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Phase boundary location with information-theoretic entropy in tensor renormalization group flows
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We present a simple and efficient tensor network method to accurately locate phase boundaries of two-
dimensional classical lattice models. The method utilizes only the information-theoretic (von Neumann) entropy
of quantities that automatically arise along tensor renormalization group [Phys. Rev. Lett. 99, 120601 (2007)]
flows of partition functions. We benchmark the method against theoretically known results for the square-lattice
q-state Potts models, which includes first-order, weakly first-order, and continuous phase transitions, and find
good agreement in all cases. We also compare against previous Monte Carlo results for the frustrated square
lattice J1-J2 Ising model and find good agreement.
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I. INTRODUCTION

Tensor networks serve as a powerful ansätze for many-
body quantum wave functions and many-body classical
partition functions [1,2]. Algorithms to find tensor network
representations of quantum wave functions or classical par-
tition functions entail discarding the irrelevant portions of
Hilbert space or state space to find representations that are nu-
merically efficient. The pioneering example of this is the den-
sity matrix renormalization group (DMRG) [3], devised for
wave functions of one-dimensional quantum lattices, but also
applicable to two-dimensional classical lattices [4] through
the well known quantum-classical correspondence. The first
developments explicitly for two-dimensional classical lattices
were transfer matrix-based algorithms [5–7], followed by
the block-spin like tensor renormalization group (TRG) [8]
algorithm. Variations of TRG were then developed [9–22] for
better accuracy and enhanced capability, such as applicability
in higher dimensions. These tensor network algorithms do not
suffer from the notorious sign problem that sometimes arises
in Monte Carlo simulations.

Tensor network methods can be used to locate and
characterize phase boundaries of classical lattice models
either via the type of thermodynamic analysis that is done
with Monte Carlo or through nonthermodynamic analysis.
Thermodynamic analysis entails calculation of higher order
moments of physical quantities, which is a highly nontrivial
task with tensor networks. Nevertheless, a recent work [23]
showed how to accomplish this to high accuracy with higher
order TRG (HOTRG) [12] and used it to compute the phase
transition temperature, transition order (i.e., first order vs
continuous), and critical exponents for the two-, three-,
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four-, five-, and seven-state Potts models on the square
lattice. Nonthermodynamic analysis can be done through
computations with the fixed point tensors from TRG-type
algorithms. These fixed point tensors encode the degeneracy
of the phase in a very simple way [10], and an abrupt
change in the degeneracy indicates a phase transition. This
approach has been used, for example, with HOTRG to
compute the critical temperature of the two-state Potts model
on the simple cubic lattice to very high precision [24].
Additionally, computations of the central charge and scaling
dimensions from the fixed point tensors [10,13,17] can locate
continuous phase transitions and yield their critical exponents
(exceptional cases may be continuous transitions that do not
have conformal invariance, such as the phase transition in the
four-state Potts model on the square lattice).

In this work we deal with an alternative nonthermodynamic
quantity for phase boundary location: von Neumann entropy.
A few recent works [25–28] have utilized von Neumann
entropy to locate phase boundaries of two-dimensional (2D)
classical lattices with the corner transfer matrix renormal-
ization group (CTMRG) algorithm [5,6], but we are not
aware of any works that do so with TRG. Here we explain
the straightforward use of von Neumann entropy for phase
boundary location of 2D classical lattice models with the TRG
algorithm. In contrast to the thermodynamic approach, the
von Neumann entropy TRG method presented here is vastly
simpler because it does not require computation of higher
order moments. In contrast to the phase degeneracy method,
the von Neumann entropy TRG method does not require
coarse graining deep into the thermodynamic limit and does
not require encoding of symmetries (numerical instability can
blur the transition point in the phase degeneracy method if
symmetries are not encoded, as seen in Ref. [29]). In contrast
to the approach of computing central charge, which locates
only continuous transitions, the von Neumann entropy TRG
method can locate both first-order and continuous transitions.
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FIG. 1. von Neumann entropy of the singular value spectrum
along TRG flows of the partition function at different temperatures
near criticality for the q = 4 Potts model on the square lattice. The
bond dimension chosen here is χ = 20, and the entropy peak along
each of these flows is found in less than 1 s on a current desktop
computer. For a given χ , the temperature that maximizes the entropy
peak (in this case T = 0.90948, solid line) is designated as the
transition temperature.

