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Theory of spin detection on the surface of diffusive topological insulators by means of ferromagnets:
Establishing Onsager reciprocity and the importance of tunnel contact
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A charge current on the surface of a topological insulator (TI) produces a surface spin polarization that can
be measured experimentally using a ferromagnetic (FM) tunnel contact either in a three-terminal or a four-
terminal potentiometric measurement. The potential measured on the FM contact depends on the direction and
the magnitude of the surface charge current, as well as the FM magnetization direction relative to the spin
polarization on the surface of the TI. In such a measurement, the resistance always obeys Onsager reciprocity,
i.e., Rab,cd (+ �M ) = Rcd,ab(− �M ), where Rab,cd is the resistance measured with current injected between contacts
a and b, voltage measured between contacts c and d , and the FM having magnetization �M. In a two-terminal
measurement in which the current and the voltage contacts are the same, Onsager reciprocity dictates that the
resistance remains the same even after the magnetization of the FM is reversed, i.e., Rab,ab(+ �M ) = Rab,ab(− �M ).
However, previous theories [Phys. Rev. Lett. 105, 066802 (2010), Europhys. Lett. 93, 67004 (2011)] claimed
that change of resistance in such two-terminal measurement on the surface of a diffusive TI is possible upon
reversing the FM magnetization direction. Here, we resolve this conflicting issue by showing that the Onsager
reciprocity relation remains valid even in a two-terminal measurement on the surface of a diffusive TI. We
consider the modifications in both the continuity equation of the charge density and the charge current density
on the surface of the TI due to the effect of tunneling of electrons from the FM tunnel contact. We derive the
transport equations on the surface of the TI from full quantum mechanical kinetic equation based on Keldysh
Green’s function, and obtain the resistance measured in a two-terminal or a multiterminal measurement after
solving the transport equations analytically. We establish the validity of the Onsager reciprocity relation in both
the two-terminal and the multiterminal measurements and also show the crucial importance of the tunnel contact
in such spin detection experiments.

DOI: 10.1103/PhysRevB.100.094419

I. INTRODUCTION

Topological insulators (TIs) have gained considerable at-
tention in spintronics research due to the nontrivial band
structure of the gapless surface states with spin-momentum
helical locking [1]. The spin-momentum locking in the two-
dimensional (2D) surface states of a three-dimensional (3D)
TI leads to a nonzero spin polarization within the surface
states when charge current flows on the surface of the TI.
This spin polarization can be detected experimentally using
potentiometric multiterminal measurement set-ups including
ferromagnetic metal (FM) tunnel contacts [2–14]. The voltage
detected at the FM contact depends on the magnitude of the
surface charge current and the angle between charge current-
induced spin polarization on the surface of the TI and the
magnetization direction of the FM [7,15–19]. The potentio-
metric measurement opens up the possibility of reading the
FM magnetization in TI-FM-based memory and logic devices
in which the FM bit is written by the charge current-induced
spin polarization on the TI surface [20,21].

Spin detection experiments on the surface of a 3D TI using
FM tunnel contacts have been performed in four-terminal
[2–12] and three-terminal [13,14] potentiometric set-ups in
which the FM tunnel contact can be used as a voltage probe
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or as a current probe. The measurement geometries are shown
in Fig. 1. The multicontact resistance Rab,cd ( �M ) = Vcd/Iab

is recorded in the experiments, where Vcd is the voltage
drop measured from contact c to contact d , and Iab is the
current applied from contact a to contact b, and �M is the
magnetization of the FM contact. The property of the spin-
momentum locking of the surface states of a TI results in
Rab,cd (+ �M ) �= Rab,cd (− �M ) and a variation of the multicontact
resistance with the FM magnetization [2–14]. However, in a
multiterminal measurement, Rab,cd (+ �M ) �= Rab,cd (− �M ) does
not violate the Onsager reciprocity relation which says only
that Rab,cd (+ �M ) = Rcd,ab(− �M ), where the voltage and the
current contacts are interchanged along with the reversal of
the magnetization direction [22].

In the case of a two-terminal measurement with a FM and
a nonmagnetic metal (NM) contact shown in Fig. 2(a), the
Onsager reciprocity relation Rab,ab(+ �M ) = Rab,ab(− �M ) dic-
tates that the two-terminal resistance will remain unchanged
even if the magnetization of the FM is reversed, since the
contact pair ab and cd are one and the same. Similarly, in
case of a two-terminal measurement with two FM contacts, as
shown in Fig. 2(b), the Onsager reciprocity relation requires
that Rab,ab( �M1, �M2) = Rab,ab(− �M1,− �M2), i.e., the resistance
will remain the same if the magnetizations of both the FMs,
�M1, �M2, are reversed. However, in the literature, it had been

posited theoretically that two-terminal resistance between a
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FIG. 1. Schematics of (a)–(d) four-terminal and (e)–(h) three-
terminal spin-detection experiments on the surface of a diffusive TI.

FM and a NM contact or between two FM contacts on the
surface of a TI can change depending on the magnetization of
the FM, where the transport on the TI surface was assumed
either purely diffusive [23–26], or purely ballistic [27], or
partly diffusive and partly ballistic [28]. Such violations of
Onsager reciprocity for two-terminal resistance also had been
found experimentally on the surface of TIs [26,29–31].

In this paper, we derive the transport equations on the
surface of a diffusive TI coupled to a FM tunnel contact, and
then solve the resulting differential equations to obtain the
resistances measured in such spin-detection experiments for
four-terminal and three-terminal measurement geometries to
demonstrate the validity of the Onsager reciprocity relation.
Furthermore, we demonstrate the validity of the Onsager
reciprocity relation for the two-terminal resistance between a
FM and a NM contact or between two FM contacts, showing
that the measured resistance is independent of reversal of the

VI VI(a) (b)

FIG. 2. Schematics of two-terminal measurements on the surface
of a diffusive TI with (a) FM and NM contacts, (b) two FM contacts.

magnetization of the FM in the former case, or one or both
magnetizations of the two FMs in the latter case consistent
with Onsager reciprocity [15,19,22]. The validity of Onsager
reciprocity for two-terminal resistance on the surface of a
diffusive TI, in turn, calls for a reinterpretation of the exper-
imental results for TIs [26,29–31]. For the detection of the
charge current-induced spin polarization on the surface of a TI
with a FM in a multiterminal measurement, the requirement of
a tunnel barrier (TB) was clearly demonstrated in experiments
[2–14]. Here we also show the importance of the tunnel
contact in such experiments. We find that the spin detection
efficiency, or the difference of the measured voltage at the FM
contact on reversing the magnetization of the FM, decreases
with decreasing resistance of the FM tunnel contact.

II. BACKGROUND AND MOTIVATION

We address possible one-dimensional (1D) circuit ge-
ometries that can be used to detect current-induced spin-
polarization on the surface of a TI using four-terminal or
three-terminal measurement set-ups. In a four-terminal setup,
the FM contact can be used as a voltage probe to measure
the charge current-induced spin polarization on the surface
of the TI, as shown in Figs. 1(a) and 1(c). In these ex-
periments, the current is passed through two NM contacts
and the voltage is measured at the FM contact with respect
to another NM contact different from the current injecting
contacts. However, the reciprocal circuits, those obtained by
flipping the voltage and current contacts of Figs. 1(a) and 1(c)
are shown in Figs. 1(b) and 1(d), respectively, in which the
FM contact will be a current probe, also can be used. In a
three-terminal setup, the FM contact can be used as either a
voltage probe with the voltage measured with respect to that
on either one of the current injecting NM contacts, as shown
in Fig. 1(e), or as a current probe, as shown in Fig. 1(f), which
is the reciprocal circuit of Fig. 1(e), or as both voltage and
current probes in which the current is passed through a FM
and a NM contact and the voltage is measured between the
same FM contact and another NM contact placed on other side
of the current injecting NM contact, as shown in Figs. 1(g) and
1(h). The circuits shown in Figs. 1(g) and 1(h) are reciprocal
circuits of each other. We show that the Onsager reciprocity
relation is satisfied in each case by analyzing the reciprocal
circuit pairs in the mentioned four-terminal and three-terminal
measurement setups.

In the literature, Burkov et al. [23] and Schwab et al. [24]
found theoretically that the two-terminal resistance measured
on the surface (x-y plane) of a diffusive TI between a FM
and a NM contact, as shown in Fig. 2(a), changes if the
magnetization of the FM, which lies in the plane of the
surface and normal (y axis) to the direction of transport
(x axis), is reversed, which violates the Onsager reciprocity
relation. In the theory of Burkov et al. [23], the coupled spin
and charge diffusion equations on the surface of a TI were
derived from density matrix response function formalism in
a low-frequency long-wavelength limit, and the spin-charge
coupled equations were solved analytically with current in-
jected from a FM contact to the TI surface. However, in
their work, the coupling of the FM contact to the TI surface
states was not derived inside the theoretical framework, but,
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rather, was inserted by hand as boundary conditions for the
charge current density and the spin current density in the spin-
charge coupled diffusion equation of the TI surface states.
The resulting two-terminal resistance that was obtained from
the solution of the coupled diffusion equations violates the
Onsager reciprocity relation. Although, Schwab et al. [24]
had considered the effect of coupling of the FM contact to the
TI surface states through a tunneling self-energy in quantum
mechanical Keldysh Green’s function approach to derive a
modified continuity equation of the charge density on the TI
surface, the modification of the charge current density was not
considered.

Following the approach by Burkov et al. [23], i.e., using
the same spin-charge coupled diffusion equations on the TI
surface and the same boundary conditions for the charge
current density and the spin current density for the FM con-
tact, Taguchi et al. [25] calculated the two-terminal resistance
between two FM contacts on the surface of a diffusive TI, as
shown in Fig. 2(b), and their results also violate the Onsager
reciprocity relation. In a prior work [26], we found that the
same spin-charge coupled diffusion equations on the surface
of a TI without any tunneling from the FM also can be
obtained in a different framework based on the quantum
kinetic equation invoking the diffusive approximations used
by Burkov et al. [23]. However, in all these previous works
[23,25,26], the same boundary conditions were used to solve
the same transport equations leading to the result of two-
terminal resistances violating the Onsager reciprocity relation.

