
PHYSICAL REVIEW B 100, 094427 (2019)

Pronounced 2
3 magnetization plateau in a frustrated S = 1 isolated spin-triangle compound:

Interplay between Heisenberg and biquadratic exchange interactions
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We report the synthesis and characterization of a new quantum magnet [2-[Bis(2-hydroxybenzyl)
aminomethyl]pyridine]Ni(II)-trimer (BHAP-Ni3) in single-crystalline form. Our combined experimental and
theoretical investigations reveal an exotic spin state that stabilizes a robust 2/3 magnetization plateau between
7 and 20 T in an external magnetic field. AC-susceptibility measurements show the absence of any magnetic
order/glassy state down to 60 mK. The magnetic ground state is disordered and specific-heat measurements
reveal the gapped nature of the spin excitations. Most interestingly, our theoretical modeling suggests that the
2/3 magnetization plateau emerges due to the interplay between antiferromagnetic Heisenberg and biquadratic
exchange interactions within nearly isolated spin S = 1 triangles.
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I. INTRODUCTION

A spin triangle with nearest-neighbor antiferromagnetic
(AFM) interactions is the most fundamental building block
to comprehend consequences of magnetic frustration [1–3].
As the archetypical model for investigating frustration-driven
quantum behaviors, efforts have been made to explore the
novel and exotic magnetic phase diagram in frustrated tri-
angular spin systems both from theoretical and experimental
perspectives. Those efforts have unfolded the existence of
unusual and intricate spin states of quantum origin. One of
such interesting phenomena is the existence of fractional mag-
netization plateaus in the field dependence of magnetization.
Such plateaus are instigated by quantum fluctuations which
promote the lifting of a continuous ground-state degeneracy
in an antiferromagnetic Heisenberg triangular spin system
[2,4–7].

In many cases, the appearance of a 1/3 magnetization
plateau has been observed. Chubukov et al. showed that in a
two-dimensional (2D) AFM triangular system, quantum fluc-
tuations favor an up-up-down type collinear spin arrangement
leading to a 1/3 plateau in the presence of a magnetic field
(H) where the net magnetization is 1/3 of the fully polarized
state [4]. So far, 1/3 plateaus have been observed in frustrated
triangular systems such as C6Eu, Cs2CuBr4, RbFe(MoO4)2,
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Rb4Mn(MoO4)3, CsFe(SO4)2, GdPd2Al3, Ba3NiSb2O9, and
Ba3CoSb2O9 [8–15]. There is also one example (a {Cu3-As}-
type triangular spin ring), where a 1/2 plateau was observed
in a triangular antiferromagnet [16]. Other metal-organic
frameworks including triangular Ni rings were found to have
ferromagnetic coupling between Ni atoms and, hence, show
no fractional magnetization plateau at all [17,18].

In this work, we report on the magnetic properties of a new
frustrated metal-organic system Ni3O6N6C60H54 ([2-[Bis(2-
hydroxybenzyl)aminomethyl]pyridine]Ni(II)-trimer; abbrevi-
ated as BHAP-Ni3 below). Contrary to other 2D/layered
systems with antiferromagnetic spin-spin couplings, BHAP-
Ni3 provides an excellent opportunity to investigate the
physics of a fundamental frustrated spin-triangle unit as it
consists of Ni2+ (S = 1) triangles with each triangular unit
being essentially magnetically decoupled from the others due
to the large intertriangle Ni-Ni distances (Fig. 1). In addition,
the small spin value of Ni (S = 1) is suitable in preserving the
quantum character of the magnetism involved.

Our investigation reveals that BHAP-Ni3 has a magneti-
cally disordered Stot = 0 ground state. Under the influence of
a magnetic field, this system reaches a quasistable state |Sz =
1, Sz = 1, Sz = −1〉 with two S = 1 quantum spins in the
Sz = 1 and one in the Sz = −1 configuration [19] producing a
very feeble anomaly near 1/3 of the saturation magnetization
(MS). With further increase in field, a nontrivial Stot = 2 state
(|1, 1, 0〉) emerges, where two spins are aligned along the field
direction and one spin is in its Sz = 0 configuration. This state
stabilizes a 2/3 plateau in the magnetization curve, which
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FIG. 1. (a) A perspective view of the Ni2+ (red spheres) spin tri-
angle along with the exchange interactions (yellow lines) in BHAP-
Ni3. Each Ni ion is situated in a distorted octahedral environment
(gray shadow) formed by four O (green spheres) and two N (light
blue spheres) ions. (b) Distribution of isolated spin triangles in the
lattice, light (dark) red circles denote Ni ions in the lower (upper)
layer along the a direction. (c) Zero-field-cooled magnetization as a
function of temperature. The magnetic field was applied both parallel
(M‖) and perpendicular (M⊥) to the triangle plane. (d) Temperature
dependence of the real part of the ac susceptibility measured without
and at several magnetic fields applied within the triangle plane (H‖).

spans a wide range of field. To our knowledge, such a clear
and robust 2/3 plateau has not been realized so far. The only
example could be Cs2CuBr4, where only a weak anomaly was
visible near 2

3 MS [9,20]. Theoretical modeling of the system
by anisotropic antiferromagnetic exchange interactions and
single-ion anisotropy cannot account for this 2/3 plateau. It
turns out that including biquadratic exchange between the Ni
atoms in the modeling of the system is essential to explain its
magnetic behavior at large magnetic fields. Therefore, BHAP-
Ni3 is one of the rare physical systems where biquadratic
exchange drives the magnetic properties and could serve as
a model to study the interplay of quadrupolar and dipolar
exchange.

II. SYNTHESIS AND CHARACTERIZATION

The single crystals of BHAP-Ni3 were grown using
a wet-chemical synthesis technique. A room-temperature
single-crystal x-ray diffraction study shows that BHAP-Ni3

crystallizes in a monoclinic structure (space group P21/n)
with lattice parameters a = 12.9067 Å, b = 29.1872 Å, c =
15.4992 Å, and β = 96.86◦. The unit cell is composed of
Ni-triangle units where the Ni-Ni bond lengths are 2.87, 2.92,
and 3.42 Å, respectively. These triangles are quite isolated as
the shortest distance between the two Ni ions of two different
triangular units is 9.29 Å, see Fig. 1(b). More details of the
synthesis and subsequent structural analysis are provided in
Appendices B and C.

