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Making trotters sprint: A variational imaginary time ansatz for quantum many-body systems
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We introduce a variational wave function for many-body ground states that involves imaginary-time evolution
with two different Hamiltonians in an alternating fashion with variable time intervals. We successfully apply
the ansatz on the one- and two-dimensional transverse-field Ising model and systematically study its scaling for
the one-dimensional model at criticality. We find the total imaginary time required scales logarithmically with
system size, in contrast to the linear scaling in conventional quantum Monte Carlo. We suggest this is due to
unique dynamics permitted by alternating imaginary-time evolution, including exponential growth of bipartite
entanglement. For generic models, the superior scaling of our ansatz potentially mitigates the negative sign
problem at the expense of having to optimize variational parameters.
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I. INTRODUCTION

Imaginary time plays a prominent role in multiple branches
of physics, including cosmology, statistical mechanics, and
quantum field theory. The seemingly simple replacement of
real time, t , with its imaginary counterpart, τ = −it , leads to
fundamental connections between quantum theory and statis-
tical mechanics [1]. Such connections enable the efficient sim-
ulation of many quantum systems using quantum Monte Carlo
techniques [2–4]. However, for many physically interesting
models, these methods suffer from the prohibitive “negative
sign problem” [5,6], which requires an exponential amount
of computational resources to obtain reasonable accuracy for
quantum many-body systems. Many outstanding problems in
condensed matter, such as those involving high-temperature
superconductors or topologically ordered phases, require an
understanding of complex interacting models which are un-
solved with present techniques.

One class of Monte Carlo methods that can avoid the sign
problem are so-called variational Monte Carlo (VMC) meth-
ods [7–11]. In VMC, one assumes a sufficiently general trial
state that depends on adjustable parameters. These parameters
are then chosen to minimize the energy with respect to the
given Hamiltonian. Finding an effective trial state such as
Jastrow [11], matrix product states [12–14], or neural network
states [15–18], can result in efficient simulation of interacting
quantum systems. The key to the success of these techniques
is a well-chosen ansatz that reflects the properties of the
target phase and the existence of a viable optimization scheme
[19,20].

The recent advent of quantum computers and simulators
has motivated the development of new variational approaches
[21]. Such variational quantum algorithms involve applying
a sequence of unitary operators, parametrized by several
variables onto a easy-to-prepare initial state. The variables are
chosen to optimize a given cost function involving the result-
ing wave function. For example, in the quantum approximate

optimization algorithm (QAOA) [22–26] the cost function is a
classical Hamiltonian encoding a combinatorial optimization
problem, and the variational wave function is prepared by
alternating between evolving with the Hamiltonian and a
transverse field. The evolution times constitute variational
parameters that are optimized to minimize the Hamiltonian
cost function. This variational approach has been generalized
for preparing both strongly correlated and highly entangled
states on near-term quantum devices [27–29].

Motivated by the success of such variational approaches,
in this paper we propose a variational ansatz for ground states
of quantum many-body systems which involves sequentially
evolving with different Hamiltonians in imaginary time. In
contrast to real-time evolution with local Hamiltonians, which
is limited by Lieb-Robinson bounds on the growth of correla-
tion functions, imaginary-time evolution does not have this
constraint and can exhibit remarkable efficiency in traversing
Hilbert space.

As proof of concept, we demonstrate the efficiency of our
ansatz in representing the ground state of the transverse-field
Ising model at criticality. Whereas standard projector methods
require imaginary-time scaling with system size L to reach
the critical ground state, we show numerically that our ansatz
requires time scaling logarithmically with L. Furthermore, we
analyze how entanglement grows after each imaginary-time
operation in our ansatz, and we find an exponential growth
that is a unique feature of imaginary-time dynamics. We con-
clude by demonstrating that the ansatz continues to perform
well in the presence of integrability-breaking perturbations,
and we mention generalizations of our ansatz to other models,
including those with sign problems. We envision the main
purpose of this ansatz to be an efficient trial wave function
for quantum many-body physics on (classical) computers;
however, it is possible that one can also implement such
imaginary-time evolution natively on a quantum computer
[30,31].
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II. ANSATZ

Many Hamiltonians are naturally a linear combination of
two components H = HA + gHB, where HA,B are individually
tractable to analyze. Examples include transverse-field Ising,
Hubbard, and the J1-J2 model. Motivated by the QAOA pro-
cedure, we consider the following variational imaginary-time
ansatz (VITA) for the ground state of H :

|ψP(α,β)〉 = N e−βPHB e−αPHA · · · e−β1HB e−α1HA |ψ0〉, (1)

where P is the number of pairs of variational parameters α =
(α1, . . . , αP ),β = (β1, . . . , βP ), |ψ0〉 is an initial state, and N
is a normalization factor. We further define the total imaginary
time τ = 1

2

∑P
p=1(αp + βp). A circuit representation is shown

in Fig. 1. The bang-bang, or square-pulse, style of the ansatz
is optimal for quantum control in real-time QAOA as per
Pontryagin’s principle [32].