On the other hand, the von Neumann entropy TRG method
is specific to only two-dimensional lattices and cannot char-
acterize the phase boundary, whereas the other approaches
(both thermodynamic and nonthermodynamic) are applicable
in higher dimensions as well and can characterize the phase
boundary (except for the phase degeneracy method).

The use of von Neumann entropy as a signal for 2D
classical phase transitions comes through the well known
correspondence between (1 + 1)D quantum and 2D classical
models. In particular, the phase transition of a 2D classical
model coincides with a phase transition of the same type
in a corresponding (1 + 1)D quantum model. In a (1 + 1)D
quantum model the von Neumann entropy of the reduced
density matrix of a (sufficiently large) contiguous subsystem
is maximal at a phase transition, and this entropy maximum
also marks a phase transition in the corresponding 2D classical
model. TRG simulations of 2D classical model have direct
access to the von Neumann entropy of the corresponding
(1 + 1)D quantum system, and can therefore use it to lo-
cate the phase boundaries of 2D classical models. We show
below that tuning 2D classical models to maximize this
von Neumann entropy in TRG simulations gives the location
of their phase transitions to good accuracy.

In the following sections we first review the relevant the-
oretical background of TRG (Secs. II and III), then describe
the implementation of our method (Sec. IV). In Sec. V we
benchmark against the theoretically known transition temper-
atures of the square lattice q-state Potts models, which exhibit
different transitions (depending on the value of q): first order,
weakly first order, and continuous. In Sec. VI we apply our
method to the frustrated J1-J2 Ising model on the square lattice
and compare our results to previously published Monte Carlo
results.

II. TRG FLOWS OF PARTITION FUNCTIONS
NEAR PHASE BOUNDARIES

Partition functions of two-dimensional classical lattices
can be represented as contractions of two-dimensional net-
works of tensors [8] where each tensor corresponds to a few
lattice sites. An example given in Ref. [8] for the partition
function (Z) of a honeycomb lattice model is

Z =
∑

i jk···
Ai jkAilmA jnpAkqr · · · , (1)

where Ai jk is a three-leg tensor corresponding to three mi-
croscopic degrees of freedom. The TRG algorithm begins
with a few (or even just one) tensors at the UV scale and
applies a succession of steps, each of which simultaneously
grows and coarse grains the lattice. The growth of the lattice
is exponential in the number of TRG steps, which makes
calculation of the thermodynamic partition function compu-
tationally feasible: after tens of TRG steps, a single tensor
represents many degrees of freedom rather than just a few, and
tracing over only one or a few tensor(s) becomes sufficient
to approximate the partition function in the thermodynamic
limit. For example, in the case of a monopartite square lattice
the TRG algorithm may start with a single tensor correspond-
ing to a system size of 2 × 2, and after N TRG steps end with a
single tensor that corresponds to a system size of 2N/2 × 2N/2.

TRG coarse graining entails an information compression
scheme, based on the singular value decomposition, that in
many cases allows the coarse grained tensors of a partition
function to have low compression error (a.k.a. “truncation
error”) while still keeping the dimension of their indices
(a.k.a. “bond dimension”) within computationally feasible
limits. More precisely, the minimum bond dimension required
for maintaining low truncation error grows with each coarse
graining step in the early part of the TRG flow of a partition
function, but saturates to a finite value when the coarse

TABLE I. Numerical and theoretical phase transition temperatures (kBT/J) for the q-state Potts models on the square lattice. ξ is the
theoretically known correlation length [47,48] at the transition (when approached from the higher temperature phase). The numerical values
are obtained with our TRG von Neumann entropy method to five decimal places with different values of the bond dimension χ . There is good
agreement with the theoretically known values. Parameter sweeps are very cheap with our method: a single TRG flow with χ = 40 for q = 4
at the (numerical) transition temperature 0.91083 takes about 30 s on a current desktop computer.