III. RESULTS AND DISCUSSION

DC-magnetization (M) measurements up to 14 T were
performed under zero-field cooled protocol in a vibrating-
sample magnetometer. The ac-susceptibility measurements
were carried out in a dilution refrigerator down to 60 mK.
The high-field magnetization was studied up to 40 T using a
pulsed-field magnet equipped with a 3He cryostat. Specific-
heat measurements were performed down to 360 mK by
means of the relaxation method (HC option, PPMS9, Quan-
tum Design). Using electron spin resonance (ESR) measure-
ments, the paramagnetic g factor was extracted from the linear
fit of the frequency-field dependence, revealing g = 2.23.

To calculate the magnetic properties of BHAP-Ni3, we
constructed a spin model for an isolated Ni triangle, which
involves strongly asymmetric AFM exchange terms between
the nickel spins. The model was solved using exact diagonal-
ization to calculate the magnetization, magnetic susceptibility,
and specific heat. A direct comparison between theory and
experiment unravels the significance of various terms in our
spin-Hamiltonian and allows a microscopic interpretation of
our experimental results. Most interestingly, we find that in-
cluding a biquadratic exchange term is essential to reproduce
both the experimental magnetization curve and the measured
specific heat curves.

DC magnetization of BHAP-Ni3 was measured as a func-
tion of temperature (T ) with the magnetic field (H) applied
both in the plane of the triangles (M‖) and perpendicular (M⊥)
to it. As shown in Fig. 1(c), there is no signature of any sharp
anomaly down to 2 K indicating the absence of long-range
magnetic order. M‖ (T ) is slightly larger than M⊥ showing the
presence of a weak easy-plane type anisotropy. However, no
in-plane anisotropy was observed in the measurement (Fig. 8
in the Appendix). Curie-Weiss-type fitting to the susceptibility
data measured in a powder sample in the paramagnetic region
(above 100 K) resulted in a Weiss temperature of about −8 K
in BHAP-Ni3 indicating a dominance of AFM coupling (see
Fig. 8 in the Appendix).

Figure 1(d) shows the temperature dependence of the real
part of the ac magnetic susceptibility (χ ′) measured down to
60 mK with an excitation frequency ( f ) of 3.142 kHz. In zero
dc field, the absence of any sharp anomaly in χ ′ down to the
lowest measured temperature is a signature of the absence
of long-range magnetic order. By cooling below 4.2 K in
0 T, χ ′ increases and approaches a temperature-independent
flat region below ∼400 mK. The extent of this flat region
was found to be f independent ruling out any possibility of
spin freezing as well. A flat region in χ ′ implies a linear
temperature dependence of the magnetization. At tempera-
tures low compared to the AFM exchange energy involved,
such a behavior is presumably a signature of an intratriangle
spin disordered state where quantum fluctuations prevail due
to frustration. χ ′ was also measured in the presence of dc
magnetic fields. With increasing dc field, the shape of the
χ ′(T ) curve changes and at μ0H = 3 T, a broad maximum
starts to emerge around 2 K as can be seen from Fig. 1(d).
This feature gets more prominent with increasing dc field
indicating the onset of a field-induced transition.

The inset of Fig. 2 shows the magnetic-field dependence
of M⊥ and M‖ recorded at 1.9 K up to 14 T. Around
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FIG. 2. Isothermal field dependence of the magnetization
(M‖/MS) measured at T = 360 mK in a pulsed magnetic field up
to 40 T as well as the theoretical magnetization curve showing the
2/3-magnetization plateau. Inset: M(H ) curves obtained at 1.9 K
using a vibrating sample magnetometer.

μ0Hc1 = 2.5 T, M‖ shows a weak anomaly which is al-
most invisible in M⊥. With further increase in field, around
μ0Hc2 = 8 T, M⊥ enters to a plateaulike region whereas M‖
continues to increase slowly. We would like to emphasize
that this plateau above Hc2 does not correspond to the full
saturation of the Ni moments as obtained from our density
functional theory (DFT) calculations (1.75 μB/Ni2+), rather
it corresponds to 2/3 of the fully saturated moment. The very
weak anomaly around Hc1 might be related to 1/3 of full
saturation. However, no clear plateau around this position
could be seen. For generating higher spin polarization, we
performed M(H ) measurements up to 40 T using pulsed
magnetic fields at 360 mK. Data were taken only with field
applied within the plane of the triangles due to technical
constraints. As shown in Fig. 2, a 2/3 magnetization plateau is
clearly visible between 7 and 20 T. The magnetization curve
attains its full saturation above μ0Hc3 = 35 T where the spin
triangle gets fully polarized with a |1, 1, 1〉 spin configuration.

The absence of the weak anomaly near Hc1 in the pulsed-
field data might be related to various factors related to the
measurement technique. On the other hand, if the anomaly is
stabilized via an order-by-disorder mechanism, it is expected
to disappear with lowering of temperature [21,22]. Pulsed
field measurement was also performed at 2 K to check its
agreement with the steady field measurement at 1.9 K (see
Fig. 7 in the Appendix). We would like to emphasize that the
experimental observation of a 2/3 magnetization plateau in
frustrated spin triangles is a novel phenomenon unlike the
commonly observed 1/3 plateau. In a spin triangle, a 2/3
plateau can be for instance visible if the three spins form a
|1, 1, 0〉 kind of arrangement.

Next, we make a connection to our experimental results by
carrying out a theoretical modeling of this interesting com-
pound. As is evident from the density of states in GGA + U
calculations [23–25] (see Appendix E), Ni is in its d8 state,

corresponding to a spin S = 1. Due to the large distances be-
tween the Ni3 centers, the three Ni spins form a nearly isolated
triangle. We describe the magnetic properties by a spin model
for these three Ni spins. Furthermore, the calculations suggest
strongly anisotropic antiferromagnetic exchange interactions
between the three Ni spins.