While VITA is applicable to any Hamiltonian, in specific
cases there is explicit physical motivation for considering such
an ansatz. For example, for the fermionic Hubbard model,
the P = 1 ansatz reduces to Otsuka’s generalization of the
Gutzwiller variational wave function [7,9,10], which seeks
to balance single occupancy per site with itinerancy. The
P � 3 case has been considered in Ref. [33] for the two-
dimensional Hubbard model, but a systematic analysis of how
its performance scales with system size and P was not carried
out. A related variational approach for the Hubbard model has
also been considered in Ref. [34].

The standard projector method for attaining the ground
state of H involves evaluating e−τH |ψ0〉 for τ � 1/� where
� is the many-body spectral gap. This can be decomposed
via Trotterization into a sequence of the VITA form, with
parameters αp = βp = τ/2P for large P. This guarantees that
VITA can exactly represent the ground state in the P → ∞
limit. However, the projector method is especially expensive
for critical systems where � ∼ 1/L, and hence τ scales poly-
nomially with L. One can consider Eq. (1) as a nonuniform
Trotterization with large (and variable) time steps. We will
show that remarkably high fidelities can be attained even with
τ that is exponentially smaller compared to the aforemen-
tioned estimate from the standard projector method.

We first present some general considerations of why such
an ansatz may be efficient. It is useful to first compare with
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FIG. 1. Circuit representation of the trial state |ψP(α, β)〉 for
P = 1. Each box denotes imaginary-time evolution with the enclosed
Hamiltonian.
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FIG. 2. (a) Relative error in energy, εrel, between the exact
ground state energy, Eexact , and the energy of the optimized trial wave
function EP(α, β). (b) Number of pulses P needed to obtain a desired
accuracy in the fidelity, f , for a given system size, L. The white
region was not computed in the present study.

the real-time analog, which are QAOA-type circuits involving
alternating real-time evolution between two Hamiltonians.
The Lieb-Robinson bound dictates that real-time evolution
with local Hamiltonians can generate correlations only within
a light cone, and thus there are lower bounds on the time it
takes to prepare highly correlated states starting from unen-
tangled product states. For example, in one dimension, the
total time to prepare the Greenberger-Horne-Zeilinger (GHZ;
“cat”) state 1√

2
(|11 · · · 1〉 + |00 · · · 0〉) scales at least linearly

with system size L [28,35]. In contrast, by evolving with the
GHZ parent Hamiltonian HZZ = −∑L

i=1 ZiZi+1 in imaginary
time (Z is the Pauli-Z matrix), the GHZ state can be prepared
with imaginary-time scaling as log L [36].

III. APPLICATION

We test VITA on the transverse-field Ising model (TFIM)

H = HZZ + hHX ≡ −
N∑

i=1

ZiZi+1 − h
N∑

i=1

Xi (2)

with periodic boundary conditions on a system with N spins.
Z, X are the Pauli matrices, and h is the transverse-field
strength. Our ansatz in this case starts from the paramagnetic
ground state of HX , |+〉, and alternates between HA = HZZ

and HB = HX .
The Ising chain can be mapped to free fermions via

the Jordan-Wigner transformation [37] which allows for the
efficient evaluation of Eq. (1). We can thus optimize our
ansatz for very large system sizes and several pulses. This
allows us to properly characterize how efficient the VITA
ansatz is without introducing sampling error. For a fixed P,
optimization involves finding the minima of the energy cost
function EP(α,β) = 〈ψP(α,β)|H |ψP(α,β)〉.

We first focus on approximating the critical ground state
of H at h = 1. Figure 2(a) shows the relative error in energy
εrel = |(EP(α,β) − Eexact )/Eexact| where Eexact is the exact
ground state energy at the critical point, for various P. Ev-
idently, increasing P dramatically improves the accuracy in
the energy, even for large system sizes. Optimized parameters
for various P are provided in the Supplemental Material [38].

Since the exact ground state for the TFIM is known,
we also compare the fidelity, f , of the optimized trial state
with the target state. The error in fidelity, 1 − f ≡ 1 −
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|〈ψexact|ψP(α,β)〉|2, is shown in Fig. 2(b) for various P, L. The
efficiency is quite remarkable; for example, for L = 64, P = 2
is already sufficient to approximate the critical state to within
around 10−4 in relative energy and 10−2 in fidelity. Recall that
the error in fidelity provides an upper bound for the error in
any observable [38].