In this work, we show that the coupled diffusion equations
on the surface of a TI are modified due to tunneling of elec-
trons from a FM contact, and the actual effect of the FM con-
tact cannot be taken into account simply by assuming charge
current and spin current injection from the FM as boundary
conditions. However, Schwab et al. [24] had only derived a
modification of the continuity equation of the charge density
due to tunneling while keeping the equation for charge current
density unchanged; that is, in their work the charge current
density was given by the gradient of the full nonequilibrium
electrochemical potential—reexpressed in their work and this
work as the effective nonequilibrium charge density—on the
TI surface even after tunneling from the FM. Here we show
that the charge current density on the TI surface also will
contain an additional contribution due to tunneling from the
FM, along with the gradient of the effective charge density
term but with a modified diffusion constant or a modified
conductivity. Considering both the modifications of the charge
current density and the continuity equation of the charge
density due to tunneling from the FM, we demonstrate that
the two-terminal resistances between a FM and a NM contact
or between two FM contacts on the surface of a diffusive
TI satisfy the Onsager reciprocity relation. In case of two
FM contacts, we show that the resistance remains the same
whether the magnetizations of the two FMs are parallel or an-
tiparallel, because the initial spin polarizations of the electrons
that undergo tunneling from either of the FMs to the TI surface
are lost after momentum scattering on the TI surface due to the
spin-momentum locking of the TI surface states.

Finally, we also identify possible reasons behind the theo-
retical results obtained previously [23–26] leading to violation
of Onsager reciprocity for the two-terminal resistance on the

surface of a diffusive TI consisting of FM contacts. We show
that the coupled spin-charge diffusion equations for the TI
surface states obtained by Burkov et al. [23] do not satisfy the
continuity equation of the charge density, where the charge
current density is derived from the velocity operator obtained
from the Hamiltonian of the TI surface states. However,
Burkov et al. had defined both the charge current density and
the spin current density on the TI surface from the coupled
charge and spin transport equations considering continuity of
the charge density and the spin density. We show that the
definition of the charge current density obtained by them is
inconsistent with the the charge current density obtained from
the Hamiltonian of the TI surface states. Moreover, it was
already discussed in the literature [32,33] that the definition of
the spin current density obtained from the continuity equation
for the spin density is not applicable for material with spin-
momentum locked band structure. The physically measur-
able spin current density, which was used in the boundary
condition for the spin current injection from the FM to the
TI surface in prior works [23,25,26], was defined to be the
gradient of the spin density on the TI surface. However,
the spin current density being proportional to the gradient
of the spin density on the TI surface is inconsistent with the
formal definition of the spin current density derived from the
TI surface state Hamiltonian [32,33]. In the work of Schwab
et al. [24], the modification of the charge current density
on the TI surface due to tunneling from the FM was not
considered, which did lead to the violation of the Onsager
reciprocity relation. Here we show that considering both the
modifications of the charge current density and the continuity
equation of the charge density, indeed, results in the two-
terminal resistance that satisfies Onsager reciprocity.

III. THEORY

A. Derivation of the transport equations

The low-energy effective Hamiltonian of the TI surface
states is given by H (p) = h̄vF(p × ẑ) · σσσ , where h̄ is the
reduced Planck constant, vF is the Fermi velocity of the TI
surface states, p is the 2D momentum of the surface states, ẑ
is the unit vector along the surface normal direction, and σσσ =
(σx, σy, σz ) is the vector consisting of the Pauli spin matrices.
We consider the transport within the TI surface in the TI-
FM contact layer as shown in Fig. 4 below. The momentum
scattering among the TI surface states is considered due to
random spin-independent short-range impurity potentials on
the surface of the TI consistent with both Schwab et al. [24]
and Burkov et al. [23], neglecting phonon at the considered
low temperatures in the experiments. In Schwab et al. [24],
the coupling of the TI surface states to the FM contacts
are modeled by spin-conserving but momentum-randomizing
tunneling, where the work of Burkov et al. [23] did not
directly model tunneling. In this work, we mainly focus on the
spin-conserving momentum-randomizing tunneling between
the FM and TI surface states to allow for a direct comparison
to the work of Schwab et al. [24]. However, we also dis-
cuss the effect of spin-nonconserving but spin-selecting and
momentum-randomizing or in-plane momentum-conserving
tunneling on the spin-detection experiments. Both the effects
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of tunneling from the FM to the TI surface states and the
momentum scattering among the TI surface states are in-
cluded in the quantum kinetic equation through self-energy
contributions.

The quantum kinetic equation can be written in terms
of the Green’s function g of the TI surface states as (see
Appendix A):

∂t g + vF

2
{(ẑ × σσσ ) · ∇R, g} + ivFpF[(p̂ × ẑ) · σσσ , g]

= − 1

τp
(g − 〈g〉) + 1

2τp
{(p̂ × ẑ) · σσσ , 〈g〉}

− γ ({(N↑P↑ + N↓P↓), g} + N↑P↑g↑ + N↓P↓g↓)

+ γ

2
{(p̂ × ẑ) · σσσ , (N↑P↑g↑ + N↓P↓g↓)}. (1)

In the above equation, the Green’s function g(R, t ; pFp̂, ε)
is expressed in terms of the Wigner coordinates (R, t ; pFp̂, ε),
where R is the position on the TI surface, t is time, pF is
the Fermi momentum magnitude of the TI surface states,
p̂ = p/pF is the unit vector, and ε is energy. In Eq. (1), τp

is the scattering time between the Bloch states of the TI
(τp would be the momentum relaxation time on the surface
of the TI in the absence of consideration of the overlap of
the initial and final states of the TI, where the second term
on the second line of Eq. (1) then address this spin overlap
between initial and final states of the TI), γ denotes the
strength of tunneling between the FM and the TI surface
states, 〈·〉 denotes angular averaging over the Fermi contour of
the TI surface states, P↑,↓ = (σ0 ± m̂ · σσσ )/2 are the projection
operators to the majority and minority spin bands in the FM,
σ0 is the spin-space identity matrix, m̂ = (mx, my, mz) is the
magnetization direction (a unit vector) of the FM, N↑,↓ are the
corresponding density of states (DOSs) of the majority and
minority spin bands in the FM at the Fermi energy, and g↑,↓
are the nonequilibrium quasiclassical Green’s functions of the
majority and minority electrons in the FM averaged over the
Fermi surface in the FM.

The derivation of Eq. (1) is given in detail in
Appendix A following our previous work [34]. However,
in our previous work, to obtain the continuity equation of
the charge density and the charge current density on the TI
surface, we solved the quasiclassical Green’s function g of the
TI surface states assuming projection of g on the conduction
band of the Hamiltonian, i.e., g = g0(p̂, ε)[σ0 + (p̂ × ẑ) · σσσ ],
and expanding the angular dependence of g in the zeroth and
the first harmonics, i.e., g0(p̂, ε) = gs(ε) + p̂ · ga(ε). In this
work, we proceed differently to derive the transport equations
on the TI surface, with one aim of this approach being to
connect the work of Burkov et al. [23] and that of Schwab
et al. [24]. In our approach, on one hand, the spin-charge
coupled diffusion equations given by Burkov et al. [23] can be
derived in the absence of tunneling [26], and it can be shown
easily that the spin-charge coupled diffusion equations given
by Burkov et al. [23] violates the continuity equation of the
charge density on the TI surface, where the charge current
density on the TI surface is defined using the velocity operator
for the surface states v = (1/h̄)∂H/∂p = vF(ẑ × σσσ ). On the
other hand, for the tunneling of carriers between the FM and

the TI surface, the modification of the continuity equation of
the charge density on the TI surface given by Schwab et al.
[24] can be obtained, along with a modification of the charge
current density that was not considered by Schwab et al. [24],
but that cannot be disregarded in the transport on the surface
of a diffusive TI coupled to a FM.

The quasiclassical Green’s function g of the TI sur-
face states can be written as g = g0σ0 + g · σσσ , where g =
(gx, gy, gz ). By Fourier transforming ∂t → −iω and ∇R →
iq = (iqx, iqy), and taking trace of Eq. (1) after multiplying
by identity matrix and each of three Pauli spin matrices, the
resulting four equations can be rewritten in matrix form as

Kg = L(〈g〉 + h), (2)

where g = (g0, gx, gy, gz )T and h = (h0, hx, hy, hz )T are 4 × 1
column vectors, K and L are 4 × 4 matrices. Here h0 =
γ τp(N↑g↑ + N↓g↓)/2 and (hx, hy, hz ) = h is given by h =
γ τp(N↑g↑ − N↓g↓)m/2. The matrix L is given by

L =

⎡
⎢⎢⎢⎣

1 sin θ − cos θ 0

sin θ 1 0 0

− cos θ 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦, (3)

where θ is the angle of the p vector lying on the Fermi contour.
The matrix K is given by

K =

⎡
⎢⎢⎢⎣

	 i
y −i
x 
z

i
y 	 0 	SO cos θ

−i
x 0 	 	SO sin θ


z −	SO cos θ −	SO sin θ 	

⎤
⎥⎥⎥⎦,

(4)

where 	 = 1 + γ N+τp − iωτp, 	SO = 2pFvFτp, 
x = qxvF

τp + iγ N−τpmy, 
y = qyvFτp − iγ N−τpmx, 
z = γ N−τpmz,
and N± = N↑ ± N↓. The matrix K of Eq. (4) reduces to the
one obtained previously in deriving the diffusion equation on
the surface of a TI without a FM [26,35] after substituting
γ = 0 in the quantities 	, 
x, 
y, and 
z.