Based on these insights we formulate the following model:

H =
∑

〈i, j〉
Ji jSi · S j +

∑

〈i, j〉
Ki j (Si · S j )

2

+
∑

〈i, j〉
Di j d̂i j · (Si × S j ) + 2μBH

∑

i

Sz(x)
i . (1)

Here, i denotes the three Ni spins and 〈i, j〉 the three Ni-Ni
pairs of a triangle. The first term amounts to anisotropic
Heisenberg exchange interactions between the Ni atoms with
strengths Ji j . The effect of spin-orbit coupling has been taken
into account through the Dzyaloshinskii-Moriya (DM) inter-
action in the third term of the Hamiltonian. The fourth term is
related to the Zeeman energy while the second term denotes
biquadratic spin interactions. The necessity of including the
latter term will be discussed in the following section.

Despite the seemingly simple structure of its metallic cen-
ter, the precise modeling of BHAP-Ni3 is extremely difficult.
In the model presented here, we focus on the pronounced 2/3
plateau together with an almost vanishing 1/3 anomaly in
the magnetization curve as the main characteristic of BHAP-
Ni3. Although this model cannot account for all salient fea-
tures at low magnetic field strengths, it correctly reproduces
qualitatively the specific heat measured at zero and finite
field strength. In Appendix I we present an alternative model
with two ferromagnetic and one antiferromagnetic exchange
constants, which captures the low-field magnetization curve
better, but whose specific heat curves are not compatible with
our measurements (see Fig. 13).

The anisotropy of the antiferromagnetic exchange cou-
plings itself is not sufficient to reproduce the characteristic
plateau structures of the M − H curve and even including a
single-ion anisotropy term is not sufficient. However, recent
numerical studies of the spin-1 bilinear-biquadratic Heisen-
berg (BBH) model on the isotropic triangular lattice revealed
a 2/3 plateau in M [26–29]. Motivated by these results,
we include a biquadratic spin interaction of strength Ki j .
Most interestingly, an AFM biquadratic term suppresses the
1/3 magnetization plateau also for our isolated Ni triangle
and promotes the formation of a 2/3 plateau, see Fig. 3(a).
Here, however, the absence of strong intertriangle interactions
allows for the formation of a rather large 2/3 plateau as
compared to the aforementioned triangular lattice systems.

Biquadratic exchange terms occur naturally for systems
with spin S � 1 in fourth-order perturbation theory in the
hopping [30], but usually they are much smaller than bi-
linear Heisenberg exchange terms. However, in some cases
additional quasidegenerate orbitals [31] or twisted ring hop-
ping processes [32] have been shown to be responsible for
rather strong biquadratic exchange. In the context of strongly
frustrated antiferromagnets the effect of bond disorder and
thermal and quantum fluctuations is sometimes described by
a biquadratic term as well [21,22,33,34]. A derivation from
a microscopic model to elucidate whether such mechanisms
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FIG. 3. (a) Effect of a small biquadratic exchange term K on the
magnetization curve for the simplified model of a spin-1 triangle with
isotropic spin exchange J . Ground-state compositions at the plateaus
(A, B,C) are discussed in the text. (b) Illustration of the Ni triangle
with two oxygen atoms O1 and O2 (red) not being shared between
nickel atoms Ni1 and Ni3 (gray). Twisted ring exchange involving
these four atoms might be responsible for the biquadratic interaction
term in the spin model. (c) Sketch of the Dzyaloshinskii-Moriya
vectors di j (blue) for the spin model.

apply here or whether it is rather due to the integrating out
of other degrees of freedom such as phonons is left for future
work.

As spin-orbit coupling is not negligible in Ni2+ sys-
tems, we also include Dzyaloshinskii-Moriya (DM) terms of
strength Di j between the Ni atoms. Since the Ni triangle
is very asymmetric, the directions of the DM vectors d̂i j

cannot be determined according to the Moriya rules [30] but
rather based on geometric arguments (see Appendix F 2 for
details). The directions of the DM vectors are indicated in
Fig. 3(b). Finally, we add an in-plane (out-of-plane) magnetic
field term to account for the applied magnetic field parallel
(perpendicular) to the Ni triangles. More details on the model
can be found in Appendix F.

Best agreement with experiment was obtained for ex-
change interactions J31 = J12 ≈ 3.5 K, J23 ≈ 17.5 K. Inter-
estingly, we find that even small values of the biquadratic
exchange K already lead to a reduction of the size of a plateau
at M/MS = 1/3. Large values of K lead to a very steep jump
between the M/MS = 0 and 2/3 region which sets bounds
to the strength of the biquadratic exchange interaction. For
good agreement with experiment, we have used a moderate
biquadratic exchange of Ki j ≈ 0.3Ji j . The strength of the DM
interaction was set to Di j ≈ 0.2Ji j , which is of the same order
of magnitude as Di j = 0.12Ji j estimated via �g/g [30] from
our ESR measurement of g [35].

Without the DM term, the ground state of the system at
small field strength H < Hc1 is given by the antisymmetric
combination of the six permutations of the |1,−1, 0〉 spin con-
figuration. For illustration purposes we sketch this situation
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FIG. 4. (a) Temperature dependence of specific heat (C) as ob-
tained experimentally. In the inset, ln C (C in J/mol K) is plotted
against 1/T down to 360 mK showing exponential behavior. The red
line is the linear fit to the data which allows us to extract the spin gap
�. (b) Magnetic contribution to the specific heat (Cmag) calculated
using the model with the parameters as described in the text (same as
in Fig. 2). Inset shows ln Cmag (Cmag in J/mol K) vs 1/T plot to show
the similar exponential behavior with spin gap as of experiment.

in as A in Fig. 3(a) for the simplified model of an isotropic
spin-1 triangle. Intermediate field strengths, Hc1 < H < Hc2,
stabilize a 1/3 plateau (B) with |1, 0, 0〉 and |1, 1,−1〉 con-
figurations. The 2/3 plateau state (C) at field strength Hc2 <

H < Hc3 consists of the three permutations of the |1, 1, 0〉
spin configurations. However, due to the biquadratic Heisen-
berg term, the former 1/3 plateau is rather rudimentary and a
clear attribution to the aforementioned state is not possible.
Furthermore, since the DM term introduces spin canting,
contributions of other spin configurations get admixed and
lead to more complicated states. Nevertheless, the 2/3 plateau
still corresponds in good approximation to the |1, 1, 0〉 state
with asymmetric contributions of the three spin permutations.