q-state Potts q = 3 q = 4 q = 5 q = 6 q = 10
sq. lattice (ξ = ∞) (ξ = ∞) (ξ = 2512.2) (ξ = 158.9) (ξ = 10.6)

TRG, χ = 20 0.99795 0.90948 0.85037 0.80901 0.70553
TRG, χ = 30 0.99453 0.91140 0.85099 0.80657 0.70257
TRG, χ = 40 0.99494 0.91083 0.85193 0.80716 0.70247
Theory 0.99497 0.91024 0.85153 0.80761 0.70123
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FIG. 2. Transition temperatures (with kB = |J1| = 1) for the q-
state Potts models on the square lattice from theory and as computed
with our TRG von Neumann entropy method at different bond
dimensions (χ ) to precision 10−4.

graining approaches the correlation length of the system. Near
criticality, however, the correlation length diverges, and TRG
breaks down in the sense that the minimum bond dimension
required for maintaining low truncation error grows without
saturating at a computationally feasible value. TRG coarse
graining to the thermodynamic limit with low truncation error
therefore becomes computationally prohibitive for partition
functions near criticality (i.e., the tensors required become too
large). Similarly, the finite but very large correlation lengths
that are a hallmark of weakly first-order phase transitions can
also make low-loss TRG flows to the thermodynamic limit
computationally prohibitive. Crucially, our method of using
TRG flows to locate phase boundaries does not require the
TRG flows to always maintain low truncation error. Therefore,
TRG flows with bond dimension (χ ) fixed at computationally
modest sizes are sufficient for our method.

III. TRG VON NEUMANN ENTROPY AS GROUND STATE
ENTANGLEMENT ENTROPY

The correspondence between 2D classical and (1 + 1)D
quantum systems means that a theoretical understanding of
our method can be gained by considering the entanglement
properties of ground states of (1 + 1)D quantum spin chains
and their finite-χ tensor network representations. We discuss
here the specific case of matrix product states (MPSs) [30–34]
due to the availability of relevant results. The wave function
of a (1 + 1)D quantum spin chain with N sites may be repre-
sented as a MPS: |�〉 = ∑d

s1,...,sN =1 Tr(As1
1 · · · AsN

N )|s1 · · · sN 〉,
where the Aj are tensors of dimension d × χ × χ , d is the
dimension of spin s j at site j, and χ is again referred to as the
bond dimension.

For a bipartite quantum system AB in a pure state, the
subsystems A and B may each still have a mixed (i.e., un-
certain) state due to quantum correlations (i.e., entanglement)
between A and B. The resulting “entanglement entropy” of
subsystem A is defined as S = −tr(ρAlog2ρA). It is useful to
consider the entanglement entropy of a contiguous subblock
in both infinite and finite (1 + 1)D quantum spin chains. In
the ground state of the chain, the entanglement entropy of
such a contiguous subblock, as well as its MPS representation,
exhibits universal properties near and at criticality [35–44].

In the ground state of an infinite chain, the entanglement
entropy of the infinite half-chain diverges near criticality as
S ∝ log(ξ ), where ξ is the correlation length of the system.
In an infinite MPS (iMPS) [33,34] representation, however,
the finite bond dimension causes the entanglement entropy to
saturate to a finite maximum near the critical point (the dis-
tance from the critical point goes to zero as χ → ∞) [42,43].
The finite χ of iMPSs also leads to a χ -dependent universal
scaling behavior of local observables, which enables a “finite
entanglement scaling” (FES) [42,43] analysis analogous to the
well known finite size scaling (FSS) analysis.

