissipative compo-
nent jdis and a superfluid component jsc, ji = ji

sc + ji
dis. The

equation of motion for the density ρ is given by

∂δρ

∂t
− {ρ,�}∂F

∂�
− {ρ,�∗} ∂F

∂�∗ = �∇ · �jdis, (8)

where the right-hand side (rhs) can be interpreted as a defini-
tion of jdis. Under assumptions that the current may be written
as a gradient of a scalar and that it reaches a well-defined
steady state in the presence of a DC electric field,

�jdis = − jdis

(
�∇ ∂F

∂ρ
+ e

∂ �A
∂t

)
+ �ξ jdis . (9)

Above, �ξ jdis is a Gaussian white noise, whose strength is now
controlled by T  jdis , where  jdis is another phenomenological
dissipation. Using the fact that ∂t �A = − �E , the steady-state
dissipative current for a spatially homogeneous system is
(setting e = 1)

ji
dis =  jdis E

i. (10)

Now using

{ρ,�}∂F
∂�

+ {ρ,�∗} ∂F
∂�∗

= i

M
[�(i∇ i + 2eAi )2�∗ − �∗(i∇ i − 2eAi )2�] = �∇ · �jsc,

(11)

we find that the definition of the superfluid current naturally
emerges,

�jsc = 2

M
Im[�( �∇ − 2ie �A)�∗]. (12)

Substituting Eq. (11) in Eq. (8), we have

∂δρ

∂t
= �∇ · �jsc + �∇ · �jdis. (13)

We now relate these equations to our equations of motion
Eq. (4). The expectation value for the supercurrent is

�jsc = 2

M
Im〈�(x) �∇�∗(x)〉

= 2

M

∫
dd q

(2π )d �q〈�q�
∗
q〉

= 2
∫

dd q

(2π )d

�q
M

F (q, t ), (14)

where F (q) is the equal time �q�
∗
q correlator at momentum q.

Now, we show that the integral or memory term proportional
to α in Eq. (4) comes from a term of the form

∝
∫

dd q
�q

M
∂t F (q, t ) (15)

and that this term is precisely ∂t jsc. The remainder can
therefore be identified with the dissipative current giving an
equation

∂t ji
dis − Ei(t ) = −τ−1

r A(t ) ji
dis. (16)

This should be compared to the expectation value for the
dissipative current Eq. (10). (Note that the damping coeffi-
cient A is not to be confused with the vector potential Ai.)
Thus, in the DC limit of the kinetic equation, we identify
 jdis = τrA−1. Note that the model F dynamics are less general
in the sense that they assume this DC limit and therefore that
all perturbations are slow compared with  jdis . The kinetic
equation does not make this assumption.

Now let us evaluate ∂t jsc. We simplify the generalized
time-dependent Ginzburg-Landau theory in Eq. (7) by going
into Fourier space and dropping all nonlinear terms,

∂�q

∂t
= −�

{
r(t ) + 1

2M
[qi + 2eAi(t )]2 + γ0δρq(t )

}
�q + ξ�.

(17)

Above, we have encoded the effect of the electric field in two
places, one in the minimal coupling �q → �q + 2e �A and second
in the change in the electron density at momentum q, where
by symmetry

δρq(t ) = c ji(t )qi, (18)

where c is a phenomenological constant. Going forward, we
absorb this constant into a redefinition of γ0 appearing in the
combination γ0δρq(t ).

If we define

λq(t ) = �

[
r(t ) + q2

2M

]
= �εq(t ), (19)
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in the absence of an electric field, the solution is

�q(t ) =
∫ t

0
dt ′ξ�(t ′)e− ∫ t

t ′ dt ′′λq (t ′′ ). (20)

Above, we have adopted boundary conditions where the su-
perconducting order parameter and fluctuations are zero at
t = 0. This is because we are interested in quenches where
there are initially t � 0 no attractive interactions, with these
being switched on at some arbitrary rate from t > 0.

The fluctuations involve averaging over noise, giving

F (q, E = 0, t ) = 〈�q�
∗
q〉 = 2�T

∫ t

0
dt ′e−2

∫ t
t ′ dt ′′λq (t ′′ ).

(21)

In the presence of an electric field, and to leading order in it,
λq changes to λq + δλq, with

δλq(s) = �

M
(2e) �q ·

∫ t

s
dt ′ �E (t ′) + �γ0qi ji(s), (22)

where the first term is due to the order parameter being
charged and the second term is due to the coupling of the order
parameter to the normal electrons whose density is perturbed
by the electric field. We have also used that the electric field
is �E = −∂t �A, so that �A(t ) = − ∫ t

s dt ′ �E (t ′).
Expanding Eq. (21) in δλq, which is equivalent to expand-

ing in the electric field,

F (q, t ) � 2�T
∫ t

0
dt ′e−2

∫ t
t ′ dt ′′λq (t ′′ )

[
1 − 2

∫ t

t ′
duδλq(u)

]
.

Splitting the integral in the exponent,
∫ t

t ′ dt ′′ = ∫ t
u dt ′′ +∫ u

t ′ dt ′′, and using Eq. (21), we arrive at the following ex-
pression for the superconducting fluctuations at momentum
q, to leading nonzero order in the applied electric field, for an
arbitrary time-dependent detuning r(t ),

F (q, t ) = F (q, E = 0, t ) + δF (q, t ),

δF (q, t ) = −2
∫ t

0
duδλq(u)e−2

∫ t
u dt ′′λq (t ′′ )F (q, E = 0, u).

(23)

1. Aslamazov-Larkin (AL)

We now briefly show how one may recover the familiar
AL conductivity in thermal equilibrium. For this, it suffices to
revert to model E by setting γ0 = 0. For a static electric field
and a system in thermal equilibrium, all couplings are time
independent. Thus, Eq. (23) becomes

δF (q, t ) = −2F (q)
∫ t

0
duδλq(u)e−2(t−u)λq . (24)

If we use Eq. (22) for γ0 = 0, δλq(u) = �

M (2e)(t − u) �q ·
�E . When we take the long time t → ∞ limit and employ
the equilibrium expression for F (q) = T/εq, where εq = r +
q2/2M, the change in the density of superconducting fluctua-
tions due to the applied electric field is

δFq = −1
�

T

ε3
q

�q
M

· e �E . (25)

The current is

ji = 2e
∑

q

qi

M
δF (q) = −1

� 2e2
∑

q

T

ε3
q

qiq j

M2
E j, (26)

leading to the AL conductivity in d dimensions,

σAL = 2e2−1
� T

∫
dd q

(2π )d

q2

dM2

1

(r + q2/2M )3
. (27)

In d = 2, this reduces to

σ d=2
AL = e2 1

2π�

T

r
. (28)

A microscopic treatment involving electrons in a disordered
potential shows that [43] −1

� = π/8, giving the well-known
expression, σ d=2

AL = e2

16
T
r . In our disorder-free model, � takes

a different value.

2. Kinetic equation for the current

We now return to the derivation of the dynamics of the
current in model F. For the current dynamics, we need to
differentiate Eq. (23) with time,

∂t F (q, E , t )

= ∂t F (q, E = 0, t ) − 2δλq(t )F (q, E = 0, t )

+ 4λq(t )
∫ t

0
duδλq(u)e−2

∫ t
u dt ′′λq (t ′′ )F (q, E = 0, u). (29)

The first term on the rhs, being symmetric in momentum
space, does not contribute to the current. The second term
on the rhs simply provides a time-dependent Drude scattering
rate. It is the last term, namely the memory term proportional
to the electric field, that is unique to having long-lived super-
conducting fluctuations. We focus only on this term, and using
Eq. (22), write it as

∂t ji
sc(t ) = 2

∫
dd q

(2π )d

qi

M
∂t F (q, t )

= 8�

M

∫
dd q

(2π )d
qiq jλq(t )

∫ t

0
du

[
γ0 j j (u)

+ 2e

M

∫ t

u
dt ′E j (t ′)

]
e−2

∫ t
u dt ′′λq (t ′′ )F (q, u). (30)

Above, we have dropped the E = 0 label in F . In the second
term, we will find it convenient to replace the time integrals as
follows:

∫ t
0 du

∫ t
u dt ′ → ∫ t

0 dt ′ ∫ t ′

0 du.
Comparing Eqs. (4) and (30), we identify

τ−1
r αB(t, t ′) = 8�γ0

dM

∫
dd q

(2π )d
q2λq(t )e−2

∫ t
t ′ dt ′′λq (t ′′ )F (q, t ′).

(31)

The second memory term may be identified as

τ−1
r αC(t, t ′) = 8�

dM2
(2e)

∫
dd q

(2π )d
q2λq(t )

×
∫ t ′

0
due−2

∫ t
u dt ′′λq (t ′′ )F (q, u). (32)
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Comparing Eqs. (31) and (32), we obtain

C(t, t ′) = 2e

Mγ0

∫ t ′

0
dsB(t, s). (33)

The microscopic treatment that follows not only justifies
model F but also provides an explicit calculation for the
parameters τ−1

r , A(t ), α, �,  jdis , M, r, γ0.

III. THE 2PI EQUATIONS OF MOTION

A. Properties of 2PI formalism

We briefly recapitulate the 2PI formalism here. A detailed
explanation can be found, for example, in Refs. [45–48].
The 2PI formalism begins with the Keldysh action S for the
Hamiltonian H . This is written in terms of Grassmann fields
ψσ,n,±(r, t ), ψ̄σ,n,±(r, t ), where σ labels the spin, n labels the
orbital quantum number, and ± label the two branches of the
Keldysh contour [49]. In terms of these, the Keldysh action is
given as

SK [ψ, ψ̄] ≡
∫

dt

⎧⎨
⎩i

∑
σ=↑,↓;n,r

ψ̄σn+(r, t )
∂

∂t
ψσn+(r, t )

− H[ψ̄+(t ), ψ+(t )]

− i
∑

σ=↑,↓;n,r

ψ̄σn−(r, t )
∂

∂t
ψσn−(r, t )

+ H[ψ̄−(t ), ψ−(t )]

⎫⎬
⎭, (34)

where H[ψ̄±(t ), ψ±(t )] indicates the substitution of ψ±(t )
for c(t ) in the Hamiltonian, Eq. (3), in the obvious way.
Now, we consider a classical field h that couples to a general
bilinear of the Grassmann field and is therefore given by
hσ ′n′ p′

σ n p (r, t, r′, t ′), where p, p′ run over ±. In order to simplify
notation, we combine the five indices (spin, orbital, Keldysh,
position, and time) into a single vector index, so that the
Grassman field becomes a vector ψi and the source field a
matrix hi j .

From the action and the source field, we form a generating
functional I[h]:

I[h] =
∫

D[ψ̄, ψ] exp

⎡
⎣iSK [ψ̄, ψ] + i

∑
i j

ψ̄ihi jψ j

⎤
⎦. (35)

The first derivative of I is precisely the Green’s function in
the presence of the source field h

Gi j[h] = δI
δh ji

= i
∫

D[ψ̄, ψ](ψ̄ jψi )e
iSK +iψ̄ ·h·ψ. (36)

In order to work with the physical Green’s function rather
than the unphysical source field h, we perform a Lagrange
inversion. First, we invert Eq. (36), which gives G as a
function of h, to implicitly define h as a function G. Then,
we construct the Lagrange transformed functional W ,

W[G] = I[h(G)] − h(G)G. (37)

This has the property that

δW
δG

= −h(G). (38)

In particular, in the physical situation when h = 0, we have
that δW/δG = 0. Thus, given the functional W , we have
reduced the problem of calculating G to a minimization
problem.