Figure 4(a) shows the temperature dependence of the spe-
cific heat (C) measured down to 360 mK. A precise estimation
of the phonon contribution to the C is highly ambiguous,
since in this case no nonmagnetic isostructural compound is
available. However, by implying a simple Debye-T 3 behavior
to the data below 10 K, we found that the phonon contri-
bution is negligibly small in the region of our interest (less
than ∼1% up to 2 K), making the spin contribution to be
predominant. This behavior is validated by our theoretically
calculated specific heat (magnetic contribution). In zero field,
the absence of any sharp anomaly signifying the absence
of long-range magnetic order is in line with the observation
from magnetometry. The C(T ) curve shows a broad humplike
feature around 2 K and an increase for temperatures above
5 K. Figure 4(b) shows the theoretical calculation of the mag-
netic contribution to the specific heat (Cmag) using the same
parameter set utilized for calculating the magnetization (as
in Fig. 2). It is in good agreement with the experimental C
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up to 2 K. Above 2 K, where the phononic contributions
to the specific heat are expected to become significant, the
theoretical Cmag deviates from the experimentally obtained
total specific heat. In the inset of Fig. 4(a), ln C is plotted
against inverse temperature (1/T ). It is evident from the linear
region of this plot that the specific heat shows exponential
behavior below 1 K. Such a feature signifies the existence of
a gap in the spin excitation spectra. Fitting the experimental
data with C ∝ e−�/kBT reveals a spin gap of � = 2.0 K which
nicely agrees with the theoretical value of 2.1 K as shown in
the inset of Fig. 4(b). The experimentally obtained C(T ) has
good agreement with theoretical Cmag at low temperature even
for measurements under applied magnetic field (Fig. 10 in the
Appendix). In contrast, the otherwise appealing alternative
model described in Appendix I cannot account for the low-
temperature features of the specific heat.

IV. SUMMARY AND CONCLUSION

In summary, we report combined experimental and theo-
retical studies on a new metal-organic system (BHAP-Ni3)
synthesized in single-crystalline form. This quantum magnet
provides the unique opportunity to investigate the magnetism
of an isolated and magnetically frustrated S = 1 spin-triangle
framework. High-field magnetometry reveals the existence
of a robust 2/3 magnetization plateau. Extensive theoretical
modeling suggests this exotic feature to be a consequence of
the interplay between Heisenberg and biquadratic exchange
interactions. Whereas the spin model can nicely reproduce the
intriguing features of the magnetization curve, a microscopic
derivation of the biquadratic spin terms is left for further
investigations. The gapped nature of the magnetically disor-
dered ground state has also been evidenced through specific-
heat measurements in agreement with theory. In conclusion,
usage of such molecular engineering could be extremely
beneficial for the material science community to design and
investigate novel quantum-magnetic frameworks of both fun-
damental and technical importances including spintronics and
quantum computing.
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APPENDIX A: OVERVIEW

We would like to provide more technical details
of our work on [2-[Bis(2-hydroxybenzyl)aminomethyl]
pyridine]Ni(II)-trimer (BHAP-Ni3) concerning both its

experimental and theoretical aspects. First, we discuss the
sample preparation and characterization. Then, we present
details on the density functional theory (DFT) calculations
and the effective model, which has allowed us to calculate the
theoretical magnetization and specific-heat curves presented
in the main paper. Finally, we present an alternative model
that can better account for the low-field magnetization and
susceptibility curves of BHAP-Ni3 but fails to reproduce
salient features of the specific heat curve.

APPENDIX B: SYNTHESIS PROCEDURE

All chemicals were used as obtained without further purifi-
cation. UV-vis spectra were recorded on a Perkin Elmer UV-
Vis-NIR spectrometer. Infrared spectra were recorded using a
Perkin-Elmer Spectrum Two FT/IR spectrometer. The ligand
2-[Bis(2-hydroxybenzyl)aminomethyl]pyridine (BHAP) was
synthesized according to the literature procedure [36].

The ligand solution was prepared by stirring 2-[bis(2-
hydroxybenzyl]pyridine (0.032 g, 0.1 mmol) in 10 ml
dichloromethane (DCM) in a round bottom flask, and 2–3
drops of triethylamine were added. The mixture was stirred
for 15 minutes, then methanolic solution of nickel nitrate
hexahydrate (0.029 g, 0.1 mmol) was added to the ligand
solution and stirred for 12 hours. Then, the solvent was

FIG. 5. Top panel: Platelike tiny BHAP-Ni3 single crystals. Bot-
tom panel: Perspective view of BHAP-Ni3 crystal structure obtained
by solving the single-crystal x-ray diffraction data, showing 50%
thermal ellipsoids for all nonhydrogen atoms at 293 K. Solvents are
omitted for clarity.
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TABLE I. Crystal data and data collection parameters for BHAP-
Ni3.

CCDC No. 1870984

T (K) 293
Formula C63H70N6Ni3O12

Formula weight 1279.32
Color and Habit Green
Crystal system Monoclinic
Space group P2(1)/n
a(Å) 12.7361(2)
b(Å) 29.4086(4)
c(Å) 15.3701(2)
α(◦) 90
β(◦) 96.824(2)
γ (◦) 90

V (Å
3
) 5716.10(14)

Radiation: λ, Å Mo Kα, 0.71073
Z 4
d(g-cm−3) 1.487
μ(mm−1) 1.049
F (000) 2680
No. of unique data 10064
No. of restraints 0
No. of parameters refined 745
GOF on F 2 1.073
R1a [I > 2σ (I )] 0.0461
R1a (all data) 0.0535
wR2b (all data) 0.1566

evaporated completely with the help of a rotary evaporator
and a green colored solid was obtained. That green solid
was dissolved in acetone and layered with methanol in a
crystallization tube for slow evaporation. Tiny green crystals
of typical size ∼1 × 0.4 × 0.2 mm3 were obtained (see Fig. 5)
after 10–12 days. The yield was 0.022 g (60%). FT-IR results
are as follows (KBr, cm−1): 3068, 1679, 1408, 1252, 1032,
802, 741, 660, 571, and 519. The UV-Vis in DCM (10−6 M)
shows absorptions [using λmax/nm(loge) format] at 418(3.25)
and 625(1.24). In the IR study, clear signatures of the Ni-O
stretching frequency were observed.