A finite-length (L) contiguous subblock of an infinite chain
has entanglement entropy constant in L off criticality and
logarithmic in L at criticality (for sufficiently large L) [38].
This behavior also occurs for contiguous subblocks of suffi-
ciently large finite chains in the ground state [38], but with
a modification: at criticality the entanglement entropy grows
logarithmically over a finite range of L but then saturates and
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starts to decrease after reaching half the chain length due
to the finiteness of the system. Thus, in either case (infinite
chain or large, finite chain), there is a range of L for which
the entanglement entropy is maximal at the critical point.
For finite chains, MPS representations with sufficiently large
χ can reproduce this behavior. Furthermore, it was shown
for the case of periodic boundary conditions that such finite
MPSs exhibit a crossover (as a function of χ and system
size) between regimes where either FSS or FES is valid [44].
For the entanglement entropy this means a crossover between
S ∝ log(L) and S ∝ log(χ ).

The upshot is that in all of the above cases of (1 + 1)D
quantum systems and their finite-entanglement (i.e., finite-χ )
tensor network representations, the critical point can be ap-
proximately identified with the parameter value that maxi-
mizes the entanglement entropy. The same must also be true
for first-order transitions if the correlation length on both sides
of the transition is maximal at the transition (this is intuitively
expected to be the usual case). In the present work, we
wish to investigate how well this information-theoretic way
of locating phase boundaries of (1 + 1)D quantum systems
translates to two-dimensional classical lattice models via the
quantum-classical correspondence in TRG.

The quantum-classical correspondence in the case of TRG
is such that the tensor at each step in a TRG flow of a classical
2D partition function corresponds to a representation of a
(1 + 1)D quantum ground state imagined to live on the bound-
ary of the classical system [8]. The gap of the corresponding
classical and quantum systems is the same, and each tensor
leg corresponds to a contiguous subblock of the periodic
(1 + 1)D quantum system whose size grows exponentially in
the number of TRG steps. For the example of a square lattice,
this can be summarized as

|�〉 ≈
∑

i jkl

Ai jkl |ψi〉|ψ j〉|ψk〉|ψl〉, (2)

where |�〉 is the boundary ground state wave function, Ai jkl

is the TRG tensor, and |ψi〉 is a pure state of the contiguous
subblock corresponding to tensor leg i. Here it is manifest
that the TRG tensor encodes the entanglement between the
subblocks of the (1 + 1)D quantum chain. At each TRG
step, a singular value spectrum results from a singular value
decomposition of the reshaped tensor, e.g., A(i j)(kl ). Therefore,
the von Neumann entropy of the singular value spectrum at a
particular TRG step corresponds to the entanglement entropy
of a contiguous subblock of the boundary (1 + 1)D quantum
system at that step. This is also the case for HOTRG [45].

Near criticality the finite value of χ results in a crossover
in the behavior of the entanglement entropy growth from
linear to constant in TRG step (see Fig. 1 for an example);
this is qualitatively like the FSS to FES crossover known
for periodic MPS [44] and also the scaling crossover near
criticality in CTMRG [46]. Furthermore, Ueda et al. [45]
quantitatively confirmed the presence of FES in HOTRG
flows of the critical partition function of the Ising model in the
region after the crossover. We therefore make the following
conjecture: FES is generically valid after the von Neumann
entropy crossover in TRG flows of critical partition functions.
Combining this conjecture with the behavior of entanglement
in the FES regime of (1 + 1)D quantum systems (i.e., that the
entanglement entropy is maximal very close to the true critical
point) and the quantum-classical correspondence, we arrive
at the simple idea behind the method described in the next
section: the maximum of the TRG von Neumann entropy after
the crossover gives a good approximation for the location of
the phase boundary. The benchmarks below validate this idea.

In passing, we note here the result in Ref. [44] that ground
states of critical MPS rings in the FES regime correctly
capture local universal properties in spite of having vanishing
overlap with the true ground states.