To obtain the diffusion equation, one has to solve for 〈g〉
in Eq. (2). Multiplying by K−1 on both sides of Eq. (2) and
averaging over θ, 〈g〉 is obtained from the matrix equation

〈g〉 = D(〈g〉 + h), (5)

where D = 〈K−1L〉 is a 4 × 4 matrix. Equation (5) is the most
general form of spin-charge coupled transport equation on the
surface of a TI coupled to a FM. However, in our case, the cal-
culation of the matrix elements of D can be further simplified.
As shown in Figs. 1 and 2, we only consider 1D problems with
the FM magnetized in the ±y direction. Therefore, the charge
and spin density will be uniform along the y direction on
the TI surface. Hence, qy = 0 and m = (0,±1, 0), therefore,
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y = 
z = 0, and K−1 becomes [26,35]

K−1 =

⎡
⎢⎢⎢⎣

	
(
	2 + 	2

SO

) −i sin θ cos θ
x	
2
SO i
x

(
	2 + 	2

SO cos2 θ
) −i sin θ
x		SO

−i sin θ cos θ
x	
2
SO 	

(
	2 + 	2

SO sin2 θ + 
2
x

) − sin θ cos θ		2
SO − cos θ

(
	2 + 
2

x

)
	SO

i
x
(
	2 + 	2

SO cos2 θ
) − sin θ cos θ		2

SO 	
(
	2 + 	2

SO cos2 θ
) − sin θ	2	SO

i sin θ
x		SO cos θ
(
	2 + 
2

x

)
	SO sin θ	2	SO 	

(
	2 + 
2

x

)

⎤
⎥⎥⎥⎦

	2
(
	2 + 	2

SO

) + 
2
x

(
	2 + 	2

SO cos2 θ
) . (6)

The form of the matrix K−1 given in Eq. (6) is the same
as that obtained previously for the transport of the TI surface
states without a FM [26,35], the only difference is the modi-
fication of the quantities 	 and 
x due to tunneling from the
FM. To obtain D, we need to integrate over angle θ , while
the quantities 	SO, 	 and 
x are constants. Hence, some of
the prior results for calculating the matrix elements of D can
be straightforwardly reused. Mainly, after averaging K−1L
over θ , the nondiagonal terms of the matrix D relating coupled
transport of the g0, gy components with the gx, gz components
vanish. That is, D0x,Dx0,D0z,Dz0,Dxy,Dyx,Dyz,Dzy are zero
since

∫ 2π

0 dθ sin θF (cos θ ) = 0 and
∫ 2π

0 dθ cos θF (sin θ ) =
0 for any smooth function F . Therefore, the spin in the x and z
directions of the electrons are decoupled from the charge flow
and y component of spin. However, the charge flow and the y
component of spin of the electrons on the TI surface remain
coupled. So we only work with the 2 × 2 matrix D2 consisting
of D00,D0y,Dy0,Dyy terms, and write the spin-charge coupled
transport equation as

〈g2〉 = D2(〈g2〉 + h2), (7)

where g2 = (g0, gy)T and h2 = (h0, hy)T are 2 × 1 column
vectors, and D2 is a 2 × 2 matrix given by

D2 =
[

f1
i


x
(1 − 	 f1)

i

x

(1 − 	 f1) 	

2

x
(1 − 	 f1)

]
, (8)

where

f1 =
√

	2 + 	2
so√

	2 + 
2
x

√
	2 + 
2

x + 	2
so

. (9)

B. Definitions of the effective charge densities and
the full electrochemical potentials

The actual nonequilibrium component of the charge den-
sity of the electrons on the TI surface is denoted by nneq, which
is the difference between the actual nonequilibrium charge
density and the actual equilibrium charge density on the TI
surface. Then nneq is obtained from [24]

nneq = eN

2

∫
1

2
Tr[〈g(ε)〉] dε − e2Nφ

= eN

2

∫
〈g0(ε)〉 dε − e2Nφ,

(10)

where N is the DOS of the TI surface states at the equilibrium
Fermi energy and φ is the electrostatic potential on the TI
surface resulting from any electric field. In this work, follow-
ing the notation of Burkov et al. [23], the actual nonequilib-

rium component of the charge density nneq and the external
electrostatic potential φ are subsumed into the definition of
the charge density for convenience; that is, on the surface
of the TI, we define the effective nonequilibrium component
of the charge density n as n ≡ nneq + e2Nφ. Hence, by this
definition, from Eq. (10) we have

n = eN

2

∫
〈g0(ε)〉 dε. (11)

We define the electron-charge-normalized full nonequilibrium
electrochemical potential μ on the TI surface by the relation
n ≡ e2Nμ. In this way, the effective nonequilibrium com-
ponent of the charge density n and the full nonequilibrium
electrochemical potential μ relative to the equilibrium value
include variations in the Fermi level relative to the band edge
and variations in the band edge with the electrostatic potential.
So μ is given by

μ = 1

2e

∫
〈g0(ε)〉 dε. (12)

It should be noted that the voltage difference on the TI surface
will be just the difference of the electron-charge-normalized
full nonequilibrium electrochemical potential μ, which is
consistent with Burkov et al. [23].

The nonequilibrium spin density s (in the unit of electron
charge) on the TI surface is given by [24]

s = eN

4

∫
1

2
Tr[〈σσσg(ε)〉] dε = eN

4

∫
〈g(ε)〉 dε. (13)

Here s = (sx, sy, sz ), and, sx, sy, sz are the x, y, and z compo-
nents of the spin density on the TI surface, respectively. The
2D charge current density j on the TI surface is given by [24]

j = eN

2

∫
1

2
Tr[〈vg(ε)〉] dε, (14)

where v = vF(ẑ × σσσ ) is the velocity operator. Here j =
( jx, jy), and jx and jy are the x and y components of the
2D charge current density, respectively. Because of the spin-
momentum locking of the TI surface states, the 2D charge
current density j is related to the nonequilibrium spin density s
by j = 2vF(ẑ × s). Hence, the charge current density jx on the
TI surface along the x direction is related to the y component
of the spin density sy on the TI surface by

jx = −2vFsy. (15)

In the FM contact, the actual nonequilibrium components
nneq;↑,↓ of the charge densities of the majority and minority
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spin electrons are obtained from, much as of Eq. (10),

nneq;↑,↓ = eN↑,↓
2

∫
1
2 Tr[P↑,↓g↑,↓(ε)] dε − e2N↑,↓φc

= eN↑,↓
4

∫
g↑,↓(ε) dε − e2N↑,↓φc, (16)

where φc is the electrostatic potential within the FM resulting
from any electric field. We define the effective nonequilibrium
components of the majority and minority electron charge
densities n↑,↓ by n↑,↓ ≡ nneq;↑,↓ + e2N↑,↓φc. Hence, by these
definitions, from Eq. (16) we obtain

n↑,↓ = eN↑,↓
4

∫
dε g↑,↓(ε). (17)

We define the electron-charge-normalized full nonequilibrium
electrochemical potentials μ↑,↓ of the majority and minority
spin electrons in the FM relating to the effective nonequilib-
rium components of the majority and minority electron charge
densities n↑,↓ by n↑,↓ ≡ e2N↑,↓μ↑,↓. So we have

μ↑,↓ = 1

4e

∫
dε g↑,↓(ε). (18)

The definitions of μ and μ↑,↓ match with those by Schwab
et al. [24]. The meaning of electron-charge-normalized full
nonequilibrium electrochemical potentials μ↑,↓ is up and
down spin-voltages in the FM as mentioned by Schwab et al.
[24].

IV. RESULTS AND DISCUSSIONS

A. Transport on TI surface and conservation of charge

To obtain the transport equations, we multiply both sides
of Eq. (7) by D−1

2 to obtain the new matrix equation[
D−1

2 − I2
]〈g2〉 = h2, (19)

where D−1
2 is given by

D−1
2 =

[
	 −i
x

−i
x f2

]
(20)

and

f2 = 
2
x

	

(
1

f1	
− 1

)−1

. (21)

In the case of zero tunneling, γ = 0, hence, h2 = 0, 	 = 1 −
iωτp and 
x = qxvFτp in Eqs. (19), (20), and (21). After the ε

integration of Eq. (19) and using Eq. (20), we obtain[
	 − 1 −i
x

−i
x f2 − 1

][
n

2sy

]
= 0. (22)

The first row of the matrix equation Eq. (22) gives

(	 − 1)n − 2i
xsy = 0. (23)

To obtain the second equation from the second row of the
matrix equation Eq. (22), the function f2 in Eq. (21) is
approximated by series expansions in powers of 
x and
	 under the low-frequency, long-wavelength diffusive limit
approximations, ωτp 
 1, qxlp 
 1, and assuming that the
Fermi energy lies well above the Dirac point, pFlp � 1, where
lp = vFτp is the mean-free path on the TI surface. These
approximations imply |
x| 
 |	| 
 1 
 	so; hence, f2 can

be approximated as f2 ≈ 2	, i.e., f2 ≈ 2 − 2iωτp. Then, the
second row of the matrix equation (22) gives

−i
xn + (2	 − 1)2sy = 0. (24)

Inverse Fourier transforming Eqs. (23) and (24), we obtain

∂t n − 2vF∂xsy = 0, (25a)

∂t sy + sy

2τp
− vF

4
∂xn = 0. (25b)

Equations (25a) and (25b) describe the coupled nature of
the charge and spin degrees of freedom of the TI surface
states. From Eq. (25a), after using the relation between the
charge current density jx and the spin density sy on the TI
surface, i.e., jx = −2vFsy as given in Eq. (15), we obtain the
continuity equation of the charge density on the TI surface,

∂t n + ∂x jx = 0. (26)

The continuity equation of the charge density, i.e., Eq. (26) is
obtained from the first row of the matrix equation Eq. (22),
and the continuity equation remains true irrespective of the
approximation for the function f2 that is used to derive
Eq. (25b). Equation (25b) indicates that the spin relaxation
time τs satisfies τs = 2τp, which is a property of the spin-
momentum locked TI surface states [24,35]. In steady state,
from Eq. (25b) we obtain sy = 1

2vFτp∂xn, and using jx =
−2vFsy [Eq. (15)], we obtain the charge current density on
the TI surface,

jx = −v2
Fτp∂xn. (27)

Equation (27) captures the charge current due to both drift
and diffusion since the effective nonequilibrium component of
the charge density n contains both the actual nonequilibrium
component nneq of the charge density of the electrons and
any electrostatic field φ. Explicitly, after substituting n =
nneq + e2Nφ in Eq. (27), we obtain jx = −D∂xnneq − σ∂xφ,
where D = v2

Fτp is the diffusion constant on the TI surface
and σ = e2ND is the associated conductivity via the Einstein
relation for this degenerate system. It can be recognized that
the diffusion constant D = v2

Fτp = v2
Fτtr/2, where we obtain

the momentum relaxation time τtr to be τtr = 2τp because of
the spin-momentum locking of the TI surface states [24,34,36]
(note that τs = 2τp = τtr). We refer to τtr as “the transport
relaxation time” consistent with Schwab et al. [24]. In steady
state, from Eqs. (26) and (27) we obtain

dx jx(x) = 0, (28a)

jx(x) = −σdxμ(x), (28b)

on the TI surface without any tunneling from the FM. Here
and in what follows, we consider the full derivative dx instead
of the partial derivative ∂x of preceding equations as we now
have only an x dependence.