IV. ENTANGLEMENT DYNAMICS

While there is no Lieb-Robinson bound limiting the rate
for generating long-range correlations in our ansatz, entangle-
ment considerations provide lower bounds on the iterations P
required to prepare the critical state. Ignoring normalization,
imaginary-time evolution with a local Hamiltonian can be
represented by a (nonunitary) quantum circuit; each iteration
of our ansatz corresponds to three layers shown in Fig. 1.
After P pulses, the bipartite entanglement entropy between
the left and right halves of the system, hereafter abbreviated
EE, can be attained by bisecting the circuit through P bonds.
Hence, EE after P iterations is at most P log D, where D is the
Schmidt rank (number of singular values) upon decomposing
a single two-qubit imaginary-time operator.

In order to generate the EE of the critical state, which scales
as S ∝ log L, we need the number of pulses scaling at least
as P ∝ log L. We observe that Fig. 2(b) is consistent with
this scaling form. For example, for a target fidelity error of
10−10, each additional P in the ansatz can represent a system
approximately twice as large.

The entanglement dynamics in imaginary-time evolution
can be considerably different from its real-time counterpart.
For real-time evolution, EE across a bipartition can increase
only by acting with an operator supported on both sides of the
partition. If the circuit in Fig. 1 were unitary, any increase in
EE from one layer to the next would be bounded by a constant
depending on the two-qubit unitary but not on the state being
acted on (see the “small incremental entangling theorem”
[39]). In contrast, even imaginary-time operators acting on
one side of the bipartition can generate entanglement across
the cut. As a very simple example involving two spins, the
action of e−βZ1 on η+|11〉 + η−|00〉 can increase EE as long as
|η+| > |η−| > 0. This illustrates that the more entangled the
initial state, the more imaginary-time evolution can change
the entanglement. The change is not simply bounded by a
state-independent constant. This allows in principle an expo-
nential growth of EE, as long as the total EE after P steps lies
below P log D.

Our ansatz exhibits such dynamics. We take the P = 5
ansatz and analyze the EE of the states at intermediate steps,
p, of our protocol using the technique of [40,41]. We find
that the EE increases exponentially with imaginary time
[Fig. 3(a)]. Moreover, for every intermediate state, we plot the
mutual information (SA + SB − SAB) between two spins A, B
as a function of their separation [Fig. 3(b)]. The power-law
decay for every step is in stark contrast to any local real-
time evolution and illustrates the ability of imaginary-time
evolution to generate long-range correlations [42]. We find
that under imaginary-time evolution, entanglement starts to
grow immediately following a local quench, in contrast to
real-time evolution [43] where it takes a time proportional
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FIG. 3. (a) Entanglement entropy of half partition grows ex-
ponentially with imaginary time τ , in the optimal P = 5 ansatz
for the critical state. (b) Mutual information between two spins at
positions A and B, respectively, as a function of their distance �x,
for intermediate steps p in the P = 5 protocol with L = 64.

to 	 before growing, 	 being the distance between the location
of the local quench and the entanglement cut.

V. SCALING

To compare directly with the projector method, we also
investigate the total imaginary time τ ≡ 1

2

∑P
p=1(αp + βp) re-

quired to achieve a target fidelity. Motivated by the P ∝ log L
scaling for achieving a target fidelity, we propose a scaling
form of 1 − f = G[τ (log L)−ν] for some exponent ν. In
Fig. 4, we perform a scaling collapse for L ∈ [4, 6, . . . , 1024],
and P ∈ [1, . . . , 7] and find the optimal exponent
ν = 2.3 ± 0.1. This logarithmic scaling is an exponential
speedup compared to the linear scaling of the projector
method, 1 − f = F (τL−1) [44].

VI. MONTE CARLO APPROACH

While the TFIM model admits a dual representation as
free fermions, for a general model sampling methods are
crucial for estimating the energy cost function. As a proof of
concept, we also use Monte Carlo sampling for stochastically
optimizing VITA.

The quantum-classical correspondence maps quantum
observables to dual classical observables of a classical
anisotropic Ising model on an L × (2P + 1) lattice. We denote
the classical spin configurations by {s} and the spatial and
imaginary time by (i, p), respectively [45].
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FIG. 4. Collapse of the infidelity log(1 − f ) = G( τ

(log L)ν ) with

ν = 2.3. The fit is a power law log(1 − f ) = 175x1.85 with x =
τ

(log L)ν .
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FIG. 5. Relative error in energy, εrel, for VMC using our ansatz
on the TFIM: (a) one-dimensional model with L = 64 spins. Solid
lines denote the results from the free fermion approach. (b) Two-
dimensional model on a 10 × 10 square lattice. Energies are com-
pared with those from zero-temperature stochastic series expansion
[47].