APPENDIX C: SINGLE-CRYSTAL X-RAY DIFFRACTION

Single-crystal x-ray diffraction data were collected with
a SuperNova Diffractometer equipped with a HyPix3000
detector from Rigaku Oxford Diffraction. Data collection
and reduction were performed with the in-built program
suite [CrysAlisPro 1.171.39.33c (Rigaku OD, 2013)] and
an absorption correction (multiscan method) was also done.
The crystal structure was solved by the direct method using
SHELXS-97 and was refined on F 2 by the full-matrix least-
squares technique using the SHELXL-2018/3 [37,38] pro-
gram package on the WINGX [39] platform. All nonhydrogen
atoms were refined anisotropically. Hydrogen atoms were
fixed at their stereo-chemical positions and were riding with
their respective nonhydrogen atoms with SHELXL default
parameters. Detailed information can be found in Tables I, II,
III, and in the Supplemental Material [40].

TABLE II. List of important bond distances (Å) in BHAP-Ni3.

Ni(1)-O(3) 2.010(2) Ni(2)-O(3) 2.048(2)
Ni(1)-O(4) 2.046(2) Ni(2)-N(6) 2.055(3)
Ni(1)-N(2) 2.048(3) Ni(2)-N(1) 2.072(3)
Ni(1)-N(4) 2.055(3) Ni(2)-O(6) 2.298(2)
Ni(1)-O(6) 2.058(2) Ni(3)-O(4) 1.987(2)
Ni(1)-O(5) 2.177(2) Ni(3)-O(1) 2.037(2)
Ni(1)-Ni(2) 2.8623(5) Ni(3)-N(5) 2.060(3)
Ni(1)-Ni(3) 2.9097(5) Ni(3)-N(3) 2.137(3)
Ni(2)-Ni(3) 3.411(5) Ni(3)-O(6) 2.142(2)
Ni(2)-O(2) 2.025(2) Ni(3)-O(5) 2.263(2)
Ni(2)-O(5) 2.043(2)

APPENDIX D: MAGNETOMETRY AND
ELECTRON SPIN RESONANCE

DC magnetization measurements were performed with
both powder sample and using oriented single crystals. These
measurements were performed using either VSM or a SQUID
magnetometer. The top panel of Fig. 6 shows the temperature

TABLE III. List of selected bond angles (in degrees) in BHAP-Ni3.

O(3)-Ni(1)-O(4) 159.62(9) O(5)-Ni(2)-N(1) 93.85(10)
O(3)-Ni(1)-N(2) 95.59(10) O(3)-Ni(2)-N(1) 100.07(10)
O(4)-Ni(1)-N(2) 101.93(10) N(6)-Ni(2)-N(1) 83.18(11)
O(3)-Ni(1)-N(4) 94.36(10) O(2)-Ni(2)-O(6) 89.33(8)
O(4)-Ni(1)-N(4) 97.90(10) O(5)-Ni(2)-O(6) 68.83(8)
N(2)-Ni(1)-N(4) 83.30(11) O(3)-Ni(2)-O(6) 79.29(8)
O(3)-Ni(1)-O(6) 86.21(9) N(6)-Ni(2)-O(6) 114.14(9)
O(4)-Ni(1)-O(6) 82.40(9) N(1)-Ni(2)-O(6) 162.66(9)
N(2)-Ni(1)-O(6) 93.66(10) O(2)-Ni(2)-Ni(1) 124.60(7)
N(4)-Ni(1)-O(6) 176.94(10) O(5)-Ni(2)-Ni(1) 49.28(6)
O(3)-Ni(1)-O(5) 80.85(9) O(3)-Ni(2)-Ni(1) 44.60(6)
O(4)-Ni(1)-O(5) 79.49(8) N(6)-Ni(2)-Ni(1) 132.43(8)
N(2)-Ni(1)-O(5) 164.44(9) N(1)-Ni(2)-Ni(1) 123.45(8)
N(4)-Ni(1)-O(5) 111.99(10) O(6)-Ni(2)-Ni(1) 45.38(5)
O(6)-Ni(1)-O(5) 71.06(8) O(4)-Ni(3)-O(1) 164.84(9)
O(3)-Ni(1)-Ni(2) 45.69(6) O(4)-Ni(3)-N(5) 109.75(10)
O(4)-Ni(1)-Ni(2) 114.68(6) O(1)-Ni(3)-N(5) 85.16(10)
N(2)-Ni(1)-Ni(2) 122.73(8) O(4)-Ni(3)-N(3) 90.99(10)
N(4)-Ni(1)-Ni(2) 129.48(8) O(1)-Ni(3)-N(3) 88.49(10)
O(5)-Ni(1)-Ni(2) 45.36(6) N(5)-Ni(3)-N(3) 81.31(10)
O(3)-Ni(1)-Ni(3) 118.11(7) O(4)-Ni(3)-O(6) 81.68(9)
O(4)-Ni(1)-Ni(3) 43.04(6) O(1)-Ni(3)-O(6) 84.71(8)
N(2)-Ni(1)-Ni(3) 120.97(8) N(5)-Ni(3)-O(6) 161.20(10)
N(4)-Ni(1)-Ni(3) 134.33(8) N(3)-Ni(3)-O(6) 114.18(9)
O(6)-Ni(1)-Ni(3) 47.35(6) O(4)-Ni(3)-O(5) 78.63(8)
O(5)-Ni(1)-Ni(3) 50.35(6) O(1)-Ni(3)-O(5) 102.40(8)
Ni(2)-Ni(1)-Ni(3) 72.438(14) N(5)-Ni(3)-O(5) 98.98(9)
O(6)-Ni(1)-Ni(2) 52.65(6) N(3)-Ni(3)-O(5) 169.10(9)
O(2)-Ni(2)-O(5) 90.64(9) O(6)-Ni(3)-O(5) 67.92(8)
O(2)-Ni(2)-O(3) 168.40(9) O(4)-Ni(3)-Ni(1) 44.62(6)
O(5)-Ni(2)-O(3) 83.24(9) O(1)-Ni(3)-Ni(1) 125.74(6)
O(2)-Ni(2)-N(6) 89.68(10) N(5)-Ni(3)-Ni(1) 135.09(8)
O(5)-Ni(2)-N(6) 177.01(10) N(3)-Ni(3)-Ni(1) 125.41(7)
O(3)-Ni(2)-N(6) 96.94(10) O(6)-Ni(3)-Ni(1) 44.96(6)
O(2)-Ni(2)-N(1) 90.13(10) O(5)-Ni(3)-Ni(1) 47.78(6)
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FIG. 6. Top panel: Temperature variation of inverse dc magnetic
susceptibility (1/χ = H/M ) for powder sample. Inset shows Curie-
Weiss fit to the powder data. Bottom panel: Angular dependence of
magnetic moment (m) in the (b, c) plane measured at 1.8 K using
single crystal.

variation of the inverse dc magnetic susceptibility (1/χ =
H/M ) as obtained using a powder sample. The bottom panel
shows the absence of any angular dependence of the magnetic
moment (m) in the (b, c) plane.