B. Modified transport on TI surface due to tunneling from FM

In the case of nonzero tunneling from the FM to the
TI surface, we plug in 	 = 1 + γ N+τp − iωτp and 
x =
qxvFτp + iγ N−τpmy in Eqs. (20) and (21). After performing
the ε integration of Eq. (19) and substituting Eq. (20), we
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obtain [
	 − 1 −i
x

−i
x f2 − 1

][
n

2sy

]
=

[
γ Nτpn+

γ Nτpmyn−

]
, (29)

where n± = n↑ ± n↓. We define the dimensionless parameter
ξ = γ N+τtr = 2γ N+τp, which is the normalized tunneling
rate with respect to the momentum scattering rate on the TI
surface, [36] and ξ is proportional to the tunnel conductance.
In case of weak tunneling, ξ 
 1, the conditions |
x| 

|	| 
 1 
 	so remain valid, and f2 given in Eq. (21) can
be approximated as f2 ≈ 2	, i.e., f2 ≈ 2 + 2γ N+τp − 2iωτp.
After inverse Fourier transforming the first row of the matrix
equation in Eq. (29) to real space, in steady state we obtain

dx jx = −γ N+n + γ Nn+ + γ N−my

vF
jx, (30)

which is the modified continuity equation of the charge den-
sity on the TI surface due to tunneling from the FM to the
TI. Similarly, after inverse Fourier transforming the second
row of the matrix equation in Eq. (29) to real space and using
jx = −2vFsy, in steady state we obtain

jx = 1

(1 + ξ )

[ − v2
Fτp∂xn + γ vFτpmy(N−n − Nn−)

]
, (31)

which is the diffusion equation for the current density on the
surface of the TI including modifications due to tunneling
from the FM to the TI. These two equations, Eqs. (30) and
(31), are consistent with those we obtained in 2D transport
in our previous work [34] and what was obtained from a
semi-classical drift-diffusion model on the TI surface with
tunneling calculated from the Golden Rule of scattering be-
tween the FM majority and minority electrons and the TI
surface states [16].

Following the literature [16,24], we define the charge
electrochemical potential μc in the FM as μc ≡ (μ↑ + μ↓)/2
and the spin electrochemical potential μs in the FM as μs ≡
(μ↑ − μ↓). Under the charge neutrality condition in the FM
contact, nneq;↑ + nneq;↓ = 0, and we obtain φc = μc + ημs/2,
where η = N−/N+ is the DOS polarization in the FM. In this
work, following Schwab et al. [24], we assume μs = 0, i.e.,
μ↑ = μ↓ = μc, and we have μc = φc, which can be identified
with the voltage in the FM [37]. Equation (30) then becomes

dx jx = 2ξσ

l2
tr

(μc − μ) + ξηmy

ltr
jx, (32)

and Eq. (31) becomes

jx = − σ

(1 + ξ )

[
dxμ + ξηmy

ltr
(μc − μ)

]
, (33)

where, ltr = vFτtr = 2vFτp is the transport relaxation length
on the TI surface. The right-hand side of Eq. (32) can be
interpreted as the current injected from the FM to the TI
surface through the interface due to tunneling of electrons
between the FM and the TI surface. The first term in the
right hand side of Eq. (32) results from the difference of the
electrochemical potential between the FM and the TI surface,
and the tunnel conductance of the interface is proportional to
2ξσ/l2

tr. The second term in the right-hand side of Eq. (32)
results from the spin-momentum locking of the TI surface
states and spin split bands of the FM. The first term in the right

hand side of Eq. (33) is the diffusion term with the modified
conductivity, σ ′ = σ/(1 + ξ ), because tunneling back and
forth across the interface serves as a momentum-randomizing
scattering process for the TI surface states. The second term
in the right hand side of Eq. (33) also arises because of
the spin-momentum locking of the TI surface states and the
spin split bands of the FM. The modification of the charge
current density on the TI surface due to tunneling from the
FM, given in Eq. (33), was not considered by Schwab et al.
[24]. Although we have derived Eqs. (32) and (33) consid-
ering spin-conserving momentum-randomizing tunneling, the
forms of (32) and (33) remain the same with a redefined ξ and
η even if we consider spin-nonconserving but spin-selecting
momentum-randomizing or in-plane momentum-conserving
tunneling (see Appendix A). If the strength of tunneling
between the TI surface states and the majority/minority bands
of the FM are γ↑,↓ which also depends on the nature of
the interface (momentum randomization happens for a rough
interface and in-plane momentum conservation holds for a
smooth interface), then ξ and η should be redefined as ξ =
(γ↑N↑ + γ↓N↓)τtr and η = (γ↑N↑ − γ↓N↓)/(γ↑N↑ + γ↓N↓).

C. Consideration of FM line contact

We begin our consideration of results for specific ge-
ometries by considering only line contacts in this section,
which allows for more ready comparison to prior work by
Schwab et al. [24]. In a subsequent section we extend our
results to consider contacts of nonzero length. In deriving
the two-terminal resistance between a FM and a point on
the TI surface, Schwab et al. [24] had considered a FM
line contact lying transverse to the transport direction and of
infinitesimally small dimension along the transport direction,
as shown in Fig. 3, with tunneling described by a δ function.
We consider 1D transport along the x direction, the FM
contact to be of length L along the transport direction located
between region x = 0 and x = L (we will take limit L → 0)
and of width W along the transport-normal direction y. The
tunneling from the FM contact to the TI surface is modeled by
replacing the tunneling strength γ by γ L fL(x), i.e., replacing
ξ by ξL fL(x), where fL(x) is a rectangular function with value
1/L in the region x = 0 to x = L and zero otherwise. [Note
that fL(x) → δ(x) in the limit L → 0.] Following Schwab
et al. [24], after replacing ξ by ξL fL(x) we integrate Eq. (32)
in a region (−ε, L + ε) close to the FM contact, and let ε → 0
and L → 0, to obtain

j+x − j−x = 2ξσL

l2
tr

(
μ0

c − μ+ + μ−

2

)
+ ξηmyL

ltr

j+x + j−x
2

.

(34)

Here we denote μ0
c to be the electrochemical potential on

the FM line contact, μ+ = μ(0+) to be the electrochemical
potential on the TI surface to the right of the FM line contact
and μ− = μ(0−) to be the electrochemical potential on the
TI surface to the left of the FM line contact. Similarly, we
denote j+x = jx(0+) to be the charge current density on the
TI surface to the right of the FM line contact and j−x =
jx(0−) to be the charge current density on the TI surface
to the left of the FM line contact. To obtain Eq. (34), we
have used

∫ L+ε

−ε
dx dx jx = jx(L + ε) − jx(−ε) and, in the
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FIG. 3. Schematics of 1D measurement geometries on the sur-
face of a diffusive TI with a line FM contact indicated by an arrow.

limits ε → 0 and L → 0, jx(L + ε) = jx(0+) and jx(−ε) =
jx(0−). Also in the limit ε → 0 and L → 0, we have used∫ L+ε

−ε
dx fL(x)μ ≈ 1

2 [μ(0+) + μ(0−)] and
∫ L+ε

−ε
dx fL(x) jx ≈

1
2 [ jx(0+) + jx(0−)] consistent with the approximations of
Schwab et al. [24]. It should be noted that the electrochemical
potential μ as well as the charge current density jx on the TI
surface will be continuous functions for L �= 0, but the value
of the function may be different to the right and left of the
contact, i.e., μ(L+) �= μ(0−) and jx(L+) �= jx(0−) in general.
In the limit L → 0 for a line contact, there will be a change
in the electrochemical potential on the TI surface across the
FM line contact. This change in the electrochemical potential,
which will be determined from Eqs. (32) and (33), was not
considered by Schwab et al. [24].

Next, we consider Eq. (33), multiply both sides of Eq. (33)
by (1 + ξ ), replace ξ by ξL fL(x), perform the integration of
the resulting equation in a small region (−ε, L + ε) with the
limits ε → 0 and L → 0, and divide the result by ξL, to obtain

j+x + j−x
2

=− σ

ξL

[
(μ+−μ−) + ξηmyL

ltr

(
μ0

c − μ+ + μ−

2

)]
.

(35)

To obtain Eq. (35), we have used
∫ L+ε

−ε
dx dxμ = μ(L +

ε) − μ(−ε), and, in the limits ε → 0 and L → 0, μ(L +
ε) = μ(0+) and μ(−ε) = μ(0−). Also, we have used∫ L+ε

−ε
dx jx = 0 in the limits ε → 0 and L → 0. The elec-

trochemical potential μ+ and μ− on the TI surface with
respect to the electrochemical potential μ0

c on the FM will be
determined in terms of the current density on the TI surface

after solving Eqs. (34) and (35) with relevant boundary con-
ditions on j±x .