The functional W can be calculated in terms of a perturba-
tion series in U , giving

W[G] = i

2
Tr ln(G−1) + i

2
Tr[g−1G] + 2[G], (39)

where the Tr operates on the entire combined index space
and g−1 is the bare electron Green’s function. The functional
2[G] is constructed as follows. First, the Feynman rules for
the Hamiltonian H are written down. In the present case,
this is a single fermionic line and a four-fermion interaction.
Then, all two-particle irreducible bubble diagrams are drawn.
A diagram is two-particle irreducible (2PI) if it cannot be
disconnected by deleting up to two fermionic lines. The func-
tional 2[G] is given by the sum of all the diagrams. Lastly,
the diagrams are interpreted as in usual diagrammatic pertur-
bation theory except that the fermionic line is not the bare
Green’s function g, but instead the full Green’s function G.

The end result is the minimization condition

δW
δG

= − i

2
G−1 + i

2
g−1 + δ2

δG
= 0, (40)

→ G−1 = g−1 − �, �[G] = 2iδ2/δG. (41)

This is the Dyson equation for the Green’s function G where
the self-energy �[G] ≡ 2iδ2/δG is a self-consistent function
of G. As no approximations have been made, Eq. (41) is a
restatement of the original many-body problem and clearly
cannot be solved. The advantage of the formalism is that we
may replace 2 with an approximate functional ′

2 and still be
guaranteed to preserve conservation laws and causality, which
is not the case if one directly approximates �.

We assume that all symmetries are maintained by the
solution to Eq. (41). Therefore, the Green’s function can be
written in terms of the original spin, orbital, Keldysh, space,
and time indices as

Gσ1,n1,p1;σ2,n2,p2 (r1, t1; r2, t2)

= δσ1σ2δn1,n2 Gp1 p2 (r1 − r2; t1, t2), (42)

so that only the Keldysh indices p1, p2 will be explicitly noted.

B. RPA approximation to the 2PI generating functional

The approximation we make is the random-phase approx-
imation (RPA) in the particle-particle channel or equivalently
the N → ∞, where N is the number of orbital degrees of
freedom. That is, we approximate 2 by ′

2, where the latter
include the set of all closed ladder diagrams,

′
2 ≡ − i

2
� · D, D ≡ (U −1 − �)−1, (43)

�p1 p2 (r1, r2; t1, t2) ≡ i

2

[
Gp1 p2 (r1 − r2; t1, t2)

]2
, (44)
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+ +
+ ........

FIG. 1. 2PI Ladder diagrams for ′
2. Solid lines are electron

Green’s functions, while the dashed lines are the interaction U.

shown diagrammatically in Fig. 1, which gives the equation,

�p1 p2 (r1, t1; r2, t2) = iDp1 p2 (r1, t1; r2, t2)Gp2 p1 (r2, t2; r1, t1).

(45)

Above, we have used that �(1, 2) = 2iδ2/δG(2, 1). The
equations may be equivalently derived from the functional for
two Green’s functions G and D given by

W ′[G, D] = i

2
Tr[ln(G−1) + g−1G + ln(D−1) + U −1D]

+′
2[G, D], (46)

′
2[G, D] ≡ − i

2
� · D, (47)

δW ′

δD
= − i

2
D−1 + i

2
U −1 − i

2
� = 0, (48)

δW ′

δG
= − i

2
G−1 + i

2
g−1 − i

2
� = 0. (49)

This may be interpreted as the functional for electrons inter-
acting with a fluctuating pairing field whose Green’s function
is D. The ′

2 is the minimal diagram which has interaction
between the fermions and the fluctuating pairing field.

C. RPA equations of motion

We now proceed to analyze the RPA equations of motion.
As is customary, we perform a unitary rotation of the Keldysh
space, defining GK,A,R by [49]

GK ≡ (G++ + G+− + G−+ + G−−)/2, (50)

GR ≡ (G++ − G+− + G−+ − G−−)/2, (51)

GA ≡ (G++ + G+− − G−+ − G−−)/2, (52)

0 = G++ − G+− − G−+ + G−−, (53)

the last equality holding by causality. We likewise define
�K,A,R, DK,A,R,�K,A,R. In this basis, we may write the equa-
tions of motion as (setting e = 1)

[i∂t1− ε(i �∇1 − �A(r1, t1))] gR(r1, t1; r2, t2) = δ(t1 − t2), (54a)

G−1
R = g−1

R − �R, (54b)

GK = GR · �K · GA, (54c)

D−1
R = U −1 − �R, (54d)

DK = DR · �K · DA, (54e)

and where ε denotes the single particle dispersion, the
symbol · convolution, and �,� are given by

�R(x, y) = i

2
[DR(x, y)GK (y, x) + DK (x, y)GA(y, x)], (54f)

�K (x, y) = i

2
[DK (x, y)GK (y, x) + DR(x, y)GA(y, x)

+ DA(x, y)GR(y, x)], (54g)

�R(x, y) = i

2
GK (x, y)GR(x, y), (54h)

�K (x, y) = i

4
[GK (x, y)2 + GR(x, y)2 + GA(x, y)2], (54i)

and where x and y stand for combined space and time indices.
The function GA is given by GA = G†

R, where O(x, y)† =
O(y, x)∗, and likewise for DA, �A,�A. We note that we also
have the relationship G†

K = −GK .
We now convert the definition of GK into a more useful

form by evaluating G−1
R · GK − GK · G−1

A . On the one hand,
substituting in the definition of G−1

R,A, this is

G−1
R · GK − GK · G−1

A

= g−1
R · GK − GK · g−1

A − �R · GK + GK · �A; (55)
on the other hand, substituting in GK = GR · �K · GA, we
obtain

G−1
R · GK − GK · G−1

A = �K · GA − GR · �K . (56)

Therefore, we obtain the fundamental equation

g−1
R · GK − GK · g−1

A

= �K · GA − GR · �K + �R · GK − GK · �A. (57)

Setting the two times equal and using the form of gR, we
obtain

∂t iGK (r1, t ; r2, t ) − [ε(i �∇r1 − �A(r1, t ))

− ε(−i �∇r2 − �A(r2, t ))]GK (r1, t ; r2, t ) = S(r1t, r2t ),

S(r1t, r2t ′) ≡
∫

dy {�K (r1, t ; y)GA(y, r2, t ′)

+�R(r1, t ; y)GK (y; r2, t ′)

− GR(r1, t ; y)�K (y; r2, t ′)

− GK (r1, t ; y)�A(y; r2, t ′)}. (58)

Above y includes both space and time coordinates, and we
have given the collision term S on the rhs for unequal times
as we will need it to prove different conservation laws in the
next section.

D. Conservation laws

We emphasize that the true Green’s functions are found by
minimizing with respect to the full 2PI potential 2, whereas
the functions G, D defined above are only approximations,
found by minimizing with respect to the approximate po-
tential ′

2. Therefore, it is not a priori clear that there are
any conserved quantities that correspond to the conserved
quantities of the true Hamiltonian. However, the existence of
such quantities is guaranteed by the 2PI formalism. Here, we
show that the naive expression for the conserved density

n(r, t ) ≡ iGK (r, t ; r, t ) (59)
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is correct. If we set r1 = r2 in Eq. (58),

∂t iGK (r, t ; r, t ) − [ε(i �∇r1 − �A(r1, t ))

− ε(−i �∇r2 − �A(r2, t ))]GK (r1, t ; r2, t )|r1=r2=r = S(rt, rt ).

(60)

Inspecting the second term on the left-hand side (lhs), we see
that it is a total derivative and the equation can be written as

∂t n(r, t ) − �∇ · �j(r, t ) = S(rt, rt ),

�j = �v(i �∇1 − �A(r1, t ), i �∇2 + �A(r2, t ))iGK (r1, t ; r2, t )|r1=r2=r,

(61)

where the velocity �v generalized for an arbitrary dispersion ε

is defined as

(�x + �y) · �v(�x, �y) = ε(�x) − ε(−�y). (62)

This has the form of a continuity equation for the conserved
quantity n because

S(rt, rt ) = 0. (63)

We demonstrate this in Appendix A 1. Thus, the particle
number n(r, t ) = iGK (rt ; rt ) is a conserved quantity.

Conservation of momentum follows similarly by taking the
definition of the momentum

pα (r, t ) =
[

i

2

(∇α
r1

− ∇α
r2

) − Aα (r, t )

]
iGK (r1, t ; r2, t )

∣∣∣∣
r1=r2=r

.

(64)

Evaluating the time derivative of pα and using Eq. (58), one
obtains

∂t pα (r, t ) − n(r, t )Eα (r, t ) + εαβγ jβ (r, t )Bγ (r, t )

− ∇β
r T αβ (r, t ) = 0, (65)

T αβ =
[

i

2

(∇α
r1

− ∇α
r2

) − Aα (r, t )

]
vβ (i∇1 − A(r1, t ), i∇2

+ A(r2, t ))iGK (r1t, r2t )

∣∣∣∣
r1=r2=r

+ δαβU −1(t )iDK (rt, rt ). (66)

Above, the electric field is Eα = −∂t Aα and the magnetic field
is Bα = 1

2εαβγ (∇βAγ − ∇γ Aβ ), and T αβ is the momentum
tensor. Above, we have used the relation

i

2

[∇α
r1

− ∇α
r2

]
S(r1t, r2t )

∣∣
r1=r2=r = iU −1(t )∇α

r DK (rt, rt ),

(67)

which is proved in Appendix A 2. We also note that since
S(rt, rt ) = 0, Aα (r, t )S(rt, rt ) = 0. Thus, the momentum ten-
sor has a contribution from the full electron Green’s function
G and also from the full superconducting fluctuations D.

Finally, conservation of energy is obtained by operating on
the kinetic equation i

2 (∂t1 − ∂t2 ) and setting r1 = r2, t1 = t2.

This yields

∂tE (r, t ) − �∇ · �jE = �E · �j + Qext (r, t ), (68)

E (r, t ) = i

2
(∂t1−∂t2 )iGK (r, t1; r, t2)|t1=t2=t − iU −1(t )DK (r, t ),

(69)

jβE = i

2

(
∂t1 − ∂t2

)
vβ (i∇1 − A(r1, t1), i∇2 + A(r2, t2))

× iGK (r1, t1, r2, t2)|r1=r2=r
t1=t2=t

, (70)

Qext = −iDK (r, t )∂tU
−1(t ). (71)

The necessary relation for S needed to derive the above is

i

2

(
∂t1 − ∂t2

)
S(rt1, rt2)|t1=t2=t

= i∂t (U
−1DK (r, t ; r, t )) − iDK (r, t ; r, t )∂tU

−1(t ). (72)

The proof of the above is in Appendix A 3. The above shows
that the energy is not conserved due to Joule heating �E · �j,
from an applied electric field and also when the parameters of
the Hamiltonian are explicitly time dependent, ∂tU (t ) 	= 0.

IV. REDUCTION TO A CLASSICAL KINETIC EQUATION

In this section, we project the full quantum kinetic equation
onto the dynamics of the current. This can be done by noting
some important separation of energy scales associated with
critical slowing down of the superconducting fluctuations.