IV. METHOD

In our simulations we always find that the von Neumann
entropy of singular values in TRG flows of partition functions
reaches a maximum along the flow just before plateauing in
the FES regime (see Fig. 1 for an example). Though larger lat-
tice sizes (i.e., more TRG steps) intuitively give better results
in the absence of truncation error, it is of no benefit to grow
the lattice further once the FES regime is reached since the
numerical correlation length has then reached the limit set by
χ . The number of TRG steps N after which the FES regime is
entered is model and χ dependent, but the generic existence of
the entropy peak along TRG flows allows us to accommodate
all scenarios in an algorithmically simple way. Therefore,
we implement our method around the peak value of the von
Neumann entropy along individual TRG flows: for the TRG
flow at a given temperature and χ we simply monitor the von
Neumann entropy along the flow and find the step Npeak after
which the von Neumann entropy decreases for five consecu-
tive steps. We then record the von Neumann entropy at step
Npeak as the peak entropy value for that temperature and χ .
As illustrated in Fig. 1, for a given χ the temperature that
maximizes this peak entropy is designated as the transition
temperature. For first-order transitions there is no emergent

TABLE II. Numerical phase transition temperatures (kBT/|J1|) for the J1-J2 Ising model on the square lattice as determined with our TRG
von Neumann entropy method to three decimal places and with Monte Carlo in Ref. [49], except the MC value for J2

|J1| = 0.6 is approximated
from the plot in Fig. 3 of Ref. [50]. Our method is very efficient [e.g., a single TRG flow with χ = 30 at the (numerical) transition temperature
for J2

|J1| = 0.8 completes in about 5 s on a current desktop computer], but still gives results in agreement with Monte Carlo.

J1-J2 sq. lattice J2
|J1| = 0.1 J2

|J1| = 0.3 J2
|J1| = 0.4 J2

|J1| = 0.6 J2
|J1| = 0.8

TRG, χ = 20 1.946 1.256 0.868 0.973 1.568
TRG, χ = 30 1.943 1.255 0.868 0.972 1.568
TRG, χ = 40 1.944 1.255 0.867 0.972 1.568
Monte Carlo 1.952 1.258 0.873 ∼0.95 1.567
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criticality or FES regime, but we may still use the same
method by assuming that the physical correlation length is
maximal at the phase boundary. We show with benchmarks
below that this method works very well with only modest
χ for continuous, weakly first-order, and regular first-order
phase transitions, and that it works for both unfrustrated and
frustrated systems.

V. BENCHMARKS: POTTS MODELS

Here we benchmark our method with theoretical results
for the q-state Potts models on the square lattice [52]; the
Hamiltonian is

H = −J
∑

〈i, j〉
δσi,σ j , (3)

where J > 0, δ is the Kronecker delta function, 〈 〉 denotes
nearest neighbors, and σ = 1, 2, . . . , q. For q � 4 the phase
transition is theoretically known as continuous, and for q > 4
it is first order. For q = 5 the phase transition is very weakly
first order (i.e., has a finite but very large correlation length);
the strength of the first-order nature increases with q (i.e., the
correlation length becomes smaller).

In Table I we compare the transition temperatures (kBT/J)
from our method (to precision 10−5) with the theoretically
known values kBT ∗/J = 1/ln(1 + √

q). Further data at more
values of χ is shown in Fig. 2. Our method performs very
well with only moderate values of χ , and the numerical
results (nonmonotonically) approach the theoretical results as
χ increases.

VI. APPLICATION: J1-J2 ISING MODEL

Here we compare our method’s results with previous
Monte Carlo results for the (frustrated) J1-J2 Ising model on
the square lattice. The Hamiltonian is

H = J1

∑

〈i, j〉
σiσ j + J2

∑

〈〈i, j〉〉
σiσ j, (4)

where σ =↑,↓, 〈 〉 denotes nearest neighbors, and 〈〈 〉〉 de-
notes next nearest (i.e., diagonal) neighbors.

In Table II we compare the transition temperatures from
our method with the values obtained in the Monte Carlo
studies in Refs. [49,50]. With only moderate values of χ , the
results from our method match closely with the Monte Carlo
results. Further comparison between the methods is provided
in Fig. 3, which displays the computed transition values of
J2/|J1| at fixed temperatures with different values of χ . As
illustrated in the schematic phase diagram in Fig. 4, this model
has more than one phase transition in J2/|J1| over a range of
temperatures; we arbitrarily choose one at each temperature
for the data in Fig. 3.