In the measurement setups shown in Figs. 3(a), 3(c), and
3(e), a current I is injected from the FM contact to the TI
surface to the right of the FM contact, so j+x = I/W and j−x =
0. Solving Eqs. (34) and (35), we obtain μ+ and μ− to be

μ+ = μ0
c −

(
1 − η2m2

y

2

)
ξ IL

4σW
− l2

tr

2ξσ

I

W L
, (36a)

μ− = μ0
c +

(
1 − η2m2

y

2

)
ξ IL

4σW
− l2

tr

2ξσ

I

W L
+ ηmyltr

2σ

I

W
.

(36b)

The second term on the right side of both Eqs. (36a) and (36b)
is the resistive potential drop due to the charge current flowing
on the surface of the TI under the FM contact, where σW/L is
the conductance of the TI surface over length L. The third term
on the right side of both Eqs. (36a) and (36b) is the resistive
potential drops across the interface due to the charge current
flowing from the FM to the TI surface through the interface,
where the interface conductance is (2ξσ/l2

tr )W L, and W L is
the area of the interface. [Note that 2ξσ/l2

tr is the coefficient
of the first term in Eq. (32).] From Eq. (36a), the potential drop

μ(my) = (μ0

c − μ+) is indeed the same for my = ±1, and,
hence, the two-terminal resistances measured between the FM
and the TI surface, as shown in Fig. 3(a), is independent of
the magnetization direction of the FM satisfying the Onsager
reciprocity relation. However, the last term in μ− is nontrivial
due to the spin-momentum locking of the TI surface states.
From Eq. (36b), the potential drop 
μ(my) = (μ− − μ0

c ), as
shown in Fig. 3(c), depends on the sign of my. Similarly,
from both Eqs. (36a) and (36b), the potential drop 
μ(my) =
(μ− − μ+), as shown in Fig. 3(e), also depends on the sign of
my. So the measured three-terminal resistances, as shown in
Figs. 3(c) and 3(e), will depend on the magnetization direction
of the FM. Such measurement setups were used to detect the
current-induced spin polarization on the TI surface [13,14].
We define the spin-detection voltage δμ as the change of the
potential drop upon reversing the magnetization direction of
the FM, i.e., δμ = [
μ(my = +1) − 
μ(my = −1)]. In both
cases shown in Figs. 3(c) and 3(d), δμ = ηltrI/σW .

In the measurement setups shown in Figs. 3(b), 3(d) and
3(f), a current I is extracted out of the FM contact from the
TI surface to the left of the FM contact, such that j+x = 0 and
j−x = I/W . Then we obtain μ+ and μ− to be

μ+ = μ0
c −

(
1 − η2m2

y

2

)
ξ IL

4σW
+ l2

tr

2ξσ

I

W L
+ ηmyltr

2σ

I

W
,

(37a)

μ− = μ0
c +

(
1 − η2m2

y

2

)
ξ IL

4σW
+ l2

tr

2ξσ

I

W L
. (37b)

The measurement setup pair shown in Figs. 3(a) and 3(b) [and,
similarly, the pair Figs. 3(c) and 3(d) and the pair Figs. 3(e)
and 3(f)] are identical after an 180◦ rotation in the plane.
Hence, the solution for the electrochemical potential on the
TI surface given in Eqs. (37a) and (37b) are related to that
given in Eqs. (36a) and (36b), after a change of sign of both
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I and my and the interchange of μ+ and μ−. The 180◦ rotation
symmetry is also present in Eqs. (34) and (35), which re-
main unchanged after letting j+x → − j−x , j−x → − j+x , my →
−my, μ+ → μ− and μ− → μ+. It is seen From Eqs. (37b)
that the potential drop 
μ(my) = (μ− − μ0

c ) is the same for
my = ±1, and, hence, the two-terminal resistance measured
between the FM and the TI surface, as shown in Fig. 3(b),
remains the same irrespective of the magnetization direction
of the FM, satisfying Onsager reciprocity. From Eq. (37a),
we find that the potential drop 
μ(my) = (μ0

c − μ+), as
shown in Fig. 3(d), depends on the sign of my. Similarly,
from Eqs. (37a) and (37b), we find that the potential drop

μ(my) = (μ− − μ+), as shown in Fig. 3(f), depends on the
sign of my. So the three-terminal resistances, as shown in
Figs. 3(e) and 3(f), will depend on the magnetization direction
of the FM contact, and δμ = ηltrI/σW for both cases.

In the measurement setups shown in Figs. 3(g)–3(h), a
current I is passed on the TI surface from the left of the
FM contact to the right of the FM contact, and no current
is injected or extracted through the FM contact, hence, j+x =
j−x = I/W . Then, we find the solution for μ+ and μ− to be

μ+ = μ0
c −

(
1 − η2m2

y

2

)
ξ IL

2σW
+ ηmyltr

2σ

I

W
, (38a)

μ− = μ0
c +

(
1 − η2m2

y

2

)
ξ IL

2σW
+ ηmyltr

2σ

I

W
. (38b)

The measurement setup shown in Figs. 3(g) and 3(h) are
identical after an 180◦ rotation in the plane, so, the solution
for the electrochemical potential on the TI surface given in
Eqs. (38a) and (38b) (which is same as interchanging μ+
and μ−) are related after a change of sign of both I and my.
The second term in both Eqs. (38a) and (38b) is the resistive
potential drops along the surface of the TI under the FM
contact, and the third term in both Eqs. (38a) and (38b) is
nontrivial and because of the spin-momentum locking of the
TI surface states. For the geometry of Fig. 3(g), we obtain
the potential drop 
μ(my) = (μ0

c − μ+) from Eq. (38a), and
for the geometry of Fig. 3(h), we obtain the potential drop

μ(my) = (μ− − μ0

c ) from Eq. (38b), both of which depend
on the sign of my. Therefore, the three-terminal resistances
for the geometries of Figs. 3(g) and 3(h) will depend on the
magnetization direction of the FM contact and could be used
for spin detection with δμ = ηltrI/σW for both cases.

Our results for δμ for three-terminal measurement geome-
tries of Figs. 3(g) and 3(h) match with that of Hong et al.
calculated in the limit of small tunneling for a FM point
contact as a voltage probe on the TI surface [15], as well
as that of Yokoyama et al. obtained after a perturbative so-
lution of the coupled transport equations of the TI-FM bilayer
with tunneling treated as perturbation [16]. From Eqs. (38a)
and (38b), we also find that the potential drop 
μ(my) =
(μ− − μ+) across the TI surface is independent of the sign
of my, which also is consistent with the result by Yokoyama
et al. [16]. The circuit pair shown in Figs. 3(c) and 3(d),
the pair shown in Figs. 3(e) and 3(g), and the pair shown in
Figs. 3(f) and 3(h) are reciprocal pairs. The resistance of each
of these circuits can be calculated from Eqs. (36)–(38). For
each reciprocal circuit pair, the Onsager reciprocity relation

R1(+my) = R2(−my) is satisfied, where R1 and R2 are my-
dependent resistances of reciprocal circuits in each pair.

D. Consideration of nonzero length FM contact
and importance of the tunnel barrier

We started with the quantum kinetic equation given in
Eq. (1) which is derived under the gradient expansion as-
suming that the r and t dependence of the Green’s function
g(r, t; pFp̂, ε) is smooth in the Fermi scale, i.e., qx 
 pF
and ωτp 
 pFlp. Furthermore, Eqs. (30) and (31) are de-
rived from the matrix equation Eq. (29) after approximat-
ing f2 ≈ 2	 under low-frequency long-wavelength diffusive
limit assumption, ωτp 
 1 and qxlp 
 1. The assumptions
in the gradient expansion and diffusive limit imply that the
charge electrochemical potential μ on the TI surface varies
smoothly on the scale of momentum relaxation length on the
TI surface. In the solution of Eqs. (34) and (35), which are
derived assuming δ function tunneling, μ has a discontinuity.
However, the solution of μ in Eqs. (36)–(38) must be treated
as the solution in the limiting case of the length of the
FM contact becoming zero. Also, in experiment, the size of
the contact is nonzero and at least an order of magnitude
larger than the momentum relaxation length on the TI surface.
Hence, the coupled transport equations, Eqs. (32) and (33),
which are derived considering diffusive transport on the TI
surface under the FM contact region, need to be resolved for
a nonzero contact length. However, and as we will show do,
these results for nonzero contact length continue to follow
the Onsager reciprocity relation, and converge back to the
corresponding line contact result, δμ = ηltrI/σW in the limit
of L → 0. However, it is only beyond the line contact limit
that we capture the importance of the tunnel contact in such
spin-detection experiments.

The second order differential equation for the electrochem-
ical potential μ on the TI surface under the FM contact is
obtained by substituting Eq. (33) into Eq. (32). Since the FM
contact is metallic with a conductivity much higher than the
conductivity of the TI surface, the electrochemical potential
of the FM μc(x) can be taken to be constant within the FM
contact, i.e., dxμc(x) = 0 and μc(x) = μ0

c [37]. We define
μ′ = μ − μ0

c to be the electrochemical potential on the TI
surface with respect to the FM contact. Then, the equations
for μ′ and the current density jx on the TI surface become

d2
x μ′ − 2bmy dxμ

′ + (
b2m2

y − c2
)
μ′ = 0, (39a)

jx = −σ ′[ dxμ
′ − bmyμ

′], (39b)

where b = ξη/ltr and c = √
2ξ (1 + ξ )/ltr. From Eq. 39, if

μ′( j) is a solution given a current density j on the TI surface,
then μ′(α j) = αμ′( j) is also a solution. So, the potential
difference (μ1 − μ2) = (μ′

1 − μ′
2) between any two points

1 and 2 on the TI surface, or the potential difference (μ −
μ0

c ) = μ′ between any point on the TI surface and the FM,
will be directly proportional to the current density, implying
a linear current-voltage relationship. Also, from Eq. (39),
after letting x → −x and my → −my, either jx → − jx or
μ′ → −μ′ indicting a symmetry of the problem under an
180◦ rotation in the plane. However, to check for Onsager
reciprocity, we must solve Eq. (39) given specific boundary
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FIG. 4. Schematics of the cross-sectional view of 1D measure-
ment geometries on the surface of a diffusive TI in the vicinity of the
FM in the circuits of Fig. 1.

conditions associated with the reciprocal circuit pairs. The
solution of μ′ in Eq. (39a) is given by μ′ = A1er1x + A2er2x,
where r1,2 = bmy ± c, and the unknown constants A1,2 will
be determined from the boundary conditions on jx, which
can be written as jx = −σ ′c(A1er1x − A2er2x ) from Eq. (39b).
To keep the notation consistent with that of a line contact
in the limit L → 0, we denote the electrochemical potentials
on the TI surface to the left of the FM contact to be μ− =
μ(x = 0) and the electrochemical potentials on the TI surface
to the right of the FM contact to be μ+ = μ(x = L). In the
following, we find the solutions for μ+ and μ− for specific
geometries and discuss the linear current-voltage character-
istic, the symmetry under an 180◦ rotation in the plane, the
spin-detection voltage on the TI surface, the validity of the
Onsager reciprocity relation and the importance of the tunnel
barrier in such spin-detection experiments.