A. Critical slowing down

Although the RPA approximation produces a closed set of
equations of motion, Eq. (54), these are a set of nonlinear
coupled integral-differential equations and therefore cannot
be solved without further reduction. The key to reducing the
equations further is the phenomenon of critical slowing down
[42]. This may be demonstrated by considering the particle-
particle polarization in equilibrium. As the equilibrium system
is time and space translation invariant, we consider the Fourier
transform

�R(q, ω) =
∫

dd rdt �R(r, t, r′, t ′)e−i �q·(�r−�r′ )+iω(t−t ′ )

= i

2

∫
dd kdη GR

(
k + q

2
, η + ω

2

)
× GK

(
−k + q

2
,−η + ω

2

)
. (73)

Assuming for the moment that GR has a Fermi-liquid form

GR(k, ω) = Z

ω − εk + i/2τ
+ Ginc, (74)

where Z is the quasiparticle residue, τ−1 is the decay rate and
is ∝ max(ω2, T 2), and Ginc is a smooth incoherent part whose
effect is negligible at low energies. We also assume quasiequi-
librium where GK is related to GR by the fluctuation dissipa-
tion theorem GK (k, ω) = 2Im[GR(k, ω)] tanh(ω/2T ). We ex-
pect that �R(r, t ; r, t ′) decays exponentially on the scale T −1.
Thus, from the perspective of any dynamics that is slower
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than T −1, the polarization is effectively short ranged in time.
Thus, in terms of the Fourier expansion, we only need the
leading behavior in ω/T . Note that the short time dynamics
showing the onset of quasiequilibrium of the electron distri-
bution function to a temperature T can also be studied by the
numerical time evolution of the RPA Dyson equations [50].

Now the Green’s function DR is precisely the linear
response to a superconducting fluctuation. Therefore, if
U < Uc, where Uc denotes the critical value of the coupling,
the system is in the disordered phase and DR should decay
exponentially with time. If U > Uc, the system is supercritical
and superconducting fluctuations should grow exponentially
in time. In terms of the Fourier transform DR(q, ω), this means
that there is a pole in the complex ω plane which crosses the
real axis at precisely the phase transition, Uc(T ). Therefore,
we may write

D−1
R (q, ω) =U −1 − �R(q, ω)

= Z (q[λ(q,U ) + iω/T ] + O
(

ω2

T 2

)
, (75)

where the function λ(q = 0,Uc(T )) = 0. There is a critical
regime in q and U − Uc, where λ(q,U ) � T . We further
define a thermal wavelength qT by the expression λ(qT ,Uc) =
T , which we estimate as qT ∼ T/vF , where vF is the Fermi
velocity.

On the assumption, to be explicitly shown later, that the
transport is dominated by processes that are much slower than
T −1, we therefore replace

�R(q; t, t ′) = U −1(t ) − Z (q)δ(t − t ′)[λ(q,U (t )) + ∂t ], (76)

where we have explicitly included the possibility that U (t ) is
time dependent. Therefore, the equations of motion for D are

[∂t + λq(t )]DR(q, t, t ′) = T ν−1δ(t − t ′), (77)

λq(t ) = r(t ) + q2/2M, (78)

where r(t ) is an effective detuning arising from the the time
dependence of the interaction U (t ). Once DR is known then,
DK follows from Eq. (54e) and the fact that �K (t, t ′) =
4iνδ(t − t ′).

We consider two cases below. One where λq(t ) = θ (t )λq +
θ (−t )ri, with ri/T = O(1). This represents a rapid quench,
where the detuning changes from an initial value to a final
value at a rate that is faster than or of the order of the
temperature. The second situation we consider is an arbitrary
trajectory for the detuning r(t ).

The solution for bosonic propagators for the former,
namely the rapid quench, at times t, t ′ � 0 then become

⇒ DR(q, t, t ′) = θ (t − t ′)T ν−1e−λq (t−t ′ ), (79)

iDK (q, t, t ′) = 2T ν−1 T

λq
(e−λq|t−t ′| − e−λq (t+t ′ ) ), (80)

= 2[DR(q, t, t ′)F (q, t ′) + F (q, t )DA(q, t, t ′)],

(81)

F (q, t ) ≡ T

λq
(1 − e−2λqt ). (82)

Note the function F (q, t ) changes with rate λq, which for
small q is � T . Also note that at t = t ′ = 0, the density of
superconducting fluctuations as measured by DK (t = t ′ = 0)
or F (t = 0) is zero, consistent with an initial condition where
the initial detuning is large, positive, and hence far from the
critical point.

For an arbitrary trajectory r(t ) and hence λq(t ), the solu-
tions for the bosonic propagators, generalize as follows:

DR(q, t, t ′) = θ (t − t ′)T ν−1e− ∫ t
t ′ dt ′′λq (t ′′ ), (83)

iDK (q, t, t ′) = 2[DR(q, t, t ′)F (q, t ′) + F (q, t )DA(q, t, t ′)],
(84)

F (q, t ) ≡ 2T
∫ t

0
dxe−2

∫ t
x dyλq (y). (85)

We show in Appendix B that the above equations for DR,A,K

imply an effective model for a bosonic field obeying Langevin
dynamics, where the Langevin noise is δ correlated with a
strength proportional to the temperature T .

B. Linear response to electric field

The previous derivation of the kinetic equations Eq. (58)
is correct for arbitrary electric fields strengths and therefore
includes nonlinear effects. We now expand the Dyson equa-
tion to linear order in E (t ) in order to evaluate the linear
response. Note that since gR(k, t, t ′) = e−i

∫ t
t ′ dsε(ki+Ai (s)), it is

the combination, gR(�k − �A(t )) = e−i
∫ t

t ′ dsε(ki+Ai (s)−Ai (t )) which
is gauge invariant. The leading change in the electron Green’s
functions at the gauge invariant momentum is

gR(t, t ′) = −iθ (t − t ′)e−iεk (t−t ′ )

×
(

1 − i
∫ t

t ′
ds�vk · [ �A(s) − �A(t )]

)
, (86)

nk = neq
k + δnk (t ), (87)

where nk = ∫
dd (r1 − r2)e−ik(r1−r2 )iGK (r1, r2) and δn is as-

sumed to be of order E .
We now write the kinetic equation (58) after Fourier trans-

forming with respect to the spatial coordinates r1 − r2. The
change in density at the gauge-invariant momentum is

d

dt
nk−A(t ) = ∂t nk (t ) − ∂t �A · �∇kneq

k = IC + �E · �∇kneq
k , (88)

where IC is the rhs of the kinetic equation (58) evaluated at the
gauge-invariant momentum �k − �A(t ). Substituting for IC and
shifting the internal momentum q by q − 2A(t ), we obtain

∂t nk (t ) − �E · �∇kneq
k

= 4
∑

q

∫
dt ′Im[iDK ( �q − 2 �A(t ), t, t ′)δ�′

A(�k − �A(t ), �q

− 2 �A(t ), t ′, t ) + iDR( �q − 2 �A(t ), t, t ′)δ�′
K (�k − �A(t ), �q

− 2 �A(t ), t ′, t ) + δiDK ( �q − 2 �A(t ), t, t ′)�′
A(�k− �A(t ), �q

− 2 �A(t ), t ′, t ) + iδDR( �q − 2 �A(t ), t, t ′)�′
K (�k − �A(t ), �q

− 2 �A(t ), t, t ′)], (89)
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where the δ in Eq. (89) indicates the first-order variation with
respect to the electric field. As expected, the conservation laws
continue to hold after this approximation. Above, the quantity
�′(k, q, t, t ′) is defined as

�′
R,A(�k − �A(t ), �q − 2 �A(t ), t, t ′)

= i

2
GR,A(�k − �A(t ), t, t ′)GK (−�k + �q − �A(t ), t, t ′), (90)

�′
K (�k − �A(t ), �q − 2 �A(t ), t, t ′)

= i

4
[GK (�k − �A(t ), t, t ′)GK (−�k + �q − �A(t ), t, t ′)

+ GR(�k − �A(t ), t, t ′)GR(−�k + �q − �A(t ), t, t ′)

+ GA(�k − �A(t ), t, t ′)GA(−�k + �q − �A(t ), t, t ′)], (91)

�R,A,K (q, t, t ′) =
∑

k

�′
R,A,K (k, q, t, t ′). (92)

Note that all the momenta appear in the gauge-invariant com-
bination �k − �A(t ). Above, the last line highlights the relation
between �′ and the polarization �.

The fluctuations are modified by the electric field through
their dependence on �R:

δDR = DR · δ�R · DR, (93)

δDK = δDR · �K · DA + DR · δ�K · DA + DR · �K · δDA

= DR · δ�R · DK + DR · δ�K · DA + DK · δ�A · δDA.

(94)

In what follows, since we are interested in the response of the
current, we multiply the linearized kinetic equation (89) by vk

and integrate over k.

C. Large fluctuations limit

We make one further simplification, which is based on the
fact that in the critical regime DK � DR by a factor T/λq.
Thus, we will only keep the terms that are highest order
in DK .

D. Projections of equation to finite number of modes

The kinetic equation is an integral-differential equation
in which the unknowns δnk (t ) appear linearly. Conceptually,
therefore, it may be solved by standard methods. However,
even though it is linear, it is nonlocal in time and not time
translation invariant. This makes direct analytical and numer-
ical solution difficult.

We therefore make an additional simplification that instead
of considering the full space of solutions, we instead project
entirely onto the current mode. This means that we would like
to fix

δnk (t )
?= m̄

ρ
Ji(t )∇ i

kneq
k , (95)

m−1
i j = ∂2ε(k)

∂ki∂k j
= ∂k j vi

k; m̄−1δi j = − 1

ρ

∑
k

m−1
i j neq

k , (96)

where ρ = − ∑
k neq

k is the density of fermions, m̄ is the effec-
tive mass, and Ji(t ) is some function to be determined. The ?
in Eq. (95) is to question the correctness of this equation. This
is because conservation of momentum Pi = ∑

k kink causes
Eq. (95) to fail qualitatively. As ∂t Pi = ρEi, an electric field
pulse, say, for simplicity taken to be a δ function in time,
will generate a net momentum. Moreover, by conservation of
momentum, the initial perturbation

δnk = V iki∂neq/∂ε, (97)

with V i arbitrary, will never decay. Therefore, instead of
Eq. (95), we decompose the occupation number as

δnk (t ) = m̄

ρ

[
Ji

r (t )
(
vi

k − γ ki/m̄
) + γ kiPi(t )/m̄2

]
∂εneq

k , (98)

γ ≡ m̄
∑

k �vk · �k∂εn∑
k
�k · �k∂εn

, (99)

Ji
tot ≡

∑
k

vi
kδnk = (1 − γ )Ji

r + γ Pi/m̄. (100)

The parameter γ gives the amount of current that is carried
by the momentum mode, which does not relax. In the limit
γ → 0, there is no overlap between the modes; the momen-
tum mode carries no current and is thus neglected. On the
other hand, when γ → 1, as in a Galilean invariant system,
the current and momentum are proportional and there is no
relaxing current.