VII. SUMMARY

By leveraging the (1 + 1)D quantum to 2D classical corre-
spondence known to exist in TRG and what is already known
about the behavior of the entanglement entropy in MPSs near
criticality, we have shown that the von Neumann entropy of
the singular values that arise in computationally efficient TRG
flows of partition functions near first-order, weakly first-order,
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FIG. 3. Transition values of J2/|J1| for the frustrated Ising model
phase transitions denoted in Fig. 4 at different T (with kB = |J1| =
1) as computed with our TRG von Neumann entropy method at
different bond dimensions (χ ) to precision 10−3 and as computed
with Monte Carlo in Ref. [49] or theoretically known [51].
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FIG. 4. Schematic diagram of the phase boundaries (blue solid
lines) in the J1-J2 Ising model on the square lattice. Arrows indicate
the phase transitions analyzed in Fig. 3 at the respective temperatures
(dashed black lines).

and continuous phase transitions can provide an accurate
location of phase transitions in spite of the presence of large
truncation errors.

Due to it’s combination of simplicity, efficiency, and accu-
racy, the method presented here has the potential to become a
standard tool for locating phase boundaries of 2D classical

lattice models. Though restricted to only phase boundary
location of two-dimensional classical systems, the method
presented here is extremely fast, much simpler than perform-
ing thermodynamic analysis, does not require encoding of
symmetries, and is applicable to both first-order and contin-
uous phase transitions.

We note that the method described here can also work with
two-dimensional HOTRG instead of TRG; it is an avenue for
further investigation to see if using this method with HOTRG
instead of TRG can yield better accuracy at similar cost.
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APPENDIX

Tensor network representations of classical partition func-
tions are not unique [11]. We detail here the particular
representation that we use for the TRG flows of the parti-
tion function of the frustrated Ising model of Eq. (4). The
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FIG. 5. Illustration of the construction of the repeated single tensor (A) that represents the partition function Z for the frustrated Ising model
in Eq. (4). The tensor A is used as the initial tensor for the TRG flows. The definitions of the tensors are given in the Appendix. (a) An initial
network of tensors corresponding to a plaquette is contracted then split. (b) The split parts are then contracted with Kronecker delta functions
to form the initial tensor A. (c) The partition function can be represented as a contraction of the network of A tensors.
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representation is that of a single repeated tensor, whose con-
struction was pointed out by Evenbly [53].

We illustrate the construction in Fig. 5. The strategy is to
contract a single plaquette of the partition function on the real
lattice and then split and reshape it so that the next nearest
neighbor interactions of the original plaquette become nearest
neighbor interactions between the new tensors. Let E and F be
2 × 2 symmetric matrices with elements Emn = δmne−βJ1/2 +
(1 − δmn)eβJ1/2 and Fmn = δmne−βJ2 + (1 − δmn)eβJ2 , where δ

is the Kronecker delta function. Matrices E and F along
with four-index Kronecker delta functions form the tensor
network at the top of Fig. 5(a), where each leg represents

an index of the associated tensor and connected legs rep-
resent a contraction of the corresponding tensors over the
corresponding indices. The network is first contracted into
tensor Bi jkl and then reshaped into the symmetric matrix
B(i j)(kl ) and split with an eigendecomposition into matrices
L(i j)x and Rx(kl ) such that B(i j)(kl ) = L(i j)xRx(kl ), where L(i j)x =
U(i j)vsgn(D)vw(

√|D|)wx, Rx(kl ) = (
√|D|)xzU

−1
z(kl ), and D is a

diagonal matrix of eigenvalues from the eigendecomposition
(Einstein summation convention applies). L and R are then
reshaped into three-index tensors and contracted with three-
index Kronecker delta functions to yield the single repeated
tensor for the partition function: Aabcd = RaklδkbiLi jcδld j .
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