We first consider the case in which a current I is injected
from the FM to the TI and extracted from one end or the other
of the TI surface, as shown in Fig. 4. In the case in which
the current is extracted from the right end on the TI surface
as shown in Figs. 4(a), 4(c), and 4(e), the boundary conditions
become jx(x = 0) = 0 and jx(x = L) = I/W . Then we obtain
the solution for μ+ and μ− to be (see Appendix B)

μ+ = μ0
c − I coth(cL)

σ ′cW
, (40a)

μ− = μ0
c − I csch(cL)

σ ′cW
e−bmyL. (40b)

From Eq. (40a), the potential difference 
μ = (μ0
c − μ+)

does not depend on the magnetization direction of the FM.
As a result, the two-terminal resistance measured between a
FM and a NM contact of Fig. 4(a) will remain the same even
after reversing the magnetization of the FM, satisfying the
Onsager reciprocity relation. However, in the three-terminal
measurement of Fig. 4(c) in which the potential at the leftmost
point on the TI surface is measured with respect to the FM,
the potential difference 
μ(my) = (μ− − μ0

c ), which is found
from Eq. (40b), depends on the magnetization direction of the

FM. Similarly, in the three-terminal measurement of Fig. 4(e)
in which the potential difference on the TI surface at the two
ends is measured, 
μ(my) = (μ− − μ+) from Eqs. (40a) and
(40b), depends on the magnetization direction of the FM.

If a current I is injected on the TI surface from the left
end and extracted through the FM contact of Figs. 4(b), 4(d),
and 4(f), the boundary conditions will be jx(x = 0) = I/W
and jx(x = L) = 0. Then we obtain μ+ and μ− to be (see
Appendix B)

μ+ = μ0
c + I csch(cL)

σ ′cW
ebmyL, (41a)

μ− = μ0
c + I coth(cL)

σ ′cW
. (41b)

Equation (41) can be obtained from Eq. (40) after reversing
the direction of the injected current I and the magnetization
direction my of the FM, and interchanging the rightmost and
the leftmost potentials μ+ and μ−, which reflects the 180◦
rotation symmetry in the plane of the device. In the two-
terminal case as shown in Fig. 4(b), the potential difference

μ = (μ− − μ0

c ) from Eq. (41b) is independent of the FM
magnetization, so the two-terminal resistance will remain the
same even after reversal of the magnetization direction of
the FM. In the three-terminal case as shown in Fig. 4(d),
the potential difference 
μ(my) = (μ0

c − μ+) from Eq. (41a)
depends on the magnetization direction of the FM. Similarly,
in the three-terminal case as shown in Fig. 4(f), the potential
difference 
μ(my) = (μ− − μ+), which is obtained from
Eqs. (41a) and (41b), also depends on the magnetization
direction of the FM. Hence, in the three-terminal geometries
of Figs. 4(c)–4(f), there will be a change of resistance under
the magnetization reversal of the FM, which can be used for
spin detection on the surface of a TI.

In the circuit geometries shown in Figs. 4(g)–4(h), the
same current I is injected in and out of the two ends of the TI
surface, and the boundary conditions are jx(x = 0) = jx(x =
L) = I/W . Then, μ+ and μ− are given by (see Appendix B)

μ+ = μ0
c − I csch(cL)

σ ′cW
[cosh(cL) − ebmyL], (42a)

μ− = μ0
c + I csch(cL)

σ ′cW
[cosh(cL) − e−bmyL]. (42b)

From Eq. (42), under the reversal (change of sign) of both
the direction of the injected current I and the FM magneti-
zation direction my, the potentials on the rightmost and the
leftmost points, μ+ and μ−, are interchanged, which again
is due to the 180◦ rotation symmetry in the plane of the
device. In the geometries of Figs. 4(g) and 4(h), the potential
difference 
μ(my) = (μ0

c − μ+) and 
μ(my) = (μ− − μ0
c ),

respectively, can be obtained from Eqs. (42a) and (42b).
In both these cases, 
μ(my) depends on the magnetization
direction of the FM and will change upon reversing the FM
magnetization direction. However, the potential difference

μ(my) = (μ− − μ+) is independent of the magnetization
direction of the FM, which is consistent with the Onsager
reciprocity relation, and the result by Yokoyama et al. [16].

All the potential differences, 
μ = (μ0
c − μ+), 
μ =

(μ− − μ0
c ), and 
μ = (μ− − μ+), given by Eqs. (40)–(42),

are proportional to the current I , implying a linear regime of
the transport. The circuit geometries shown in Figs. 4(c) and
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FIG. 5. Variation of the spin-detection efficiency χ with the
normalized conductivity ξ of the FM tunnel contact on the surface of
a diffusive TI for different values of the FM contact length L relative
to the transport relaxation length ltr on the TI surface.

4(d), Figs. 4(e) and 4(g), and Figs. 4(f) and 4(h) are reciprocal
pairs with the voltage and the current terminals interchanged.
In all these reciprocal circuit pairs, the resistance can be cal-
culated using Eqs. (40)–(42), and in all the cases the Onsager
reciprocity relation R1(+my) = R2(−my) is satisfied, where
R1 and R2 are the my dependent resistances of reciprocal
circuits in each pair. In all the cases shown in Figs. 4(c)–4(h)
using Eqs. (40)–(42), we find that the spin-detection voltage,
δμ = [
μ(my = +1) − 
μ(my = −1)], is given by

δμ = 2I

σ ′cW
sinh(bL) csch(cL). (43)

From Eq. (43), in the limit L → 0, we find that δμ =
ηIltr/σW , which is the same as that obtained assuming tun-
neling from a δ function for the FM line contact, and that δμ

is, indeed, independent of the conductance of the FM tunnel
contact. Only for nonzero length FM contact, does δμ depend
on the tunneling conductance of the FM contact. For small
tunnel conductance, the Taylor series expansion of δμ for
small values of ξ gives δμ = (ηIltr/σW )[1 − ξ (L2/3l2

tr )]. So,
in the limit ξ → 0, we also obtain δμ = ηIltr/σW , which is
independent of the length of the FM contact. We define the ef-
ficiency χ of the tunnel barrier as χ = δμ(ξ )

δμ(ξ→0) . Therefore, the
spin-detection voltage can be written as δμ(ξ ) = χηIltr/σW .
In the limit L → 0 or ξ → 0, we have χ → 1. Figure 5
shows how χ changes with ξ for different values of L/ltr =
10, 20, 50, and η = 0.5. We have observed that the depen-
dence of χ on η is negligible in the range of interest of the ξ

and L/ltr values, so the variation of χ with ξ for only η = 0.5
is shown. From Fig. 5 we can see that the spin-detection effi-
ciency of the tunnel contact decreases as the conductivity of
the FM contact increases. Also, the spin-detection efficiency
of the FM contact decreases as the length of the FM contact
increases. So the ideal contact for spin detection would be a
FM line contact. However, in experiments, the FM contact
has a nonzero and often substantial length compared to the
transport relaxation length ltr on the TI surface, and a tunnel
barrier is needed to increase the spin-detection efficiency of
the contact, which has been demonstrated in the experiments
[2–14].

E. Consideration of NM contacts

The analysis of the circuit geometries shown in Figs. 1 and
2 with nonzero size contacts of length L can be performed
using the circuit diagrams of Fig. 4 and with the help of
Eqs. (40)–(42). However, to calculate the resistances for these
circuit geometries, the potential drops due to both the FM
and the NM contacts and the potential drop on the TI surface
between the contacts must be considered. The potential drop
on the TI surface between two contacts can be found by
solving Eq. (28). If a constant current I flows on the surface
of the TI from point 1 to point 2, the potential drop between
the two points, 1 and 2, will be 
μ = (μ1 − μ2) = IL12/σW ,
where L12 is the length between points 1 and 2. The potential
drop due to the NM contact can be calculated considering the
transport on the TI surface under the NM contact. Previously
[36], we calculated the modified transport equations on the
TI surface due to tunneling from the NM contact. In the 1D
case, considering the transport on the TI surface along the x
direction, the modified continuity equation of the TI surface
states due to tunneling to and from the NM is given by [36]

dx jx = 2γ Nm(e2Nμc − n), (44)

where Nm is the per spin DOS of the NM at the Fermi energy,
and μc is the charge electrochemical potential in the NM. In
our previous work [36], we defined the interface transmission
time τt by 1/τt = γ Nm. The modified diffusion equation for
the charge current density on the TI surface due to tunneling
from the NM is given by [36]

jx = 1

(1 + 4γ Nmτp)

[−v2
Fτp∂xn − e2γ NmNvFτpμ

y
s

]
, (45)

where μ
y
s is the y component of the spin electrochemical po-

tential in the NM [38]. From Eq. (44) we obtain the following
modified continuity equation of the charge density on the TI
surface under the NM,

dx jx = 2ξσ

l2
tr

(μc − μ). (46)

For μ
y
s = 0, from Eq. (45), we obtain the following modified

diffusion equation for the current density on the surface of the
TI under the NM,

jx = − σ

(1 + ξ )
dxμ. (47)

In case of the NM, we have N↑ = N↓ = Nm, and, thus, N− =
0, N+ = 2Nm; therefore, η = 0 and ξ = 4γ Nmτp. Equations
(46) and (47) also can be obtained from Eqs. (32) and (33),
respectively, after letting η = 0 for the NM. So, to calculate
the potential drops due to the nonzero length NM contact in
Figs. 1 and 2, Eqs. (40)–(42) can be used after substituting
η = 0.