Multiplying the kinetic equation by vi
k − γ ki/m̄ and ki and

summing over k, we obtain

∂t J
i
r (t ) − ρ

m̄
E i =

∑
k,q

vi
k − γ ki/m

1 − γ
4

∫
dt ′Im

× [iDK (q, t, t ′)δ�′
A(k, q, t ′, t )

+ iDR(q, t, t ′)δ�′
K (k, q, t ′, t )

+ δiDK (q, t, t ′)�′
A(k, q, t ′, t )

+ iδDR(q, t, t ′)�′
K (k, q, t, t ′)], (101)

∂t P
i(t ) − ρEi(t ) = 0. (102)

Above, in the first equation, we have used that
∑

k (vk −
γ k/m̄)δnk = (1 − γ )Ji

r as follows from Eq. (100). The second
equation above just follows from conservation of momentum.
We also do not write the explicit dependence of the momen-
tum labels on the vector potential as it is understood that it is
always the gauge-invariant combination that appears.

As the momentum mode has trivial dependence due to
momentum conservation, we will simply drop it and set γ = 0
in Eq. (101). In this limit,

δnk (t ) = m̄

ρ
Ji

r (t )∇ i
kneq

k . (103)

These are now a closed set of equations in terms of the single
unknown function Jr (t ), which we will denote simply as J (t ).
The remaining step is to evaluate the various terms. We note
that DK (t, t ′) is generally larger than DR by the factor T/λq.
Thus, in what follows, we will only retain the first and third
terms on the right-hand side of Eq. (101).

094503-9



YONAH LEMONIK AND ADITI MITRA PHYSICAL REVIEW B 100, 094503 (2019)

E. Time-dependent kinetic coefficients

We begin by evaluating the first term, proportional to
δ�i

R(q, t, t ′) in Eq. (101). There are two contributions, one
from varying nk , and we denote it by KJ . The second is from
varying gR, and we denote it by KE :

4Im
∫

dt ′∑
k,q

vi
k iDK (q, t, t ′)δ�′

A(k, q, t ′, t ) = Ki
J (t ) + Ki

E (t ).

(104)

In Appendix C 1, we show that the term coming from varying
nk is

Ki
J (t ) �

∑
q

Fq(t )J j (t )Q̃i j
J (t ),

Q̃i j (t ) ≈ m̄πqrql

4ρ

〈
m−1

jr m−1
il

〉
FS. (105)

To estimate the magnitude of the above term, we neglect
factors of order ‘, write ρ ∼ νk2

F /m, and obtain that this term
is ∼(q/kF )2/ν.

For the term coming from varying gR, we show in Ap-
pendix C 2 that

Ki
E (t ) �

∑
q

Fq(t )
ρE j (t )

m̄
Q̃i j

E (t ),

Q̃i j
E (t ) ≈ 28πm̄qrql

16T ρ
ζ ′(−2)

〈
m−1

jr m−1
il

〉
FS. (106)

The resulting term has the form ∝ (q/kF )2Fq(t )ρE (t )/νT m̄
and is thus a parametrically small correction to the drift term
ρE/m̄. Therefore, we neglect it for the remainder.

We now turn to the third term, ∼δDK�′
A in Eq. (101). We

begin by considering the change in δDK . This in turn depends
on δDR, which from Eq. (77) is given by

[∂t + λq]δDR = −δλqDR. (107)

There are two contributions to δλq. One is from varying δn
via

λq = U −1 − Re[�R(q)] = U −1 + 1

4

∑
k

nk+q/2 + n−k+q/2

εk+q/2 + ε−k+q/2
.

(108)

Writing the above as a small q expansion, we define M such
that

λq = r + q2

2M
, (109)

where we find that, on expanding,

∑
k

nk+q/2 + n−k+q/2

2εk
=

∑
k

2nk

2εk
+ qiq j

∑
k

∇ i
k∇ j

k nk

8εk

=
∑

k

2nk

2εk
+ q2

d

∑
k

∇2
k nk

8εk
,

⇒ 1

M
= ∂2

q λq = 1

4d

∑
k

∇2
k nk

4εk
. (110)

where d is the spatial dimension. The above equation also
shows M ∼ T/v2

F
Thus, the change in λq coming from the change in the

electron distribution δnk may be evaluated as follows (below
we also use δnk = −δn−k):

δλq = 1

4

∑
k

δnk+q/2 + δn−k+q/2

εk+q/2 + ε−k+q/2

= 1

4

∑
k

δnk+q/2 − δnk−q/2

εk+q/2 + ε−k+q/2

� qi

4

∑
k

∇ i
kδnk

2εk
(q → 0). (111)

Using the relation between δnk and the current in Eq. (103)
and the expression for M in Eq. (110), we find

δλq = qim̄

4ρ
J j

∑
k

∇ i
k∇ j

k neq
k

2εk

= qim̄

4ρ
Ji 1

d

∑
k

∇2
k neq

k

2εk

= 2
m̄

ρM
qiJi. (112)

The second reason for the change in λq is due to the direct
coupling to the electric field, where, defining δAi(s) = Ai(s) −
Ai(t ),

λq(s) = [qi + 2δAi(s)]2/2M,

⇒ δλq(s) = 2qiδAi(s)

M
= 2qi

M
[Ai(s) − Ai(t )]

= −2qi

M

∫ t

s
dt ′∂t ′Ai(t ′),

⇒ δλq(s) = 2qi

M

∫ t

s
dt ′Ei(t ′). (113)

Thus, the total change in λq is

δλq(s) = 2m̄qiJi(s)

Mρ
+ 2qi

M

∫ t

s
dt ′Ei(t ′)

= 2m̄qi

ρM

[
Ji(s) +

∫ t

s
dt ′ ρEi(t ′)

m̄

]
. (114)

δλq changes both DR and DK , where the change in the former
is

δDR(t, t ′) = e−λq (t−t ′ )
[
−

∫ t

t ′
dsδλq(s)

]
. (115)

Note that δDK = (δDR)�K DA + DR(δ�K )DA +
DR�K (δDA). Since the variation δ�K produces a term
that is smaller by a factor of Fq, we neglect it. Using the
zeroth-order calculation that i�K ∝ νδ(t − t ′), we have

iδDK (t, t ′) = ν

∫
dsδDR(t, s)DA(s, t ′)

+ ν

∫
dsDR(t, s)δDA(s, t ′). (116)
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Substituting in for the result for δDR, using δDR(t, t ′) =
δDA(t ′, t )∗, we obtain (see Appendix C 3 for details)

4
∫ t

0
dt ′ ∑

k,q

Im[vi
k iδDK (q, t, t ′)�′

A(k, q, t ′, t )]

=
∑

q

αqiq jλq

∫ t

0
due−2(t−u)λq Fq(u)

×
[

J j (u) +
∫ t

u
dt ′ ρE j (t ′)

m̄

]
. (117)

The coefficient α is given by

α ≡ T m̄

Mνρ

∑
k

m−1
ii

neq(εk )

4ε2
k + λ2

q

= T m̄

Mνρ

∫
dε κ (ε)

neq

4ε2 + λ2
,

κ (ε) ≡
∑

k

m−1
ii (k)δ(ε − εk ). (118)

The above shows that αq2 ∼ (q/kF )2/ν, which is comparable
to the local terms. Moreover, the sign of α for generic band
structures is such as to oppose the local in time term coming
from iDKδ�A.

The function κ (ε) may be Taylor expanded to give κ (ε) ≈
ν
m̄ (1 + bε/EF + · · · ), where the parameter b is a material-
dependent parameter of order 1. The sign of b is not fixed in
general. However, for a “simple” band structure, the parame-
ter b is negative. Thus,

α ≈ T

Mρ

∫
dε

(
1 + b

ε

EF

)
neq(ε)

4ε2 + λ2

= bT

MρEF

∫
dε

εneq(ε)

4ε2

≈ bT log(EF /T )

MρEF
≈ bv2

F T log(EF /T )

T νE2
F

≈ 1

k2
F ν

b log(EF /T ). (119)

For generic quench profiles, the only change that is needed
is the replacement

e−2λqt → e−2
∫ t

0 dsλq (s). (120)

In what follows, we set ρ/m̄ = 1. In these units, the ratio J/E
gives a Drude scattering time and also equals the conductiv-
ity. The kinetic equation for the current for general quench
trajectories becomes Eq. (4), and for convenience we rewrite
it below:

∂t J
i(t ) − E (t ) = − 1

τr

[
A(t )Ji(t ) − α

∫ t

0
dt ′

{
B(t, t ′)Ji(t ′)

+ C(t, t ′)Ei(t ′)
}]

. (121)

We define the dimensionless quantity,

A(t ) ∝
∑

q

q2F (q, t ). (122)

The memory terms are

B(t, s) ∝
∑

q

{
q2λqe−2

∫ t
s du λq (u)Fq(s)

}
, (123)

C(t, s) =
∫ s

0
ds′B(t, s′). (124)

We now simplify the expressions for A, B,C using the
derived expressions for the time-dependent superconducting
fluctuations:

A(t ) = 1

T d/2

∫ t

0
ds

e−2
∫ t

s du r(u)

(t − s)d/2+1
. (125)

Similarly, the memory term is

B(t, s) ∝
∑

q

{
q2λqe−2

∫ t
s du λq (u)Fq(s)

}
(126)

= 1

T d/2

∫ s

0
dt ′ e−2

∫ t
t ′ du r(u)

×
[

(1 + d/2) + 2r(t )(t − t ′)
(t − t ′)d/2+2

]
. (127)

For the case of the sudden quench, since r(t ) = θ (t )r +
ri, the above expressions for A, B,C simplify considerably.
For ri/T = O(1) so that at t = 0, F (q, t = 0) = 0, and for a
quench to the critical point r = 0, Eqs. (125), (127), and (124)
give

Acr (t ) =
[

1 − 2/d

(1 + T t )d/2

]
, (128)

Bcr (t, s) = T

{
1

[T (t − s) + 1]1+d/2 − 1

[T t + 1]1+d/2

}
,

(129)

Ccr (t, s) = 2

d

{
1

[T (t − s) + 1]d/2 −
1 + (d/2) T s

(T t+1)

[T t + 1]d/2

}
.

(130)

Above we have regularized the integrals such that a short time
cutoff of T −1 has been introduced. It is also helpful to study
the system at nonzero detuning. For a sudden quench to a
distance r from the critical point, Eqs. (125), (127), and (124)
give

A(r, t ) = 1 −
(

2r

T

)d/2



(
−d

2
, 2rt

)
, (131)

B(r, t, s) = T
e−2r(t−s)

[T (t − s)]1+d/2
− T

e−2rt

(T t )1+d/2
, (132)

C(r, t, s) =
(

2r

T

)d/2[


(
−d

2
, 2r(t − s)

)
− 

(
−d

2
, 2rt

)]

− T se−2rt

(T t )1+d/2
. (133)

F. Charge diffusion

We now adapt the kinetic equation to the case where the
current is being driven by a density gradient. From Eq. (58),
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Fourier transforming with respect to the difference in position
coordinates r1 − r2 and performing a gradient expansion with
respect to the center-of-mass coordinate r = r1+r2

2 gives us

∂t nk (r, t ) + �vk · �∇nk (r, t ) = S(r, k, t ), (134)

where S(k) = ∫
dd (r1 − r2)e−ik(r1−r2 )S(r1t, r2t ). A spatial

density gradient leads to a current Ji = ∑
k vi

knk . Multiplying
Eq. (134) with vk , taking a sum on k, and using the fact that
vkS(k) in the presence of the current can be written as a con-
tribution coming from small changes to the superconducting
propagator, and small changes to the polarization bubble as
summarized on the rhs of Eq. (89). The rhs can be simplified
as before, leading to the rhs of Eq. (121). This leads to

∂t J
i +

∑
k

vi
kv

j
k∇ jnk (r, t )

= − 1

τr

[
A(t )Ji(t ) − α

∫ t

0
dt ′

{
B(t, t ′)Ji(t ′)

+
∫

dt ′C(t, t ′)Ei(t ′)
}]

. (135)

The coefficients A, B are given in Eqs. (125) and (127) for
a general quench profile and in Eqs. (128) and (129) for a
rapid quench to the critical point. Although there is no external
electric field, the density gradient induces a current, and the
electric field on the rhs is a linear response to this current.