The expectation value of a quantum observable O is

〈ψP(α,β)|O|ψP(α,β)〉 =
∑

{s}
Õ(s) pα,β(s), (3)

where Õ are dual classical observables, and pα,β(s) is the
Boltzmann weight corresponding to the Ising model with
couplings Jx(p) = αp, Jτ (p) = 1

2 ln coth βp between nearest
neighbors in space and imaginary time, respectively. The
couplings vary with imaginary time, p, but are uniform in
space. In this way, the energy of the trial wave function can
be sampled efficiently with Monte Carlo.

We use this scheme with P = 1, 2 to target the ground
states for various values of the transverse field h in both
the (integrable) one-dimensional and the (nonintegrable) two-
dimensional TFIM. We use stochastic natural gradient descent
(stochastic reconfiguration) to optimize the parameters [20].
We find rapid convergence for P = 1, while higher P becomes
more difficult, especially for with a noisy objective function.

The relative error in energy achieved is shown in Fig. 5,
with the free fermion results for comparison. For P = 1 the
VMC achieves the same accuracy as the free fermion method.
However, for P = 2 away from the critical point h = 1, the
VMC performance is limited by sampling error [46].

VII. DISCUSSION

We have introduced a variational technique that is mo-
tivated by both projector methods and recently developed

quantum algorithms. It provides substantial shortcuts to the
usual Trotterization of imaginary-time evolution, at the ex-
pense of making the procedure variational. Using TFIM as
a first testbed, we have demonstrated that this ansatz is viable
for sampling methods and highly efficient. In particular, the
number of variational parameters required to represent the
TFIM critical state scales as ∼log L, in contrast to other
variational methods such as density matrix renormalization
group, which in this critical case requires bond dimension
scaling with L and thus the number of parameters scaling with
L2. One reason for this efficiency is the fact that imaginary-
time evolution is not subject to many bounds for real-time
evolution; despite being generated by local Hamiltonians, our
ansatz exhibits an exponential growth of entanglement en-
tropy and rapid generation of long-range correlations, features
unique to imaginary-time evolution.

Our variational approach is potentially useful in the many
situations where imaginary-time Trotterization involves a pro-
hibitively large number of steps. For example, in models with
a sign problem, the computational cost scales exponentially
with space and imaginary time O(τLd ). Our ansatz provides
a variational shortcut that significantly reduces τ [from τ ∼ L
to τ ∼ (log L)2.3 in the critical one-dimensional TFIM] which
could enable the study of larger systems even with a sign
problem. For few variational parameters (P = 1, 2), the op-
timization may be feasible, and we leave these investigations
to future work.

ACKNOWLEDGMENTS

The authors would like to thank J. Carrasquilla, L. E.
Hayward Sierens, E. Inack, and B. Kulchytskyy for many
useful discussions. This research was supported by the Nat-
ural Sciences and Engineering Research Council of Canada
(NSERC), the Canada Research Chair program, and the
Perimeter Institute for Theoretical Physics. This work was
made possible by the facilities of the Shared Hierarchical
Academic Research Computing Network (SHARCNET) and
Compute/Calcul Canada. Research at Perimeter Institute is
supported by the Government of Canada through Industry
Canada and by the Province of Ontario through the Ministry
of Research and Innovation. T.G. is supported by the National
Science Foundation under Grant No. DMR-1752417, and
through an Alfred P. Sloan Research fellowship. This research
was supported in part by the National Science Foundation
under Grant No. NSF PHY-1748958.

[1] G. C. Wick, Properties of Bethe-Salpeter Wave Functions, Phys.
Rev. 96, 1124 (1954).

[2] D. C. Handscomb, The Monte Carlo method in quantum sta-
tistical mechanics, Math. Proc. Cambridge Philos. Soc. 58, 594
(1962).

[3] R. Blankenbecler and R. L. Sugar, Projector Monte Carlo
method, Phys. Rev. D 27, 1304 (1983).

[4] Anders W. Sandvik and Juhani Kurkijärvi, Quantum Monte
Carlo simulation method for spin systems, Phys. Rev. B 43,
5950 (1991).

[5] E. Y. Loh, J. E. Gubernatis, R. T. Scalettar, S. R. White, D. J.
Scalapino, and R. L. Sugar, Sign problem in the numerical

simulation of many-electron systems, Phys. Rev. B 41, 9301
(1990).