The resistive potential drop on the TI surface and the
resistive drop due to the NM contacts are independent of
magnetization direction of the FM contact, and satisfy the
Onsager reciprocity relation independently. Therefore, it is
sufficient to consider the potential drop due to the FM con-
tacts, as shown in Fig. 4, to check the validity of the Onsager
reciprocity relation in multiterminal measurements as shown
in Fig. 1 and the two-terminal measurements as shown in
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Fig. 2. Considering the transport on the TI surface under the
nonzero length FM contact, we have shown that the Onsager
reciprocity relation is satisfied in spin-detection experiments
on the surface of a TI, and how the conductivity of the FM
tunnel contact affects the efficiency of the spin detection.
Our conclusions remain valid even after considering detailed
calculation of the potential drops due to all the other NM
contacts and the drops on the TI surface between the contacts.

To illustrate how to include the potential drops considering
the NM contacts of Figs. 1 and 2, we calculate the two-
terminal resistances in the circuit geometries shown in Fig. 2
using the results obtained for the transport on the TI surface
under the FM and the NM contact and the region in between
the contacts. For the circuit geometries shown in Figs. 2(a) and
2(b), if the same current is flowed on the TI surface between
the two contacts, the potential difference on the two contacts
will be the sum of the potential drop due to the left contact, the
potential drop on the TI surface in between the contacts, and
the potential drop due to the right contact. The potential drop
due to the left FM contact will be obtained from Eq. (40a), the
potential drop due to the right NM contact of Fig. 2(a) or the
right FM contact of Fig. 2(b) will be obtained from Eq. (41b),
and the potential drop on TI surface in between the contacts
will be given by 
μ = IL12/σW . For both cases shown in
Figs. 2(a) and 2(b), the two-terminal resistances are the same
and given by

R2t = coth(c1L1)

σ ′
1c1W

+ IL12

σW
+ coth(c2L2)

σ ′
2c2W

. (48)

Here ci = √
2ξi(1 + ξi )/ltr and σ ′

i = σ/(1 + ξi ), where ξi is
proportional to the conductance of the tunnel barrier for the
ith contact, Li is the length of the ith contact (i = 1, 2), and
L12 is the length between the contacts. The resistance given by
Eq. 48 is independent of the magnetization direction of the FM
contact of Fig. 2(a) or the magnetization direction of either of
the FM contacts of Fig. 2(b). Hence, R2t satisfies the Onsager
reciprocity relation. The calculation for all the circuits shown
in Fig. 1 can be performed in a similar way.

F. Consideration of spin-valve-like geometries

We also consider spin-valve-like four-terminal measure-
ment geometries with two adjacent FM and two nonadjacent
NM contacts on the surface of a diffusive TI. Among all the
possible circuit geometries with such contact configurations,
two of them being the voltage probes and other two being
the current probes, we find four possible contact geometries
(two sets of reciprocal circuit pairs), as shown in Fig. 6,
that manifest the effects of magnetic orientations of both the
FMs on the four-terminal resistance. We also note that, if
the two FM and the two NM contacts are identical in the
devices shown in Fig. 6, there will be a rotational symmetry
axis normal to the plane of the devices. In case of iden-
tical contacts in the devices shown in Figs. 6(a) and 6(b),
from the calculations based on Eqs. (40)–(42) we obtain the
relationship, R4t (+ �M1,+ �M2) = R4t (− �M1,− �M2), where this
relationship satisfies the symmetry under an 180◦ ro-
tation in the plane of the devices. However, we ob-
tain R4t (+ �M1,− �M2) �= R4t (− �M1,+ �M2) consistent with the
equality being not guaranteed by any symmetry or the On-

(a)

(c)

(e) (f)

(d)

(b)
V

I

I
V

V

I

I

V

VI V I

FIG. 6. Schematics of spin-valve-like measurement geometries
with two FM contacts on the surface of a diffusive TI.

sager reciprocity relation. Similarly, in case of identical
contacts in the circuits shown in Figs. 6(c) and 6(d), the
four point resistances obtained from our calculations using
Eqs. (40)–(42) satisfy R4t (+ �M1,+ �M2) = R4t (− �M1,− �M2),
but we also obtain R4t (+ �M1,− �M2) = R4t (− �M1,+ �M2) con-
sistent with the Onsager relation since the two symmetric
reciprocal device structures are related by an 180◦ rotation in
the plane. Other terminal connection possibilities are shown
in Figs. 6(e) and 6(f), which are reciprocal circuit pairs. We
find from the calculations using the Eqs. (40)–(42) that the
four-terminal resistances will not depend on either of the
magnetizations of the FM contacts. This behavior also has
been verified experimentally [4,14] and was attributed to very
short spin relaxation time, which is same as the momentum
relaxation time on the surface of the TI due to spin-momentum
helical locking. We could, in principle, extend our calculations
to derive the multiterminal resistance for any number of
contacts.

V. COMPARISON TO RESULTS IN THE LITERATURE

In this section, we first derive the spin-charge coupled
transport equations of Burkov et al. [23], which was derived
on the TI surface without any tunneling from the FM. Then,
we show that the spin-charge coupled diffusion equations of
Burkov et al. do not satisfy the continuity equation of the
charge density, i.e., Eq. (26) in which the charge current
density on the TI surface is given by Eq. (15).

To derive the transport on the TI surface in the case of
no tunneling from the FM, we have γ = 0, hence, h2 =
0, 	 = 1 − iωτp and 
x = qxvFτp in Eqs. (7), (8), and (9).
Performing the ε integration of Eq. (7), we obtain

[I2 − D2]ρ2 = 0, (49)

where I2 is the 2 × 2 identity matrix and ρ2 = (n, 2sy)T . The
matrix D2 contains full information about the coupled spin
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and charge transport on the TI surface. However, the matrix
elements of D2 are complicated functions of 
x, 	, and 	so

as given in Eq. (8). Instead, to obtain the transport equations
on the TI surface, we have multiplied Eq. (8) by D−1

2 to
obtain the matrix equation Eq. (19), which gives Eq. (22)
in case of no tunneling, and the matrix elements of D−1

2 are
simple functions as given in Eq. (20). Moreover, as we have
shown, the continuity equation of the charge density obtained
from the matrix equation (22) remains true irrespective of
the approximation made to obtain the second equation of
the two coupled transport equations. The spin-charge coupled
transport equations of Burkov et al. [23] can be obtained by
approximating the matrix elements of D2 by invoking the
diffusive approximations. The matrix equation (49) with the
full matrix D2 satisfy the continuity equation of the charge
density as we show below. However, we also show that it is
quite nontrivial to approximate the matrix elements of D2 to
get the spin-charge coupled diffusion equations from Eq. (49)
such that the continuity equation of the charge density is
satisfied even after the approximations.

First, we show that the spin-charge coupled diffusion equa-
tions on the TI surface without any tunneling from the FM
satisfies the continuity equation of the charge density given
the full matrix D2 in Eq. (8). Substituting D2 from Eq. (8) in
Eq. (49) with 	 = 1 − iωτp and 
x = qxvFτp, we obtain[

1 − f1 − i

x

(1 − 	 f1)

− i

x

(1 − 	 f1) 1 − 	

2

x
(1 − 	 f1)

][
n

2sy

]
= 0. (50)

Multiplying Eq. (50) by the row vector v2 = (	,−i
x ) from
the left gives Eq. (23), which is the continuity equation of
the charge density expressed in the Fourier space. We observe
that the equation v2[I2 − D2]ρ2 = 0 gives Eq. (23) if the full
matrix D2 in Eq. (8) is used. Hence, we can obtain a constrain
on how to expand the matrix elements of D2 such that the
equation v2[I2 − D2]ρ2 = 0 continues to give Eq. (23), and
thus the coupled spin-charge transport equations will satisfy
the continuity equation for the charge density.

The matrix elements of D2 are expanded in series as

D00 = 1

	
− 
2

x

2	3
+ 3
4

x

8	5
+ · · · ,

D0y = Dy0 = i
x

2	2
− 3i
3

x

8	4
+ · · · , (51)

Dyy = 1

2	
− 3
2

x

8	3
+ · · · .

However, the approximations of the matrix elements of D2

have to be such that the equation v2[I2 − D2]ρ2 = 0 still give
Eq. (23), which forces expanding each matrix element with
different powers of 
x (or 	) given by the following rule at
each order of approximation: In the nth order, the rule is to
keep the first (n + 1) terms of D00 and the first n terms in
each of D0y,Dy0,Dyy in Eq. (51). Hence, to the lowest order,
one has to keep the first two terms of D00 and only the first
term in each of D0y,Dy0,Dyy in Eq. (51). For the next higher
order, one has to keep the first three terms of D00 and the first
two terms in each of D0y,Dy0,Dyy in Eq. (51).

Previously [26], we had shown that the coupled spin-
charge transport equations obtained by Burkov et al. [23] can

be derived from Eq. (7) under the diffusive approximations.
Here we precisely show that the transport equations of Burkov
et al. are obtained after keeping the first two terms in both D00

and Dyy and the first term in both D0y and Dy0 in Eq. (51),
which do not satisfy the above rules. However, we obtain

D00 = (1 − iωτp)−1 − 
2
x

2
(1 − iωτp)−3

≈ 1 + iωτp − q2
xv

2
Fτ

2
p

2
,

D0y = Dy0 = i
x

2
(1 − iωτp)−2 ≈ iqxvFτp

2
, (52)

Dyy = 1

2
(1 − iωτp)−1 − 3
2

x

8
(1 − iωτp)−3

≈ 1

2
(1 + iωτp) − 3q2

xv
2
Fτ

2
p

8
.