In Fig. 7 we compare the magnetization as a function
of applied magnetic field for the VSM and the pulsed field
measurements at ∼2 K. The good agreement between the two
techniques demonstrates the validity of data taken with these
complimentary approaches.

Electron spin resonance measurements were performed us-
ing a high-field transmission-type ESR spectrometer, similar
to that described in Ref. [41]. A set of VDI microwave sources
(Virginia Diodes, Inc.) was used. The measurements were
done in the Faraday configuration with magnetic field applied
in the plane of the Ni triangles. The spectra were recorded in
the 60–150 GHz frequency range at a temperature of 80 K.

APPENDIX E: DENSITY FUNCTIONAL THEORY

The density-functional-theory (DFT) calculations were
performed using the plane-wave basis set as implemented
in the pseudopotential framework of the Vienna ab initio

FIG. 7. Magnetization as a function of applied magnetic field for
both the VSM and the pulsed field measurements at a temperature of
∼2 K.

simulation package (VASP) [42,43]. We employed the gen-
eralized gradient approximation (GGA) exchange-correlation
functional following the Perdew-Burke-Ernzerhof prescrip-
tion [44]. For the GGA + U calculations, we followed the for-
mulation described in Refs. [23–25]. For the plane-wave basis,
a 600 eV plane-wave cutoff was applied. A k-point mesh of
4 × 4 × 4 in the Brillouin zone was used for self-consistent
calculations. In the calculations, the spin-orbit coupling term
was included in the scalar relativistic form as a perturbation to
the original Hamiltonian.

Using GGA + U (Ueff = 5 eV at the Ni site), we calculated
the spin-polarized atom projected electronic density of states
(DOS) as shown in Fig. 8. From the DOS, it is evident that
the Ni-3d states are dominating near the Fermi energy with
a very strong hybridization with the O-2p states. Due to the
highly distorted nature of the mixed ligand octahedra, Ni-d

FIG. 8. Calculated GGA + U (Ueff = 5 eV) spin polarized den-
sity of states (DOS) projected onto relevant orbitals of different
atoms in the unit cell is shown. The Fermi energy was set at the zero
in the energy scale. The Ni-d integrated DOS suggest that below the
Fermi energy all five d states in the majority spin channel and three
d states in the minority are filled, while the remaining two states in
the minority d states are empty.
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states are strongly mixed up. The Ni-d states are completely
filled in the majority spin channel and partially in the minority
spin channel. The Ni-d integrated DOS clearly shows that the
majority and the minority spin channels are filled with five
and three electronic states, respectively. This is consistent with
the Ni atoms being in their nominal 2+ valence state (d8)
with S = 1. It is to be noted that the spin-polarized calcula-
tions within the GGA, assuming small Coulomb correlation
(U ) at the 3d-Ni sites, drive the band structure with a gap
of ∼1 eV.

To probe the noncollinear contribution we calculated the
effect of spin-orbit coupling (SOC) through GGA + U +
SOC for the different spin quantization axes. From our cal-
culations, we found that the Ni site has considerable orbital
contribution with a magnetic moment of 0.08 μB/site parallel
to the spin moment 1.67 μB/site. This substantial orbital
moment is unexpected for the Ni2+ (d8) configuration in the
octahedral environment due to a completely quenched orbital
degree of freedom, although a similar orbital moment of
Ni-d8 has already been reported previously [45,46]. There-
fore, the presence of finite and substantial contribution of
orbital moment needs to be justified as an induced mechanism
via ligands of O-2p states. Magnetocrystalline anisotropy
energies are obtained by analyzing the energy difference of the
spin quantization axes between [100] and [011]. The obtained
anisotropy energy is very small (∼−0.06 meV/Ni) and favors
[011] easy-plane type single-ion anisotropy. Since its size is
negligible compared to the smallest exchange interaction used
in our model Hamiltonian, a single-ion anisotropy term has
not been considered in the modeling. We have cross checked
the DFT + U results by doing additional calculations with
Ueff values between 2 eV and 5 eV at the Ni2+ site. In contrast
to the expected changes in the magnitudes of the J values,
both the sign and the trend of J values remained unaltered
with the variation of U . We also found that the changes in the
saturation magnetic moment per Ni2+ site is less than 10%,
keeping the total magnetic moment per unit cell intact.

APPENDIX F: MODELS AND EXACT
DIAGONALIZATION RESULTS

Based on the outcome of our DFT calculations, we model
the central Ni3 unit by a triangle of spins with S = 1. The
effective spin model is then solved at zero and finite tempera-
tures using exact diagonalization (ED). Quantities like magne-
tization M, susceptibility χ , and specific-heat Cmag have been
calculated and compared with experiment. Together with in-
sights gained from the DFT calculations, this comparison was
used to refine the model and determine estimates for the model
parameters. As this procedure in principle leads to a large set
of parameters, the model and the number of parameters were
reduced to a minimal set necessary to qualitatively reproduce
the experiments.

In the following, we derive and motivate the different terms
of the model and discuss the values of the model parameters.
Finally, we will also present an alternative model, which is
even more simplistic and still capable of capturing part of
the magnetic properties of BHAP-Ni3, but less precise in the
description of the specific heat data.

(a) (b)

(c)

FIG. 9. Construction of the DM vectors (a) of the Ni triangle
(gray spheres). (b) Two Ni atoms are connected via three oxygen
atoms (red spheres), which mediate the superexchange and are con-
sidered for the DM interactions. Each Ni-O-Ni triangle contributes
a DM component (green arrows) perpendicular to it resulting in the
DM vector (blue). (c) View along the Ni-Ni axes indicated in (a): The
three O atoms in the left and center panel deviate from a threefold
symmetric arrangement (dashed lines) and lead to a finite net DM
vector. In the right panel, only two O atoms are shared between the
Ni atoms.