[6] M. Troyer and U.-J. Wiese, Computational Complexity and
Fundamental Limitations to Fermionic Quantum Monte Carlo
Simulations, Phys. Rev. Lett. 94, 170201 (2005).

[7] Martin C. Gutzwiller, Effect of Correlation on the Ferromag-
netism of Transition Metals, Phys. Rev. Lett. 10, 159 (1963);
Correlation of Electrons in a Narrow s Band, Phys. Rev. 137,
A1726 (1965).

[8] D. Ceperley, G. V. Chester, and M. H. Kalos, Monte Carlo
simulation of a many-fermion study, Phys. Rev. B 16, 3081
(1977).

094434-4

https://doi.org/10.1103/PhysRev.96.1124
https://doi.org/10.1103/PhysRev.96.1124
https://doi.org/10.1103/PhysRev.96.1124
https://doi.org/10.1103/PhysRev.96.1124
https://doi.org/10.1017/S0305004100040639
https://doi.org/10.1017/S0305004100040639
https://doi.org/10.1017/S0305004100040639
https://doi.org/10.1017/S0305004100040639
https://doi.org/10.1103/PhysRevD.27.1304
https://doi.org/10.1103/PhysRevD.27.1304
https://doi.org/10.1103/PhysRevD.27.1304
https://doi.org/10.1103/PhysRevD.27.1304
https://doi.org/10.1103/PhysRevB.43.5950
https://doi.org/10.1103/PhysRevB.43.5950
https://doi.org/10.1103/PhysRevB.43.5950
https://doi.org/10.1103/PhysRevB.43.5950
https://doi.org/10.1103/PhysRevB.41.9301
https://doi.org/10.1103/PhysRevB.41.9301
https://doi.org/10.1103/PhysRevB.41.9301
https://doi.org/10.1103/PhysRevB.41.9301
https://doi.org/10.1103/PhysRevLett.94.170201
https://doi.org/10.1103/PhysRevLett.94.170201
https://doi.org/10.1103/PhysRevLett.94.170201
https://doi.org/10.1103/PhysRevLett.94.170201
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1103/PhysRevLett.10.159
https://doi.org/10.1103/PhysRev.137.A1726
https://doi.org/10.1103/PhysRev.137.A1726
https://doi.org/10.1103/PhysRev.137.A1726
https://doi.org/10.1103/PhysRev.137.A1726
https://doi.org/10.1103/PhysRevB.16.3081
https://doi.org/10.1103/PhysRevB.16.3081
https://doi.org/10.1103/PhysRevB.16.3081
https://doi.org/10.1103/PhysRevB.16.3081


MAKING TROTTERS SPRINT: A VARIATIONAL … PHYSICAL REVIEW B 100, 094434 (2019)

[9] H. Otsuka, Variational Monte Carlo Studies of the Hubbard
model in one- and two-Dimensions—Off-diagonal intersite cor-
relation effects, J. Phys. Soc. Jpn. 61, 1645 (1992).

[10] D. Baeriswyl, Variational schemes for many-electron sys-
tems, in Nonlinearity in Condensed Matter, Springer Series
in Solid-State Sciences, edited by Alan R. Bishop, David K.
Campbell, Pradeep Kumar, and Steven E. Trullinger (Springer,
Berlin/Heidelberg, 1987), pp. 183–193.

[11] F. Becca and S. Sorella, Quantum Monte Carlo Approaches
for Correlated Systems, 1st ed. (Cambridge University Press,
Cambridge, United Kingdom/New York, NY, 2017).

[12] F. Verstraete, D. Porras, and J. I. Cirac, Density Matrix
Renormalization Group and Periodic Boundary Conditions: A
Quantum Information Perspective, Phys. Rev. Lett. 93, 227205
(2004).

[13] A. W. Sandvik and G. Vidal, Variational Quantum Monte Carlo
Simulations with Tensor-Network States, Phys. Rev. Lett. 99,
220602 (2007).

[14] G. Vidal, Classical Simulation of Infinite-Size Quantum Lattice
Systems in One Spatial Dimension, Phys. Rev. Lett. 98, 070201
(2007).

[15] G. Carleo and M. Troyer, Solving the quantum many-body
problem with artificial neural networks, Science 355, 602
(2017).

[16] N. Freitas, G. Morigi, and V. Dunjko, Neural network oper-
ations and Susuki–Trotter evolution of neural network states,
Int. J. Quantum. Inf. 16, 1840008 (2018).

[17] E. M. Inack, G. E. Santoro, L. Dell’Anna, and S. Pilati, Projec-
tive quantum Monte Carlo simulations guided by unrestricted
neural network states, Phys. Rev. B 98, 235145 (2018).