V. CONDUCTIVITY AND DIFFUSION COEFFICIENT
IN THERMAL EQUILIBRIUM

In thermal equilibrium, one may simply take the long time
limit of the expressions in Eqs. (128), (129), and (130). Then,
at zero detuning r = 0,

Aeq(r = 0) = 1,

Beq(r = 0, t − s) = T

[T (t − s) + 1]1+d/2 ,

Ceq(r = 0, t − s) = (2/d )

[T (t − s) + 1]d/2 . (136)

It is also useful to analyze these coefficients when the system
has equilibrated at a nonzero detuning r away from the critical
point. In this case, for d = 2 we have

Aeq(r) = Aeq(r = 0)

[
1 + 2r

T
ln(2r/T )

]
,

Beq(r, t − s) = T
e−2r(t−s)

[1 + T (t − s)]2 ,

Ceq(r, t − s)|r(t−s)�1 = T

2r

e−2r(t−s)

[1 + T (t − s)]2 . (137)

Above, due to the separation of timescales discussed in the
previous section, |r|/T � 1. We note that in Fourier space

B̃eq(r, ω = 0) = 1 + 2r

T
[γ + ln(2r/T )], (138)

C̃eq(r, ω = 0) = 1

2r

{
1 + 2r

T

[
γ + ln(2r/T )

]}
. (139)

Above γ is Euler γ .
We now discuss the linear response conductivity in ther-

mal equilibrium. In this case, all the coefficients A, B,C are
time-translation invariant. Fourier transforming Eq. (121), we
obtain

J (ω) = 1 + τ−1
r αC̃eq(ω)

iω + τ−1
r [1 − αB̃eq(ω)]

E (ω). (140)

We write

J = Jdiss + Jfl, (141)

where the first is a dissipative current arising due to Drude
scattering and the second is a current arising due to the
superconducting fluctuations. Then, if we take the DC limit
of Eq. (140),

Jdiss = τrE = σdissE , (142)

while the current from the superconducting fluctuations
(neglecting B which gives small correction to the Drude
scattering rate) is

Jfl = αC̃eqE = σflE . (143)

The above implies that the fluctuation conductivity σfl gives
a correction to the dissipative conductivity τr by an amount
= τ−1

r αC̃eq(r, ω = 0). If we note that τr ∼ T −1 and use
Eq. (139), this implies a fluctuation conductivity correction
that goes as ∝ αT/r. While this is qualitatively the same as
the fluctuation AL conductivity [31,32], we note that for the
ultraclean case considered here, material-dependent param-
eters such as α, which determine the strength of Galilean
invariance breaking lattice effects, are unavoidable and give
a nonuniversal material-dependent prefactor.

The MT correction is also discussed in the context of a
disordered system [33–35,43] and is well defined only as long
as the mean free path is shorter than the inelastic scattering
time [51,52]. Thus, the MT conductivity does not emerge
naturally in the clean limit we consider here.

Now, we discuss the diffusion constant D defined as Ji =
−D∇ in. Because of time-translation invariance in equilib-
rium, we write Eq. (135) in Fourier space. We also note that
the electric field generated as a response to the current is
given by J = τrE , up to fluctuation corrections. This gives the
diffusion constant,

D(ω) = v2
F /2

iω + τ−1
r

{
1 − α

(
B̃eq(ω) + C̃eq (ω)

τr

)} . (144)

Close to the critical point, C dominates over B. More-
over, Taylor expanding in α, the DC limit of the diffusion
constant is

D(ω = 0) ≈ v2
F τr

2

[
1 + α

2τrr

]
. (145)

094503-12



TRANSPORT AND SPECTRAL SIGNATURES OF … PHYSICAL REVIEW B 100, 094503 (2019)

Thus, the fluctuation correction for the diffusion constant has
qualitatively the same form as that for the conductivity in
being ∝ αT/r, where we have used that τr ∼ T −1.

VI. SOLVING THE KINETIC EQUATION
FOR THE CONDUCTIVITY

The solution of the kinetic equation for the current was
presented in much detail in Ref. [44]. For completeness,
we summarize some of the findings. Two kinds of quench
trajectories were studied. One was a rapid quench from deep
in the disordered phase to a distance r � 0 away from the
critical point. The second was a smooth quench trajectory
which started from the disordered phase, approached the
critical point r = 0, and returned back to the disordered phase.
Regardless of the details of the trajectory, the current showed
slow dynamics because of slowly relaxing superconducting
fluctuations. In the kinetic equation Eq. (121), this physics is
encoded in the memory terms (B,C).

In addition, the dynamics of the current for a critical
quench to r = 0 was found to show universal behavior, with
a power law aging in the conductivity σ (t, t ′), a result also
found for a disordered system [30]. Moreover, the dynamics at
nonzero detuning r was shown to obey scaling collapse. How-
ever, it should be noted that, for the clean system studied here,
the exponents entering the scaling behavior were nonuniversal
in that they depend on [44] T τr .

For a smooth quench, it was shown that transiently en-
hanced superconducting fluctuations create transient a low
resistance current carrying channel, whose signature is a
suppression of the Drude scattering rate at low frequencies.
Note that the Drude scattering rate in the absence of time-
translation invariance is defined as

τDr(t, ω) = − Im[σ (ω, t )]

ωRe[σ (ω, t )]
, (146)

with

σ (ω, t ) =
∫

dτeiωτσ (t + τ, t ). (147)

In this section, we revisit the smooth quench, defined by
the trajectory

r(t )/T = 1 − θ (t )(1 + ε)(tT/30)e1−tT/30. (148)

Above, r/T starts out being 1, smoothly approaches −ε at a
time T t∗ = 30, and then smoothly returns back to its initial
value of r/T = 1. We consider two cases, one where ε = 0
(see Fig. 2) and one where the quench is supercritical in that
ε = 0.05. For the latter case, for a finite time, the parameters
of the Hamiltonian correspond to that of an ordered phase
since r < 0 (see Fig. 3). Despite this, for such a transient
regime, the order parameter is still zero, although super-
conducting fluctuations are significantly more enhanced than
if r � 0. In particular, critical slowing down prevents true
long-range order to develop over timescales over which the
microscopic parameters are varying.

Note that in the numerical simulation, we apply an elec-
tric field pulse which is a δ function in time. In particular,
for an electric field pulse of unit strength centered at t ′,
the conductivity equals the current, σ (t, t ′) = J (t ). Fourier
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FIG. 2. Critical quench. (a) Fluctuations F (q, t ) for three differ-
ent q and for a critical quench where the detuning varies smoothly
as r(t )/T = 1.0 − θ (t )(T t/30)e1−T t/30. In thermal equilibrium,
F (q = 0) = T/r. As a reference, T/r(t ) is plotted. (b) Drude scatter-
ing rate for the critical quench r(t )/T = 1.0 − θ (t )(T t/30)e1−T t/30.
The high-frequency Drude scattering rate follows the profile of
the fluctuations (top figure) by smoothly increasing and decreasing
in time. On the other hand, the low-frequency Drude scattering
rate first increases and then is suppressed approximately when the
superconducting fluctuations peak.

transforming with respect to t − t ′, we can obtain the con-
ductivity for arbitrary ω. However, in an actual experiment,
the finite temporal width of the electric field pulse places a
limit on the lowest frequency accessible. Nevertheless, the
physics of a suppressed Drude scattering at low frequencies
is visible over a sufficiently broad range of frequencies, as
shown in Figs. 2 and 3, for this to be a feasible experimental
observation.

Top panels of Figs. 2 and 3 show how the superconducting
fluctuations, at several different wavelengths, evolve for a
critical and a supercritical quench respectively. The lower
panels of the same figures show how the corresponding Drude
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FIG. 3. Supercritical quench. (a) Fluctuations F (q, t ) for three
different q and for a supercritical quench where the detuning
varies smoothly as r(t )/T = 1.0 − θ (t )(1 + 0.05)(T t/30)e1−T t/30,
becoming negative for a certain length of time. In thermal equi-
librium, F (q = 0) = T/r. As a reference, 100r(t )/T is plotted.
(b) Drude conductivity for a supercritical quench where r(t )/T =
1.0 − θ (t )(1 + 0.05)(T t/30)e1−T t/30. Qualitatively similar behavior
as in Fig. 2, but all the effects are more amplified. As the density
of superconducting fluctuations F (q, t ) (top figure) grow in time,
the high-frequency Drude scattering rate increases, while the low-
frequency Drude scattering rate is suppressed at approximately when
the superconducting fluctuations peak. The behavior in frequency
and time is also more dispersive for the supercritical quench than
the critical quench.

scattering rate, for different frequencies, evolve in time. When
the density of superconducting fluctuations peak, the Drude
scattering rate at low frequencies ω < T dips, with the effect
being more enhanced for the supercritical quench. Moreover,
the Drude scattering rate is strongly dispersive in that different
frequency components of the Drude scattering rate peak at
different times.

Recall that when the system returns to the normal phase,
since we are in the clean limit, the steady-state Drude

scattering rate is zero. A slow power-law approach to thermal
equilibrium is also visible in the long time tails of the Drude
scattering rate that are found to persist long after the detuning
has returned back to its initial value in the normal phase.
The slow dynamics highlighted above provide signatures in
time-resolved optical conductivity, where, although the sys-
tem lives for too short a time for true long-range order to
develop, the transient dynamics can still show clear signatures
of superconducting fluctuations.

VII. SPECTRAL PROPERTIES

We now present results for the time evolution of the
electron spectral properties. Results for the electron lifetime
obtained from the imaginary part of the electron self-energy
appear in Ref. [53], where it was shown that the behavior is
not Fermi liquid like due to enhanced Andreev scattering of
the electrons at the Fermi energy. In this section, we discuss
how this scattering affects the local density of states.