1. Linear and Quadratic Heisenberg Terms

The triangular unit consists of three Ni atoms with edge-
sharing O-N-octahedra around them. Ni1-Ni2 and Ni1-Ni3
share three oxygen atoms, which mediate an effective su-
perexchange between the Ni sites. Since the Ni-O-Ni bonding
angles are close to 90◦, they lead to an overall very small
antiferromagnetic exchange and also have to be taken into
account for additional asymmetric exchange contributions
(see next section). In case of the Ni2-Ni3 bond, only two
oxygen ligands are shared and form an angle of 129◦, see
Fig. 9. Here, the bonding angles are even larger, which should
lead to a substantially larger antiferromagnetic exchange. This
is why we model the exchange part of the Ni-triangle via

∑

{i, j}
Ji j Si · Sj, (F1)

where {i, j} runs over the three Ni-Ni bonds. Indeed, the
best agreement of our model calculations with experiment
have been obtained for two small antiferromagnetic exchange
interactions J31 = J12 ≈ 3.5 K and a substantially larger
interaction strength J23 ≈ 17.5 K. In the corresponding mag-
netization curve it is mainly J23 which sets the critical
magnetic-field value for the transition from the 2/3 plateau to
full magnetization, whereas the value of J31 and J12 influence
the position of the transition to the 1/3 anomaly.

In order to reproduce a strong 2/3 magnetization plateau
our model has to be augmented by a biquadratic term.
This term is known to cause a 2/3 plateau in the bilinear-
biquadratic Heisenberg model on a triangular lattice [2,4–7]
in the limit of strong biquadratic interactions. For S � 1, it
occurs naturally in fourth-order perturbation theory in the
hopping ti j and is, therefore, usually suppressed as compared
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to second-order processes such as ordinary exchange interac-
tions by ∼(t/U )2 [30]. In some cases, however, the intricate
interplay of multiorbital hopping processes, Hubbard inter-
action strength U , and Hund’s interactions J can lead to a
relatively large biquadratic term [31]. Note, however, that the
interaction derived by Mila and Zhang is ferromagnetic. AFM
biquadratic terms can be obtained from twisted ring exchange
processes as recently shown by Tanaka et al. [32]. A rigorous
derivation of the term for BHAP-Ni3 from a microscopic
model is left for future studies. In our model, however, we
included a biquadratic term with an interaction strength Ki j

proportional to the antiferromagnetic exchange strengths Ji j :

∑

{i, j}
Ki j (Si · Sj)

2. (F2)

In the spin-1 triangle, the biquadratic term stabilizes a
distinct 2/3 plateau for moderate values of biquadratic in-
teractions already (Ki j/Ji j ∼ 0.3). At the same time it also
reduces the size of the 1/3 plateau, as shown in Fig. 3 of the
main text.

2. Dzyaloshinskii-Moriya Interaction

The spin-orbit coupling constant of nickel is ζSOC(Ni)∼
80 meV [47], which is of comparable size as the one of
copper, ζSOC(Cu)∼100 meV [48], where spin-orbit effects
were found to be important in a Cu3 framework [16]. Due
to the considerable spin-orbit coupling of nickel and be-
cause the oxygen octahedra are asymmetrically distorted, the
emerging effective spin model is expected to contain nonzero
Dzyaloshinskii-Moriya (DM) interactions of the form

∑

{i, j}
Di j d̂ij · (Si × Sj), (F3)

where Di j is the DM interaction strength and d̂ij the normal-
ized DM vector between the Ni atoms i and j. In a crystal, one
uses symmetry arguments to determine the direction of the
DM vectors, the so-called Moriya rules [30]. Here, however,
we are dealing with an isolated trimer unit where the ligand
fields are very asymmetric, see Fig. 9. Since the arrangement
of the shared O atoms around the Ni3-Ni1 and Ni1-Ni2 axes
deviates from a threefold rotation-invariant configuration, the
individual components of each Ni-O-Ni triangle do not com-
pensate each other fully and lead to a finite net DM vector.
For the Ni2-Ni3 bond, the two contributions to the DM vector
corresponding to the Ni-O-Ni triangles lead to a quite large
effective DM vector as compared to the other two Ni-Ni
bonds.

As shown in Fig. 9(a), all three DM vectors mainly have
a component perpendicular to the Ni triangle. To simplify the
model calculation, we used these directions of the DM vec-
tors and set the DM interaction strengths proportional to the
exchange strengths Ji j . Since a rigorous determination of the
DM vectors would require a microscopic orbital-dependent
treatment of the hopping processes leading to the effective
exchange interaction; the vectors shown in Fig. 9 are only an
estimate. A more precise derivation is beyond the scope of the
present paper and left for future work.

FIG. 10. (a) Experimentally obtained specific heat (C) data plot-
ted as a function of temperature. Measurements were performed both
in zero field and with different field up to 9 T. (b) Theoretically
obtained magnetic contributions of the specific heat (Cmag) both in
zero field and in the presence of magnetic field.

APPENDIX G: SPECIFIC-HEAT:
EXPERIMENT AND MODELING

Specific-heat (C) measurements were performed down to
360 mK both in zero field condition and in the presence of an
external magnetic field applied in the plane of the triangle.
The top panel of Fig. 10 shows experimental specific-heat
data as a function of temperature. The bottom panel is the
simulated magnetic contribution to the specific heat under
similar protocols as of the experiment (Cmag) using the spin
Hamiltonian and the same set of parameters [described in the
main text, equation (1)] used to fit the M(H) curve.

In the low-temperature region where the estimated lattice
contribution to the specific heat is negligible (less than 1%
for T < 2 K using a Debye-T 3 model) the behavior of the
specific heat is qualitatively captured by our model calculation
of the magnetic contribution Cmag. At higher temperatures,
the specific heat is dominated by the lattice contribution,
which leads to an increase of C, whereas the calculated Cmag

decreases.