[18] S. Pilati, E. M. Inack, and P. Pieri, Self-learning projective quan-
tum Monte Carlo simulations guided by restricted Boltzmann
machines, arXiv:1907.00907.

[19] C. J. Umrigar, K. G. Wilson, and J. W. Wilkins, Optimized Trial
Wave Functions for Quantum Monte Carlo Calculations, Phys.
Rev. Lett. 60, 1719 (1988).

[20] S. Sorella, Green Function Monte Carlo with Stochastic Re-
configuration, Phys. Rev. Lett. 80, 4558 (1998); Generalized
Lanczos algorithm for variational quantum Monte Carlo, Phys.
Rev. B 64, 024512 (2001); Wave function optimization in the
variational Monte Carlo method, ibid. 71, 241103(R) (2005).

[21] Tyson Jones, Suguru Endo, Sam McArdle, Xiao Yuan, and
Simon C. Benjamin, Variational quantum algorithms for dis-
covering Hamiltonian spectra, Phys. Rev. A 99, 062304 (2019).

[22] E. Farhi, J. Goldstone, and S. Gutmann, A quantum approxi-
mate optimization algorithm, arXiv:1411.4028.

[23] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D.
Lukin, Quantum approximate optimization algorithm: Perfor-
mance, mechanism, and implementation on near-term devices,
arXiv:1812.01041.

[24] Z. Wang, S. Hadfield, Z. Jiang, and E. G. Rieffel, Quantum
approximate optimization algorithm for MaxCut: A fermionic
view, Phys. Rev. A 97, 022304 (2018).

[25] S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel, D.
Venturelli, and R. Biswas, From the quantum approximate op-
timization algorithm to a quantum alternating operator ansatz,
Algorithms 12, 34 (2019).

[26] G. Verdon, J. M. Arrazola, K. Brádler, and N. Killoran, A
quantum approximate optimization algorithm for continuous
problems, arXiv:1902.00409.

[27] D. Wecker, M. B. Hastings, and M. Troyer, Progress towards
practical quantum variational algorithms, Phys. Rev. A 92,
042303 (2015).

[28] W. W. Ho and T. H. Hsieh, Efficient variational simulation of
non-trivial quantum states, SciPost Phys. 6, 029 (2019).

[29] W. W. Ho, C. Jonay, and T. H. Hsieh, Ultrafast variational simu-
lation of nontrivial quantum states with long-range interactions,
Phys. Rev. A 99, 052332 (2019).

[30] S. McArdle, T. Jones, S. Endo, Y. Li, S. Benjamin, and X. Yuan,
Variational quantum simulation of imaginary time evolution,
arXiv:1804.03023.

[31] M. Motta, C. Sun, A. T. K. Tan, M. J. O’Rourke, E. Ye, A. J.
Minnich, F. G. S. L. Brandao, and G. K.-L. Chan, Quantum
imaginary time evolution, quantum Lanczos, and quantum ther-
mal averaging, arXiv:1901.07653.

[32] Z.-C. Yang, A. Rahmani, A. Shabani, H. Neven, and C.
Chamon, Optimizing Variational Quantum Algorithms Using
Pontryagin’s Minimum Principle, Phys. Rev. X 7, 021027
(2017).

[33] T. Yanagisawa, S. Koike, and K. Yamaji, Off-diagonal wave
function Monte Carlo studies of Hubbard model I, J. Phys.
Soc. Jpn. 67, 3867 (1998); T. Yanagisawa, Crossover from
weakly to strongly correlated regions in the two-dimensional
Hubbard model—Off-diagonal wave function Monte Carlo
studies of Hubbard model II, ibid. 85, 114707 (2016); Anti-
ferromagnetism, superconductivity and phase diagram in the
two-dimensional Hubbard model—Off-diagonal wave function
Monte Carlo studies of Hubbard model III, ibid. 88, 054702
(2019).

[34] M.-S. Vaezi and A. Vaezi, A unified theory of variational and
quantum Monte Carlo methods and beyond, arXiv:1810.00864.

[35] S. Bravyi, M. B. Hastings, and F. Verstraete, Lieb-Robinson
Bounds and the Generation of Correlations and Topological
Quantum Order, Phys. Rev. Lett. 97, 050401 (2006).

[36] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.100.094434 for a short proof that τ scales
as log L for the GHZ state preparation.

[37] E. Lieb, T. Schultz, and D. Mattis, Two soluble models of an
antiferromagnetic chain, Ann. Phys. (NY) 16, 407 (1961).