For simplicity, we consider a rapid quench from deep in the
normal phase where F (q) = 0 initially, to a final arbitrarily
small detuning r � 0 away from the critical point. For this
quench, the superconducting fluctuations obey the equation

[
1

T
∂t + 2

(
v2

T 2
q2 + r

)]
F (q2, t ) = 2, (149)

where the solution of the above is identical to Eq. (82) with
λq/T = r + v2q2/T 2. We have assumed that F depends only
isotropically on q and follow a convention where r is dimen-
sionless. We define the dimensionless variable x = v2q2/T 2.
The electron self-energy using Eq. (54f) and in the limit of
DK � DR, and in two spatial dimensions, is

�R,A(k, t1, t2)

= i

2

∫
d2q

(2π )2
DK (q, t1, t2)GA,R(−k + q, t2, t1). (150)

Going into Wigner coordinates, which involves Fourier trans-
forming with respect to relative coordinates t1 − t2 while
keeping the mean time t = (t1 + t2)/2 dependence in DK [53],
and performing an angular integral, we obtain

�R(ω, ε)

T
= + Gi

4π

∫ ∞

0
dxF (x, t )

×
[(

ω + ε + �A(−ω, ε)

T

)2

− x

]−1/2

, (151)

�A(−ω, ε)

T
= + Gi

4π

∫ ∞

0
dxF (x, t )

×
[(−ω + ε + �R(ω, ε)

T

)2

− x

]−1/2

,

(152)

where Gi ≡ 8T

πνv2
. (153)

094503-14



TRANSPORT AND SPECTRAL SIGNATURES OF … PHYSICAL REVIEW B 100, 094503 (2019)

We start in the perturbative limit by setting �A = i0+,
�R = −i0+. First, let us study the equilibrium case. Here,
F = 1/(x + r). Thus, we have

�R(ω, ε)

T
= Gi

8π

∫ ∞

0

dx

x + r

×
[(

ω + ε + �A(−ω, ε)

T

)2

− x

]−1/2

. (154)

Define x̄ ≡ x

r
; z0

+ ≡ ω + ε + i0+

T

√
1

r
, (155)

�R(ω, ε)

T
= Gi

8π

√
1

r

∫ ∞

0

dx̄

1 + x̄

[
(z0

+)2 − x̄
]−1/2

= Gi

8π
√

r
f (z+

0 ), (156)

where Re[ f (z)] ≡ 1√
z2 + 1

log
z + √

1 + z2

−z + √
1 + z2

. (157)

The density of states is

ν(ω) = −ν0

π

∫
dε�[GR(ε, ω)]. (158)

To evaluate this integral, we need to locate the pole in ε

complex plane: ω − ε∗(ω) − �R(ε∗(ω), ω) = 0. Then, the
value of the integral follows from the residue

ν(ω) = ν0

π
�

[
π i

1 + ∂�R

∂ε

∣∣
ε=ε∗

]
. (159)

Thus, the perturbative change in the density of states is
obtained from Taylor expanding

δν(ω)

ν
= −Re[∂ε�R(ω, ε)]|ε=ω

= −Re

√
1

r

Gi

8π

√
1

r
∂z f (z)|z= 2ω

T
√

r

= Gi

8πr
g

(
2ω

T
√

r

)
, (160)

where g(z) = −Re[∂z f (z)]. (161)

Using Eq. (157), one obtains the following asymptotic
behavior:

δν(ω)

ν
= Gi

4πr

{−1 ω � T
√

r
rT 2

8ω2 log
(

4ω2

rT 2

)
ω � T

√
r
. (162)

Note that this shift is perturbative for all ω, that is, δν/ν � 1,
when Gi/4πr � 1.

Now we turn to the critical quench, where r is O(1) for
t < 0 and r = 0 for t > 0. In this case, the solution of
Eq. (149) gives

F (x, t ) = 1 − e−2xT t

x
. (163)

The above implies

�R(ω, ε)

T
= Gi

8π

∫ ∞

0
dx

1 − e−2xT t

x

×
[(

ω + ε + i0+

T

)2

− x

]−1/2

; (164)

define x̄ = 2xT t ; z0
+ ≡ ω + ε + i0+

T

√
2tT , (165)

�R(ω, ε)

T
= Gi

4π

√
T t

2

∫ ∞

0
dx̄

1 − e−x̄

x̄
[(z0

+)2 − x̄]−1/2

= Gi

8π
(
√

2T t )h(z+
0 ). (166)

In Appendix D, we show that h has the following asymptotic
form:

Re[h(z)] =
{

2z |z| � 1

z−1
(

log(z2) + 
(

1
2

)) |z| � 1
. (167)

Proceeding to the change in the density of states, we have

δν(ω)

ν
= − Gi

4π
√

2

√
T t Re[T ∂εh(z0

+)]|ε=ω

= − Gi

8π
(2T t ) Re[∂zh(z)]|z=2

√
2T t ω

T
(168)

= Gi

4π

{−2T t ω � √
T/t

1
8

T 2

ω2 log(ω2t/T ) ω � √
T/t

. (169)

Note that the asymptotic behaviors of the critical and
equilibrium cases agree if we set r = 1

2T t . This follows from
the fact that the fluctuations F (x, t ) behave in a comparable
manner in these two cases.

A. Self-consistent regime (results for ω = 0)

We now turn to the full solution that does not require
δν � ν. We will first work out the equilibrium case. The
critical quench case will then follow from the substitution of
r = 1

2T t .
By adding ±ω + ε, the self-consistent equation for the

self-energy in Eqs. (151) and (152) may be written as

z+ = z0
+ + γ f (z−), (170)

z− = z0
− + γ f (z+), (171)

where

z+ ≡ ω + ε + �A(−ω, ε)

T

√
1

r
, (172)

z− ≡ −ω + ε + �R(ω, ε)

T

√
1

r
, (173)

γ = Gi

8πr
. (174)

The above self-consistent equations can be solved in certain
limits (see Appendix E), giving the following results for the
density of states at zero frequency:

ν(ω = 0) ∝ ν0

log (Gi/8πr)
. (175)
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The critical quench case then follows by the substitution
r = 1

2T t :

ν(ω = 0, t ) ∝ ν0

log (GiT t/4π )
. (176)

Thus, we find that there is no true steady state of the zero-
frequency density of states because the solution continues to
evolve logarithmically in time. This time evolution, although
slow, happens because there is no non-zero-temperature criti-
cal point in d = 2. To obtain the correct thermalized steady
state, vortices need to be accounted for in our treatment.
However, for the transient regime relevant for experiments,
where no superconducting gap has developed yet and the
dynamics is governed by weakly interacting superconducting
fluctuations, our results are still valid.

VIII. CONCLUSIONS

We have studied quench dynamics of an interacting elec-
tron system along general quench trajectories using a 2PI
approach. To leading nontrivial order in 1/N , our treatment
reduced to RPA in the particle-particle channel. While the
quantum kinetic equations are exact, leading to proper defi-
nitions of the conserved densities and currents, progress was
made in solving them by exploiting a separation of timescales.
This could be seen by noting that thermalization of the

electron distribution function sets in on a timescale of T −1,
while the collective modes relax at a rate given by the detuning
to the superconducting critical point, which can be arbitrarily
slow. This is the phenomena of critical slowing down, and
we derived an effective classical equation for the decay of
the current in this regime. The dynamics of the current was
also justified using a phenomenological mapping to model
F in the Halperin-Hohenberg classification scheme. Going
forward, we envision that such mappings may be helpful in
other contexts when understanding time-resolved experiments
that aim to probe collective modes.

Results were also presented for the local density of states,
which was found to be enhanced at low frequencies due to
Andreev scattering processes. For a critical quench, the self-
consistent equations showed an equivalence between the time
after the quench and the inverse detuning.

Future directions involve studying the coarsening regime,
in particular, how true long-range order develops. The reverse
quench where the initial state is ordered also needs to be
explored, going beyond mean field. Experiments involving
ultrafast manipulation of spin and charge order also require
generalizing our study to quench dynamics in the particle-hole
channel.
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APPENDIX A: PROVING CONSERVATION LAWS

1. Proof of S(rt, rt ) = 0

Using Eq. (54),

S(rt, rt ) = i

2

∫
dy{GA(y; r, t )GA(y; r, t )DR(r, t ; y) + GK (y; r, t )GA(y; r, t )DK (r, t ; y)}

+ i

2

∫
dy{GK (y; r, t )GK (y; r, t )DR(r, t ; y) + GA(y; r, t )GK (y; r, t )DK (r, t ; y)}

− i

2

∫
dy{GR(r, t ; y)GR(r, t ; y)DA(y; r, t ) + GR(r, t ; y)GK (r, t ; y)DK (y; r, t )}

− i

2

∫
dy{GK (r, t ; y)GR(r, t ; y)DK (y; r, t ) + GK (r, t ; y)GK (r, t ; y)DA(y; r, t )}. (A1)

The above terms can be rearranged to give

S(rt, rt ) = 2
∫

d{�K (y; r, t )DR(r, t ; y) + �A(y; r, t )DK (r, t ; y)} − 2
∫

dy{�K (r, t ; y)DA(y; r, t ) + �R(r, t ; y)DK (y; r, t )}.
(A2)

Using Eq. (54e), the second and fourth terms above are rewritten to give

S(rt, rt ) = 2
∫

dy{DR(r, t ; y)�K (y; r, t ) + (DR�K DA)r,t ;y�A(y; r, t )}

− 2
∫

dy{�K (r, t ; y)DA(y; r, t ) + �R(r, t ; y)(DR�K DA)y;r,t }. (A3)

Using Eq. (54d) and writing �A,RDA,R = U −1DA,R − 1, or equivalently DA,R�A,R = DA,RU −1 − 1, gives

S(rt, rt ) = 2U −1(t )[DR�K DA]r,t ;r,t − 2U −1(t )Tr[DR�K DA]r,t ;r,t = 0. (A4)
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2. Proof of Eq. (67)

It is convenient to write S for unequal positions and times and to express the self-energy � in terms of the G, D propagators.
Doing this, we obtain

S(r1t1, r2t2) = 1

2

∫
y
[i{DK (r1t1, y)GK (y, r1t1) + DR(r1t1, y)GA(y, r1t1) + DA(r1t1, y)GR(y, r1t1)}GA(y, r2t2)

+ i

{
DR(r1t1, y)GK (y, r1t1) + DK (r1t1, y)GA(y, r1t1)}GK (y, r2t2)]

− 1

2

∫
y
[iGR(r1t1, y){DK (y, r2t2)GK (r2t2, y) + DR(y, r2t2)GA(r2t2, y) + DA(y, r2t2)GR(r2t2, y)}

+ iGK (r1t1, y){DA(y, r2t2)GK (r2t2, y) + DK (y, r2t2)GR(r2t2, y)}]. (A5)

In order to prove momentum conservation, we need to study the action of the spatial gradients on S,

i

2

[∇α
r1

− ∇α
r2

]
S(r1t1, r2t2)|1=2 =

∫
r′t ′

[{
i∇α

r1
DK (r1t1, r′t ′)

}
�A(r′t ′, r1t1) + {

i∇α
r1

DR(r1t1, r′t ′)
}
�K (r′t ′, r1t1)

+
∫

r′t ′

[
�R(r1t1, r′t ′)

{
i∇α

r1
DK (r′t ′, r1t1)

} + �K (r1t1, r′t ′)
{
i∇α

r1
DA(r′t ′, r1t1)

}]
, (A6)

where we have used that (∂r1 − ∂r2 )[Ga(1′, 1)Gb(1′, 2) + Gb(1′, 1)Ga(1′, 2)]|
1=2

= 0. Now, denoting by dots position and time

variables that are being integrated over, and using that∫
r′t ′

{
i∇α

r1
DK (r1t1, r′t ′)

}
�A(r′t ′, r1t1) =

∫
r′t ′,.,..

i∇α
r1

DR(r1t1, .)�K (., ..)DA(.., r′t ′)�A(r′t ′, r2t1)
∣∣
r2=r1

=
∫

r′t ′,.,..
i∇α

r1
DR(r1t1, .)�K (., ..)