APPENDIX H: LOW-FIELD PROPERTIES OF THE MODEL

In addition to the quantities presented in the main text,
we provide here additional information on the magnetic
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FIG. 11. Temperature dependence of the magnetic properties of
the model. (a) Calculated magnetization as a function of temperature
for an external magnetic field strength of μ0H = 0.1 T. (b) In-plane
susceptibility as a function of temperature for different magnetic field
strengths. The curves have been shifted for better visibility.

properties of the model at small magnetic field strengths μ0H .
Whereas the overall agreement of the magnetic and thermal
properties of the model and experiment are good, it does not
capture some salient features of the magnetic properties at
very small magnetic field strengths correctly.

Figure 11(a) shows the temperature dependence of the in-
and out-of-plane magnetization at a magnetic field strength of
μ0H = 0.1 T. At this field strength, the calculated magneti-
zation differs from the measurement in that the out-of-plane
magnetization is larger than the in-plane one. For T → 0
the in-plane magnetization is finite, whereas M⊥ goes to
zero. This behavior is also found with an alternative model
described in the next section, which better captures the mag-
netic properties at small magnetic fields. Next, we show
the temperature dependence of the magnetic susceptibility in
Fig. 11(b). Again, the zero field curve deviates qualitatively
from our measurements since it shows a small hump around
2–3 K. At higher field strengths the qualitative behavior of
the susceptibility is correctly captured, although the observed
drop in susceptibility at μ0H‖ = 7.5 T above T = 3 K is very
flat in our calculation.

In Fig. 12(a) the in- and out-of-plane magnetization is
shown as a function of magnetic field strength μ0H at T =
1.9 K. As noted already in Fig. 11(a) the role of in- and out-
of-plane magnetization is opposite to the measurements. Both
M‖ and M⊥ show a plateau at 2/3 saturation magnetization
and no 1/3 plateau. However, from the derivative dM/dH
shown in the inset one can read off a reduction in the slope
of M⊥ at the field value that corresponds to 1/3 saturation
magnetization indicating the remnant of a 1/3 plateau. The
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FIG. 12. Field dependence of the magnetic properties of the
model. (a) In- and out-of-plane magnetization at T = 1.9 K. The
inset shows the derivative dM/dH and the dashed lines correspond to
the field strength for which M/Msat = 1/3. (b) Effect of the strength
of the biquadratic exchange term on the in-plane magnetization. All
parameters of the model except of the biquadratic exchange K/J are
as described in the paper.

origin of this remnant feature becomes clearer when reducing
the biquadratic exchange strength K/J as shown in Fig. 12(b).
For K/J = 0.2 M‖ shows a clear anomaly at 1/3Msat and
smaller values of K/J give rise to a well-defined 1/3 plateau.
From comparing the size of the 1/3 and 2/3 plateau the value
of K/J = 0.3 gives the best agreement with experiment.

APPENDIX I: MINIMAL ALTERNATIVE MODEL

In the paper, we have presented a model that consists
of three S = 1 spins that are coupled via Heisenberg and
biquadratic exchange and that experience a non-negligible
Dzyaloshinskii-Moriya interaction. This model accounts for
the intriguing magnetization curve up to high magnetic field
strengths and agrees well with the measured specific heat
measurements of BHAP-Ni3. However, details of the low-
field behavior of magnetization and susceptibility are not fully
captured.

Here, we investigate an alternative model, which takes
into account only the Ni-Ni Heisenberg interactions and a
single-ion anisotropy term. Based on the Ni-O-Ni bonding
angles being close to 90◦, one would—in contrast to our
DFT + U estimates—rather assume ferromagnetic exchange
constants for two of the Ni-Ni exchange parameters. For one
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FIG. 13. Properties of the alternative model: Magnetization
curve as a function of applied field strength (a) and temperature
(b) for in-plane and perpendicular magnetic field direction. (c) In-
plane susceptibility and (d) specific heat data as a function of
temperature for different magnetic field strengths.

antiferromagnetic and two ferromagnetic exchange constants
the triangular system is also magnetically frustrated and

indeed shows a feeble 1/3 and robust 2/3 magnetization
plateau.

In the following, we present results for the minimalistic
alternative model, described by:

H =
∑

〈i, j〉
Ji j �Si · �S j + D

∑

i

(
Sz

i

)2 + gμBH
∑

i

Sz
i .

Choosing the exchange parameters such that we repro-
duce the low-field magnetization data, we obtain J12 =
1.55 meV, J23 = −1.29 meV, J13 = −0.54 meV. With a
single-ion anisotropy of D = 0.12 meV and the ESR g factor
of g = 2.23 we obtain surprisingly good agreement with
the in- and out-of-plane magnetization data at low magnetic
fields 0 T � H � 5 T, see Fig. 13(a). At very low fields, this
model also captures qualitatively the correct behavior of the
magnetizations as a function of temperature [Fig. 13(b)]. The
zero-field susceptibility is constant at very low temperatures
[Fig. 13(c)], which is again consistent with experiment.

At small magnetic field strengths up to 3 T, the in-plane
susceptibility shows a temperature dependence, which slightly
deviates from our measurements: Instead of a flat susceptibil-
ity at low temperatures up to a field strength of 3T , the cal-
culation shows a well-pronounced peak at ∼2 K already for
field strengths of 1 T. Furthermore, the position of this peak
varies notably with applied magnetic field strength, whereas
the peak position remains rather constant in the measurement.

The most striking differences between this model and
experiment occurs in the specific heat data. At zero magnetic
field, the specific heat curve [Fig. 13(d)] shows a rather sharp
peak at ∼0.5 T and a broader hump at ∼3.5 T. The broad
feature is seen in experiment, but the sharp peak disagrees
with the measured specific heat data. Also the increase in
intensity for intermediate field strengths and the change of
the position of the broad peak do not match the measurement.
Finally at 6 T there is a revival of the sharp peak feature at low
temperature and even at 9 T the specific heat remains nonzero
at fields larger than ∼0.5 T.

Overall, remarkably good agreement between experiment
and this appealingly simple model is found for the magnetic
properties of BHAP-Ni3 at low magnetic field strengths. How-
ever, it is not capable of providing a satisfying description
of both the intermediate and large-field magnetization curve
and the thermal properties of BHAP-Ni3. A model that could
explain all salient features of the magnetization and ther-
mal measurements of BHAP-Ni3 remains to be found. This
compound therefore presents an intriguing new challenge to
theories for frustrated magnetism.
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