[38] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.100.094434 for the optimal parameters de-
pendence on L and P.

[39] M. Mariën, K. M. R. Audenaert, K. Van Acoleyen, and F.
Verstraete, Entanglement rates and the stability of the area law
for the entanglement entropy, arXiv:1411.0680.

[40] I. Peschel, Calculation of reduced density matrices from
correlation functions, J. Phys. A: Math. Gen. 36, L205
(2003).

[41] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Entanglement
in Quantum Critical Phenomena, Phys. Rev. Lett. 90, 227902
(2003); J. I. Latorre, E. Rico, and G. Vidal, Ground state
entanglement in quantum spin chains, Quantum Inf. Comput.
4, 48 (2004).

[42] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.100.094434 for considerations of a
local quench in imaginary time in a conformal field
theory.

[43] P. Calabrese and J. Cardy, Evolution of entanglement entropy in
one-dimensional systems, J. Stat. Mech.: Theory Exp. (2005)
P04010; Entanglement and correlation functions following a

094434-5

https://doi.org/10.1143/JPSJ.61.1645
https://doi.org/10.1143/JPSJ.61.1645
https://doi.org/10.1143/JPSJ.61.1645
https://doi.org/10.1143/JPSJ.61.1645
https://doi.org/10.1103/PhysRevLett.93.227205
https://doi.org/10.1103/PhysRevLett.93.227205
https://doi.org/10.1103/PhysRevLett.93.227205
https://doi.org/10.1103/PhysRevLett.93.227205
https://doi.org/10.1103/PhysRevLett.99.220602
https://doi.org/10.1103/PhysRevLett.99.220602
https://doi.org/10.1103/PhysRevLett.99.220602
https://doi.org/10.1103/PhysRevLett.99.220602
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1126/science.aag2302
https://doi.org/10.1142/S0219749918400087
https://doi.org/10.1142/S0219749918400087
https://doi.org/10.1142/S0219749918400087
https://doi.org/10.1142/S0219749918400087
https://doi.org/10.1103/PhysRevB.98.235145
https://doi.org/10.1103/PhysRevB.98.235145
https://doi.org/10.1103/PhysRevB.98.235145
https://doi.org/10.1103/PhysRevB.98.235145
http://arxiv.org/abs/arXiv:1907.00907
https://doi.org/10.1103/PhysRevLett.60.1719
https://doi.org/10.1103/PhysRevLett.60.1719
https://doi.org/10.1103/PhysRevLett.60.1719
https://doi.org/10.1103/PhysRevLett.60.1719
https://doi.org/10.1103/PhysRevLett.80.4558
https://doi.org/10.1103/PhysRevLett.80.4558
https://doi.org/10.1103/PhysRevLett.80.4558
https://doi.org/10.1103/PhysRevLett.80.4558
https://doi.org/10.1103/PhysRevB.64.024512
https://doi.org/10.1103/PhysRevB.64.024512
https://doi.org/10.1103/PhysRevB.64.024512
https://doi.org/10.1103/PhysRevB.64.024512
https://doi.org/10.1103/PhysRevB.71.241103
https://doi.org/10.1103/PhysRevB.71.241103
https://doi.org/10.1103/PhysRevB.71.241103
https://doi.org/10.1103/PhysRevB.71.241103
https://doi.org/10.1103/PhysRevA.99.062304
https://doi.org/10.1103/PhysRevA.99.062304
https://doi.org/10.1103/PhysRevA.99.062304
https://doi.org/10.1103/PhysRevA.99.062304
http://arxiv.org/abs/arXiv:1411.4028
http://arxiv.org/abs/arXiv:1812.01041
https://doi.org/10.1103/PhysRevA.97.022304
https://doi.org/10.1103/PhysRevA.97.022304
https://doi.org/10.1103/PhysRevA.97.022304
https://doi.org/10.1103/PhysRevA.97.022304
https://doi.org/10.3390/a12020034
https://doi.org/10.3390/a12020034
https://doi.org/10.3390/a12020034
https://doi.org/10.3390/a12020034
http://arxiv.org/abs/arXiv:1902.00409
https://doi.org/10.1103/PhysRevA.92.042303
https://doi.org/10.1103/PhysRevA.92.042303
https://doi.org/10.1103/PhysRevA.92.042303
https://doi.org/10.1103/PhysRevA.92.042303
https://doi.org/10.21468/SciPostPhys.6.3.029
https://doi.org/10.21468/SciPostPhys.6.3.029
https://doi.org/10.21468/SciPostPhys.6.3.029
https://doi.org/10.21468/SciPostPhys.6.3.029
https://doi.org/10.1103/PhysRevA.99.052332
https://doi.org/10.1103/PhysRevA.99.052332
https://doi.org/10.1103/PhysRevA.99.052332
https://doi.org/10.1103/PhysRevA.99.052332
http://arxiv.org/abs/arXiv:1804.03023
http://arxiv.org/abs/arXiv:1901.07653
https://doi.org/10.1103/PhysRevX.7.021027
https://doi.org/10.1103/PhysRevX.7.021027
https://doi.org/10.1103/PhysRevX.7.021027
https://doi.org/10.1103/PhysRevX.7.021027
https://doi.org/10.1143/JPSJ.67.3867
https://doi.org/10.1143/JPSJ.67.3867
https://doi.org/10.1143/JPSJ.67.3867
https://doi.org/10.1143/JPSJ.67.3867
https://doi.org/10.7566/JPSJ.85.114707
https://doi.org/10.7566/JPSJ.85.114707
https://doi.org/10.7566/JPSJ.85.114707
https://doi.org/10.7566/JPSJ.85.114707
https://doi.org/10.7566/JPSJ.88.054702
https://doi.org/10.7566/JPSJ.88.054702
https://doi.org/10.7566/JPSJ.88.054702
https://doi.org/10.7566/JPSJ.88.054702
http://arxiv.org/abs/arXiv:1810.00864
https://doi.org/10.1103/PhysRevLett.97.050401
https://doi.org/10.1103/PhysRevLett.97.050401
https://doi.org/10.1103/PhysRevLett.97.050401
https://doi.org/10.1103/PhysRevLett.97.050401
http://link.aps.org/supplemental/10.1103/PhysRevB.100.094434
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(61)90115-4
http://link.aps.org/supplemental/10.1103/PhysRevB.100.094434
http://arxiv.org/abs/arXiv:1411.0680
https://doi.org/10.1088/0305-4470/36/14/101
https://doi.org/10.1088/0305-4470/36/14/101
https://doi.org/10.1088/0305-4470/36/14/101
https://doi.org/10.1088/0305-4470/36/14/101
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1103/PhysRevLett.90.227902
http://link.aps.org/supplemental/10.1103/PhysRevB.100.094434
https://doi.org/10.1088/1742-5468/2005/04/P04010
https://doi.org/10.1088/1742-5468/2005/04/P04010
https://doi.org/10.1088/1742-5468/2005/04/P04010