[
DA(.., r2t1)U −1(t1)

∣∣
r2=r1

−δ..,1
]

= i∇α
r1

DK (r1t1, r2t1)U −1(t1)
∣∣
r1=r2

−
∫

r′t ′

{
i∇α

r1
DR(r1t1, r′t ′)

}
�K (r′t ′, r1t1),

and performing a similar analysis for second last term in Eq. (A6), we obtain

i

2

[∇α
r1

− ∇α
r2

]
S(r1t, r2t )

∣∣
r1=r2=r = iU −1(t )∇α

r1
DK (r1t, r2t )

∣∣
r1=r2=r + iU −1(t )∇α

r2
DK (r1t, r2t )

∣∣
r1=r2=r

= iU −1(t )∇α
r DK (rt, rt ). (A7)

3. Proof of Eq. (72)

The manipulations involved are

i

2

(
∂t1 − ∂t2

)
S(rt1, rt2)|t1=t2=t =

∫
r′t ′

[{
i∂t1 DK (r1t1, r′t ′)

}
�A(r′t ′, r1t1) + {

i∂t1 DR(r1t1, r′t ′)
}
�K (r′t ′, r1t1)

+
∫

r′t ′

[
�R(r1t1, r′t ′)

{
i∂t1 DK (r′t ′, r1t1)

} + �K (r1t1, r′t ′)
{
i∂t1 DA(r′t ′, r1t1)

}]
= i∂t1 DK (r, t1; r, t2)U −1(t2)|t1=t2=t + i∂t2U

−1(t1)DK (r, t1; r, t2)|t1=t2=t

= iU −1(t )
[
∂t1 DK (r, t1; r, t2) + ∂t2 DK (r, t1; r, t2)

]|t1=t2=t

= iU −1∂t DK (r, t ; r, t )

= i∂t (U
−1DK (r, t ; r, t )) − iDK (r, t ; r, t )∂tU

−1(t ). (A8)

APPENDIX B: EQUIVALENCE TO LANGEVIN DYNAMICS

Using the notation of Ref. [49], the bosonic quantum (�q)
and classical (�c) fields defined on the Keldysh contour have
the following correlators:

DR(1, 2) = −i〈�c(1)�∗
q(2)〉,

DA(1, 2) = −i〈�q(1)�∗
c (2)〉, (B1)

DK (1, 2) = −i〈�c(1)�∗
c (2)〉,

where 1,2 denote both spatial and temporal indices. If DK =
DR · �K · DA, then the above correlators can equivalently be
written as a path integral over the bosonic fields as follows:

ZK =
∫

D[�c,q,�
∗
c,q]eiSK , (B2)

SK =
∫

d1
∫

d2(�∗
c �∗

q )1

(
0 D−1

A

D−1
R �K

)
1,2

(
�c

�q

)
2

.

(B3)
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According to Eq. (77) and the line below,

D−1
R (q, t, t ′) = ν

T
(∂t + λq(t ))δ(t − t ′);

�K (t, t ′) = 4iνδ(t − t ′). (B4)

One may introduce [49] an auxiliary field ξ that decouples the
|�q|2 term in the action (for notational convenience, we only
highlight the time coordinate)

e−4ν
∫

dt�q�
∗
q =

∫
D[ξ, ξ ∗]e−i

∫
dt[ξ�∗

q+ξ∗�q]e− 1
4ν

∫
dtξξ∗

.

(B5)

If we write the action in terms of this auxiliary field,

SK =
∫

d1
∫

d2

[
�∗

qD−1
R �c + �∗

cD−1
A �q

− ξ�∗
q − ξ ∗�q + i

4ν
ξξ ∗

]
. (B6)

Requiring δS/δ�∗
q = 0 gives

D−1
R �c = ξ, (B7)

where 〈ξ ∗(t )ξ (t ′)〉 = 4νδ(t − t ′). If we give the explicit ex-
pression for DR and restore the momentum label,

ν

T
(∂t + λq(t ))�c(q, t ) = ξq(t ). (B8)

It is convenient to rescale �c → √
ν
T �c, and then the

Langevin equation is

(∂t + λq(t ))�c(q, t ) =
√

T

ν
ξq(t ), (B9)

implying that �c obeys Langevin dynamics where the noise is
δ correlated with a strength equal to the temperature T .

APPENDIX C: DERIVATION OF KINETIC
COEFFICIENTS

In this section, we derive the kinetic coefficients assum-
ing a rapid quench profile λq(t ) = θ (t )λq + θ (−t )ri, where
ri/T = O(1). This condition simply ensures that the density
of superconducting fluctuations is zero at t = 0. The general-
ization to general quench profiles is formally straightforward
and summarized in the main text.

1. Derivation of Eq. (105)

The term obtained from varying nk is

Ki
J (t ) ≡ 1

2
Im

∫
dt ′ ∑

k,q

iDK (q, t, t ′)

× i[δnk+q/2(t ′) + δn−k+q/2(t ′)]

× [
vi

k+q/2 + vi
−k+q/2

]
ei(εk+q/2+ε−k+q/2 )(t−t ′ ). (C1)

Substituting Eq. (81) for DK and Eq. (103) for δnk , we see that
the above can be rewritten as

Ki
J (t ) =

∫ t

0
dt ′ ∑

q

Qi j
J (t, t ′)Fq(t ′)J j (t ′),

Qi j
J (t, t ′) ≡ m̄T

ρν
Im

∑
k

[∇ j
k neq

k+q/2 + ∇ j
k neq

−k+q/2

]
× i

(
vi

k+q/2 + vi
−k+q/2

)
ei(εk+q/2+ε−k+q/2+iλq )(t−t ′ ).

(C2)

Following the discussion in the main text, the term Qi j
J

decays exponentially with rate T , whereas J and F change
at a slower rate. Therefore, QJ appears like a δ function when
integrated against F (t )J (t ), and we may write

Ki
J (t ) ≈

∑
q

Fq(t )J j (t )Q̃i j
J (t ),

Q̃i j
J (t ) =

∫ t

0
dt ′Qi j

J (t, t ′)

≈ − m̄T

ρν

× Im
∑

k

(∇ j
k neq

k+q/2+∇ j
k neq

−k+q/2

)(
vi

k+q/2+vi
−k+q/2

)
εk+q/2+ε−k+q/2+iλq

≈vF q�T

(
− m̄T

ρν

)
Im

∑
k

qrql m−1
il ∇r

k∇ j
k neq

k

2εk + iλq

≈λq�T
πm̄T

ρν

∑
k

(
qrql m−1

il ∇r
k∇ j

k neq
k

)
δ(εk + ε−k )

= πm̄T

2ρν

∑
k

(
qrql m−1

il

∂2εk

∂r
k ∂

j
k

∂εk neq
k

)
δ(εk )

≈ m̄πqrql

4ρ

〈
m−1

jr m−1
il

〉
FS. (C3)

In the second line above, we assume t−1 � T so we are not
too close to the quench. In the third line, we take q � T/vF

and we also assume λq/T � 1.

2. Derivation of Eq. (106)

Using Eq. (81) for DK and accounting for the change in gR

due to the electric field in Eq. (86), we find

Ki
E (t ) =

∫ t

0
dt ′ ∑

q

Qi j
E (t, t ′)Fq(t ′)

ρ

m̄
E j (t ′),

Qi j
E (t, t ′)E j (t ′) ≡ − Im

m̄T

ρν

∑
k

(
neq

k+q/2 + neq
−k+q/2

)

× (
vi

k+q/2 + vi
−k+q/2

) ∫ t

t ′
ds v

j
k (Aj (t )

− Aj (s))ei(εk+q/2+ε−k+q/2+iλq )(t−t ′ ). (C4)

Assume that the frequency of the electric field ω � T ; in
this case, we may approximate the integral∫ t

t ′
ds(Aj (t ) − Aj (s)) ≈ −E j (t )(t − t ′)2/2. (C5)
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Following the discussion in the main text, the term Qi j
E decays exponentially with rate T , whereas J and F change at a slower

rate. Therefore, QE appears like a δ function when integrated against F (t )J (t ), and we may write, as we did for Qi j
J ,

Ki
E (t ) ≈

∑
q

Fq(t )
ρE j (t )

m̄
Q̃i j

E (t ),

Q̃i j
E (t ) =

∫ t

0
dt ′Qi j

E (t, t ′)

≈ m̄T

2ρν
Im

∑
k

(
neq

k+q/2 + neq
−k+q/2

)
i

(
vi

k+q/2 + vi
−k+q/2

)(
v

j
k+q/2 + v

j
−k+q/2

)
(εk+q/2 + ε−k+q/2 + iλq)3

≈ m̄T

ρν
Im

∑
k

i
qlqrm−1

il m−1
jr neq

k

(2εk + iλq)3

≈ πm̄qrql

16ρ

〈
m−1

jr m−1
il

〉
FS

∫
dxx−1 d2

dx2
tanh(x/2)

≈ 28πm̄qrql

16ρT
ζ ′(−2)

〈
m−1

jr m−1
il

〉
FS. (C6)

3. Derivation of Eq (117)

Substituting Eq. (114) into Eq. (115) and assuming t > t ′, we obtain

iδDK (t, t ′) = −ν

∫ t ′

0
dsDR(t, s)DA(s, t ′)

[ ∫ t

s
duδλq(u) +

∫ t ′

s
duδλq(u)

]
(C7)

= −2ν

∫ t ′

0
duδλq(u)

∫ u

0
dsDR(t, s)DA(s, t ′) − ν

∫ t

t ′
duδλq(u)

∫ t ′

0
dsDR(t, s)DA(s, t ′). (C8)

Using the definition of DK = DR · �K · DA with �K (t, t ′) = 4νδ(t − t ′), the above becomes

iδDK (t, t ′) = −1

2

∫ t ′

0
due−λq (t ′−u)δλq(u)iDK (t, u) − 1

4

∫ t

t ′
duδλq(u)iDK (t, t ′). (C9)

Then, we use Eq. (81) to write

iδDK (t > t ′) = −2T

2ν
e−λq (t−t ′ )

∫ t ′

0
du e−2λq (t ′−u)δλq(u)Fq(u) − T

2ν
e−λq (t−t ′ )

∫ t

t ′
duδλq(u)Fq(t ′)

= −2T

2ν
e−λq (t−t ′ )

∫ t

0
du e−2λq (t ′−u)δλq(u)Fq(u) − T

2ν
e−λq (t−t ′ )

∫ t

t ′
duδλq(u)[Fq(t ′) − 2e−2λq (t ′−u)Fq(u)]

= −2T

2ν
eλq (t−t ′ )

∫ t

0
du e−2λq (t−u)δλq(u)Fq(u) − T

2ν
e−λq (t−t ′ )

∫ t

t ′
duδλq(u)[Fq(t ′) − 2e−2λq (t ′−u)Fq(u)]

≈ −2T

2ν
eλq (t−t ′ )

∫ t

0
du e−2λq (t−u)δλq(u)Fq(u) + T

2ν
e−λq (t−t ′ )(t − t ′)δλq(t )Fq(t ), (C10)

where in the last line we used the fact that t − t ′ is of order T −1 as iDK appears along with �A. We discuss this last term further
below and show it to be parametrically smaller than the local terms calculated earlier.

We insert the second part into the collision integral, giving

4
∫ t

0
dt ′Im�′

A(t ′, t )

[
e−λq (t−t ′ ) T

ν
(t − t ′)δλq(t )Fq(t )

]

∝ δλq(t )Fq(t )Im
∑

k

i
neq

k+q/2 + neq
−k+q/2

(εk+q/2 + ε−k+q/2 − iλq)2

≈q→0 δλq(t )Fq(t )Im
∑

k

i
2neq(εk )

(2εk − iλq)2
≈ δλq(t )Fq(t )Imi

∫
dε ν

2neq(ε)

(2ε − iλq)2

≈λq→0 δλq(t )Fq(t )Re
∫

dε νP ∂εneq(ε)

ε
= 0. (C11)

Thus, this term is parametrically smaller than the local term already calculated.
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Now, we consider the full term

4
∫ t

0
dt ′Im

[
vi

k iδDK (t, t ′)�′
A(t ′, t )

] = 1

2

⎡
⎣Im

∫ t

0
dt ′ ∑

k,q

i
(
vi

k+q/2 + vi
−k+q/2

)
iδDK (t ′, t )

(
neq

k+q/2 + neq
−k+q/2

)
ei(εk+q/2+ε−k+q/2 )(t−t ′ )

⎤
⎦

≈ Im

⎡
⎣ T

2ν

∑
k,q

i
∫ t

0
dt ′(vi

k+q/2 + vi
−k+q/2

)(
neq

k+q/2 + neq
−k+q/2

)
ei(εk+q/2+ε−k+q/2−iλq )(t−t ′ )

×
∫ t

0
du

(−e−2(t−u)λqδλq(u)Fq(u)
)⎤
⎦

≈ Im

⎡
⎣ T

2ν

∑
k,q

q jm−1
i j

neq
k+q/2 + neq

−k+q/2

εk+q/2 + ε−k+q/2 − iλq

∫ t

0
du e−2(t−u)λqδλq(u)Fq(u)

⎤
⎦

≈
∑

q

ql T

2ν

∑
k

m−1
il

neq(εk )λq

4ε2
k + λ2

q

∫ t

0
due−2(t−u)λqδλq(u)Fq(u)

=
∑

q

T ql

2ν

(∑
k

m−1
il

neq(εk )λq

4ε2
k + λ2

q

) ∫ t

0
due−2(t−u)λq Fq(u)

2q jm̄

ρM

[
J j (u) +

∫ t

u
dt ′ ρE j (t ′)

m̄

]

=
∑

q

αqiq jλq

∫ t

0
due−2(t−u)λq Fq(u)

[
J j (u) +

∫ t

u
dt ′ ρE j (t ′)

m̄

]
. (C12)

Above, in the second last line, we used the expression for δλq in Eq. (114).

APPENDIX D: DERIVATION OF EQ. (167)

Let us now discuss the limiting behaviors of h(z0). If
z0 � 1, the integral is restricted to the region x̄ � 1 and we
may approximate (1 − e−x̄ )/x̄ ≈ 1. Therefore, in this limit,
we have Re[h] ≈ 2z0

+. If |z0
+| � 1, then we split the integral

at x̄ = 1. The lower part∫ 1

0
dx̄

1 − e−x̄

x̄

[
(z0

+)2 − x̄
]−1/2

∼
∫ 1

0
dx̄

1 − e−x̄

x̄

1

z0+

(
1 + x̄

2(z0+)2
+ · · ·

)

∝ 1

z0+
+ O((z0

+)−2). (D1)

Whereas in the part from 1 to ∞, the exponential may be
neglected, leaving the leading part∫ ∞

1
dx̄

1

x̄
[(z0

+)2 − x̄]−1/2 ∼ log (z0
+)2

z0+
. (D2)

Thus, we have Eq. (167).

APPENDIX E: DERIVATION OF EQ. (175)

We record here some facts about f (z) as a function in the
complex plane. It may be written as

f (z) = 1√
z2 + 1

[
log

(√
z2 + 1 + z√
z2 + 1 − z

)
− π isgn�z

]
.

(E1)

It is analytic in the upper and lower half planes separately with
a branch cut along the real axis. The points z = ±i which
appear singular are in fact smooth. One may also convince
oneself that | f (z)| � π for all z, reaching this limit only when
z = 0 ± iδ. It is also an injective function of z. In addition, we
have that as z → ∞,

f (z) ∼ 2
log z

z
, (E2)

and that f is pure imaginary on the imaginary axis. Causality
requires that z± have no zeros or branch cuts in the upper
half complex ω plane, but there will be analytic structure as
a function of ε.

Let us first test the validity of the perturbative approxi-
mation. To zeroth order, we set z± = z0

±. To first order, we
substitute this into the rhs of Eqs. (170) and (171) and obtain

z± = z0
± + γ f (z0

∓) (E3)

and to second order

z± = z0
± + γ f (z0

∓ + γ f (z0
±))

≈ z0
± + γ f (z0

∓) + γ 2 f ′(z0
∓) f (z0

±). (E4)

Comparing the first and second corrections, we see that the
latter is smaller when

γ �
∣∣∣∣ f (z0

∓)

f ′(z0∓)

1

f (z0±)

∣∣∣∣. (E5)

Considering the various limits, we see that the rhs is always at
least O(1) so the perturbative treatment is always valid if
γ � 1. Making the very coarse approximation
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| f | ∼ min(1, |z−1|), we get roughly

γ � min(1, |z0
+|) · min(1, |z0

−|). (E6)

This may still be satisfied even if γ � 1. If ω/T � 1/Gi,
the perturbative limit will hold for all ε. With the weaker
condition ω2/T 2 � Gi, the perturbative limit holds except in
the narrow region |ε ± ω|/T � √

ε, which gives only a small
contribution to δν(ω).

Now let us consider the behavior in the simplest case when
z0
± = 0. In this case, we have a self-consistent solution when

z± = ∓iy, y real, y > 0, since this is equivalent to finding a
solution to

−iy(γ ) = γ f (iy(γ )), (E7)

which is possible since f is imaginary on the imaginary axis.
In the limiting case of γ � 1, we get y2 ∼ γ log y2, which
gives to logarithmic accuracy,

y ∼
√

γ log γ . (E8)

In the limit γ � 1, using the expansion of f (z) for small
argument, we obtain z± ≈ ∓iγπ + O(γ 2).

Now let us advance to the case z0
± = c ∈ R. Recall ω = 0.

This has a self-consistent solution when z+ = z = z∗
−,

z − c = γ f (z∗), (E9)

since f (z)∗ = f (z∗). The perturbative condition in this case is

γ � 1/| f ′(c)| ∼ c2/ log |c2|. (E10)

Thus, the perturbative regime begins when c � y(γ ). In this
limit, we obtain the usual perturbative result by setting z ≈ c.

In the opposite limit, let us assume |z| � 1, |c|. On these
assumptions, writing z = −i|z|e−iφ , and comparing real and
imaginary parts of

(z − c)z∗ = γ log(−(z∗)2)

⇒ |z|2 − ic|z|eiφ = 2γ [log |z| + iφ],

we obtain

|z|2 + c|z| sin φ = γ log |z|2, (E11)

and − c|z| cos φ = 2γφ. (E12)

On the assumption |z| � |c|, the first line above gives |z| =
y(γ ). The second line can be rearranged to give

φ

cos φ
= −c

y(γ )

2γ
. (E13)

Thus, φ goes from π/2 to −π/2 as c goes from −∞ to
∞. We may split this into two limits. When c � γ /y(γ ) =
y(γ )/ log y(γ ), we have that φ � 1 and so the cos may be set
to 1 giving φ = −cy(γ )/2γ , and thus

z = −i|z|(1 − iφ) = −iy(γ ) + c log(γ )/2. (E14)

In the other limit, cy(γ )/γ � 1 is large so φ is close to ±π/2.
Let us take c > 0, and then

φ = −π

2
+ πγ

cy(γ )
, (E15)

so that z is given by

z = −ieiπ/2|z|
(

1 − i
πγ

cy(γ )

)
= y(γ ) − i

πγ

c
. (E16)

This is almost identical to the perturbative calculation with a
slight correction to the real part.

We can collect all of these limits,

z =

⎧⎪⎨
⎪⎩

−iy(γ ) + c log(γ )/2 c � y(γ )/ log(γ )

y(γ ) − i πγ

c y(γ )/ log(γ ) � c � y(γ )

c + γ

c [log c2 − π i] y(γ ) � c

,

(E17)
where in the last case, we have used the perturbative expan-
sion in Eq. (E4).

We are now in a position to estimate the density of states
for ω = 0, γ � 1, and c = ε/T

√
r. We start from

ν(ω)

ν0
= 1

π
�

∫ ∞

−∞
dε

1√
rT z(ω = 0, ε)

. (E18)

We combine the positive and negative integrals over ε or c,

ν(ω)

ν0
= 1

π
�

∫ ∞

0
dc

[
1

z(c)
+ 1

z(−c)

]
. (E19)

Next, we use the fact that at ω = 0, z(c) = −z(−c)∗, which
follows from the above calculation. This can also be seen
from noting that f (−z) = − f (z). Then, we use z+(c) =
c + iδ + γ f (z−(c)) = c + iδ + γ f (z∗

+(c)). We take c → −c
and conjugate so that this becomes z∗

+(−c) = −c − iδ +
γ f (z+(−c)) = −c − iδ − γ f (−z+(−c)). Thus, z+(−c)∗ =
−z+(c) is a solution of the above equation as this simulta-
neously requires f (−z+(−c)) = f (z∗

+(c)). Using this gives

ν(ω = 0)

ν0
= 2

π

∫ ∞

0
dc

[ �z(c)

[�z(c)]2 + [�z(c)]2

]
. (E20)

Now we split this integral into three regions, according to the
asymptotics above,∫ ∞

0
dc

[ �z(c)

[�z(c)]2 + [�z(c)]2

]
= I1 + I2 + I3, (E21)

where

I1 ≡
∫ y(γ )/ log γ

0
dc

[ �z(c)

[�z(c)]2 + [�z(c)]2

]

=
∫ y(γ )/ log γ

0
dc

[
y(γ )

[c log(γ )/2]2 + [y(γ )]2

]
, (E22)

define u ≡ c
log γ

y(γ )
,

I1 = 1

log γ

∫ 1

0
du

[
1

(u/2)2 + 1

]
∝ 1

log γ
, (E23)

I2 ≡
∫ y(γ )

y(γ )/ log y(γ )
dc

[ �z(c)

[�z(c)]2 + [�z(c)]2

]

=
∫ y(γ )

y(γ )/ log γ

dc

[
πγ /c

y(γ )2 + [πγ /c]2

]
, (E24)
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define u = c · y(γ )/γ ≈ c ˙log(γ )/y(γ ),

I2 = γ

y(γ )2

∫ log y(γ )

1
du

[
π/u

1 + [π/u]2

]

≈ γ

y(γ )2

∫ log y(γ )

1
du

π

u
∝ 1

log γ
log log y(γ )

∝ 1

log γ
. (E25)

Here, we are treating log log γ as an O(1) constant, which has
been the order of our precision throughout:

I3 ≡
∫ ∞

y(γ )
dc

[ �z(c)

[�z(c)]2 + [�z(c)]2

]
(E26)

=
∫ ∞

y(γ )
dc

[
γπ/c

c2 + [γπ/c]2

]

≈
∫ ∞

y(γ )
dc

γπ

c3
= 2π

γ

y(γ )2
= 2π

log y(γ )

≈ 4π

log γ
. (E27)

Thus, we see that all terms contribute ∝ 1/ log γ , and
therefore we have that

ν(ω = 0) ∝ ν0

log (Gi/8πr)
. (E28)
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