BEACH, MELKO, GROVER, AND HSIEH PHYSICAL REVIEW B 100, 094434 (2019)

local quench: A conformal field theory approach, ibid. (2007)
P10004.

[44] L. Liu, A. W. Sandvik, and W. Guo, Typicality at quantum-
critical points, Chin. Phys. B 27, 087501 (2018).

[45] This is a slight abuse of notation since 1 � p � P in Eq. (1).
However, this may be permitted since there are only p unique
time couplings Jt (p) due to the lattice symmetry.

[46] Of course the statistical error in Monte Carlo can be made
arbitrarily small given long enough runtime since the sampling
error goes as O(N−1/2

MC ) for NMC Monte Carlo sweeps. This

guarantees that VMC will converge to the free fermion solution
in Fig. 5(a) if the globally optimal parameters can be found. The
computational time of the MC sampling is O(τcorrNMC) where
the autocorrelation time τcorr ∼ (PN )γ is a polynomial function
of PN for N spins and P pulses of VITA.

[47] A. W. Sandvik, Ground State Projection of Quantum Spin
Systems in the Valence-Bond Basis, Phys. Rev. Lett. 95, 207203
(2005); Anders W. Sandvik, Stochastic series expansion method
for quantum Ising models with arbitrary interactions, Phys. Rev.
E 68, 056701 (2003).

094434-6

https://doi.org/10.1088/1742-5468/2007/10/P10004
https://doi.org/10.1088/1742-5468/2007/10/P10004
https://doi.org/10.1088/1742-5468/2007/10/P10004
https://doi.org/10.1088/1674-1056/27/8/087501
https://doi.org/10.1088/1674-1056/27/8/087501
https://doi.org/10.1088/1674-1056/27/8/087501
https://doi.org/10.1088/1674-1056/27/8/087501
https://doi.org/10.1103/PhysRevLett.95.207203
https://doi.org/10.1103/PhysRevLett.95.207203
https://doi.org/10.1103/PhysRevLett.95.207203
https://doi.org/10.1103/PhysRevLett.95.207203
https://doi.org/10.1103/PhysRevE.68.056701
https://doi.org/10.1103/PhysRevE.68.056701
https://doi.org/10.1103/PhysRevE.68.056701
https://doi.org/10.1103/PhysRevE.68.056701