In deriving the approximate values of the matrix elements,
we have neglected terms of order ω2τ 2

p , ωτpqxlp and higher.
Substituting the values from Eq. (52) into Eq. (49), we obtain[

−iωτp + 1
2 q2

xv
2
Fτ

2
p − 1

2 iqxvFτp

− 1
2 iqxvFτp

1
2 − 1

2 iωτp + 3
8 q2

xv
2
Fτ

2
p

][
n

2sy

]
= 0.

(53)

Equation (53) is exactly what we derived in our prior
work [26]. After inverse Fourier transforming Eq. (53) to real
space, the following coupled spin-charge transport equations
of Burkov et al. [23] are obtained,

∂t n = D0∂
2
x n + 2�∂xsy, (54a)

∂t sy = 3D0

2
∂2

x sy − sy

τp
+ �∂xn, (54b)

where D0 = v2
Fτp/2 was the diffusion constant, and � = vF/2

was the spin-charge coupling constant. It should be noted that
diffusion constant D0 = v2

Fτp/2 indicates that the momentum
relaxation time is τp instead of 2τp. Similarly, Eq. (54b)
indicates that the spin relaxation time is also τp instead of
2τp. The mismatch of a factor of 2 in both the the momentum
relaxation time and the spin relaxation time from the actual
values is an indication of the inaccuracy of the coupled spin-
charge transport equations of Burkov et al.

Since, the matrix elements of D2 given in Eq. (52) were not
derived according to the above rules for order of approxima-
tion, the transport equation Eq. (54a) is inconsistent with the
continuity equation of the charge density given in Eq. (26), if
the actual charge current density given in in Eq. (15), i.e., jx =
−2vFsy, is considered. Alternatively, if the charge current
density is defined from the transport equation, Eq. (54a),
after considering Eq. (54a) as the continuity equation of the
charge density, as what was done by Burkov et al. [23], the
resulting new definition of the charge current density, jx =
−D∂xn − 2�sy, becomes inconsistent with the actual charge
current density given in Eq. (15). However, if the second order
∂2

x sy term in Eq. (54b) is neglected, as described by the above
rules, sy = �τp∂xn is obtained in steady state. Substituting
sy = �τp∂xn in Eq. (54a) results in ∂t n − 2vF∂xsy = 0, and
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we recover the charge continuity equation ∂t n + ∂x jx = 0 with
jx = −2vFsy.

Here, based on a derivation from the quantum kinetic
equation, we show that the spin-charge coupled transport
equations for the TI surface states obtained by Burkov et al.
[23] are inconsistent with the continuity equation of the
charge density. Burkov et al. [23] derived the spin-charge
coupled transport equation from the density response function
formalism using standard perturbation theory. It can be shown
similarly, though it is beyond the scope of this paper, that
the expansion in terms of the small parameters ωτp, qxlp, in
that formalism too has to be such that the resulting transport
equations are consistent with the continuity equation of the
charge density, for the charge conservation to hold, even after
making standard current conserving approximations for the
Green’s function and the self-energy in perturbation theory.

Schwab et al. had calculated the resistance between a FM
line contact and a point on the TI surface using Eq. (32)
and ignoring Eq. (33), and the result did violate Onsager
reciprocity. We have shown that considering both Eqs. (32)
and (33), indeed, results in the two-terminal resistance that
satisfies Onsager reciprocity, even in the case of FM line
contact. However, ignoring Eq. (33), as Schwab et al. [24] did,
does lead to the violation of the Onsager reciprocity relation.

Previously, Sayed et al. [19] had addressed the issue
of Onsager reciprocity in multiterminal spin-valve-like
measurements on the surface of a diffusive TI by deriving
the resistance from the solution of a phenomenological one-
dimensional diffusion equation in terms of electrochemical
potentials of four propagating channels on the surface
of the TI, where each channel corresponds to a specific
combination of spin orientation (up and down) and direction
of propagation (right and left moving), and modeling the FM
and NM contacts on the TI surface as line contacts [18,19].
However, Sayed et al. [19] only considered specific cases
as those of Figs. 1(a) and 1(b), Fig. 2(b), and Figs. 6(a) and
6(b). Our finding matches with the ones obtained by Sayed
et al. [19] in the case of Figs. 1(a) and 1(b) and Figs. 6(a)
and 6(b) with both the FM contacts being considered
identical. However, in the case of two-terminal resistance
between the two FM contacts as shown in Fig. 2(b), the
result of Sayed et al. [19] obeyed the Onsager reciprocity
relation, i.e., R2t (+ �M1,+ �M2) = R2t (− �M1,− �M2) and
R2t (+ �M1,− �M2) = R2t (− �M1,+ �M2), but with the relation
R2t (+ �M1,+ �M2) �= R2t (+ �M1,− �M2) instead of R2t being
independent of both the magnetization directions of the FM
contacts that we have derived in Eq. (48). In our model, the
TI is purely diffusive and all the spin information is lost after
a few momentum scattering events on the TI surface. The loss
of information of the spin of electrons (or the information
of the magnetizations of the FM contacts) from the two
injecting FM contacts is due to the spin-momentum helical
locking of the TI surface states, where each momentum
scattering also randomizes the spin which is locked to the
momentum of the TI surface states. Hence, we find that the
two-terminal resistance R2t given in Eq. (48) does not depend
on either of the FM magnetization directions. It might be
the case that the result obtained by Sayed et al. [19] is an
outcome of their model not being purely diffusive, but only
based on a phenomenological diffusion equation of individual

spin up and spin down propagation modes, where the spin
information is not completely lost even after a significant
number of momentum scattering events (although they had to
introduce spin-flip scattering artificially to account for that).
By contrast, in our theory, the transport equations on the
surface of a TI are derived starting from the quantum kinetic
equation under diffusive approximations. We believe that
the two-terminal resistance between two FM on the surface
of a TI in ballistic transport regime will satisfy relations,
R2t (+ �M1,+ �M2) = R2t (− �M1,− �M2), R2t (+ �M1,− �M2) = R2t

(− �M1,+ �M2), but R2t (+ �M1,+ �M2) �= R2t (+ �M1,− �M2),
resembling that of Sayed et al. [19].

The two-terminal resistance between a FM and a NM
contact on the surface of a ballistic TI was calculated the-
oretically by Gotte et al. [27], but the calculated theoretical
result apparently violates the Onsager reciprocity relation.
In the ballistic transport regime, the probability conservation
law, i.e., the conservation of charge density, along with the
time reversal symmetry, which is achieved by reversing the
magnetization direction of the FM, ensures a symmetry of the
conductance matrix such that the Onsager reciprocity relation
is satisfied in the linear response regime. The calculation for
the pure ballistic case to establish the validity of the Onsager
reciprocity relation is beyond the scope of this current work.
Nevertheless, Semenov et al. [28] had understood that the
Onsager reciprocity will be satisfied in both the ballistic and
the diffusive case, and, hence, they proposed a phenomeno-
logical model for the quasiballistic mesoscopic regime in
which they showed that the reciprocity and even the linear
current-voltage relationship around the zero bias are violated.
However, a detailed formal derivation based on transmission
matrix method similar to that of Buttiker [22], or a calculation
based on the quantum kinetic equation, is needed to test such
violation of Onsager reciprocity in the mesoscopic regime of
transport.

In the experiment, the transport regime is mostly diffusive,
hence the observation of different two-terminal resistance
with reversal of FM magnetization direction still needs to
be explained. Very recently, Tian et al. [39] observed spin
memory effect in three-terminal spin detection experiments
on the surface of a TI and postulated that one possible
reason for the observed spin memory effect might be the
hyperfine interaction between the nuclear spin in the atom
and the conduction electron spin, in which atomic nuclear
spin has a much larger lifetime giving rise to a memory
effect. In case of two-terminal magneto-resistance experiment
involving FM contacts on the surface of a TI, such hyperfine
interaction could similarly give rise to change of resistance
upon magnetic field reversal. Since the nuclear spin in the
atom does not relax to become reversed with the reversal of
the FM magnetization, the Onsager reciprocity relation could
not be applied, since application of the Onsager reciprocity
relation requires time reversal invariance, which is achieved
by reversing all the internal magnetic moments and the ex-
ternal magnetic fields in the system. In this work, we have
shown that in the purely diffusive regime of transport, the
Onsager reciprocity relation is maintained, which contrasts to
prior results that also assumed diffusive transport but found
violations of Onsager reciprocity for reasons detailed before.
This work, therefore, suggests that the apparent violations of
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the Onsager reciprocity relation in the experiments must have
a different source.

VI. CONCLUSION

In summary and conclusion, starting from the quantum
kinetic equation, we have derived the diffusive transport equa-
tions on the surface of a TI coupled to a FM to explain
two-terminal and multiterminal spin detection measurements
on the TI surface. In the kinetic equation, the effect of the FM
tunnel contact on the transport has been considered by taking
into account a self-energy due to tunneling across the TI-FM
interface that acts as a source term in the charge transport
equations of the carriers on the surface of the TI under the FM
tunnel contact. The diffusion equations are solved analytically
to calculate the change in chemical potential in the TI and the
FM due to the charge current on the TI surface for different
measurement geometries. Based on our analytical model, we
define a spin-detection voltage as the change in voltage mea-
sured on the FM contact on reversing the FM magnetization
direction. We find that the spin-detection voltage depends
on the DOS polarization of the FM, the amount of charge
current on the TI surface and the conductivity of the tunnel
contact. We show that the spin-detection voltage decreases
with increasing tunnel conductivity of the tunnel barrier. We
also show that the Onsager reciprocity relation is satisfied
in both the two-terminal and multiterminal spin-detection
experiments on the surface of a diffusive TI, which resolves
conflicting issues in prior literature, as well as explains the
results of multiterminal spin-detection experiments on the
surface of a diffusive TI. Our results suggest that the exper-
imental findings of two-terminal resistance that depends on
the FM magnetization direction need further interpretation.
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APPENDIX A: DERIVATION OF THE QUANTUM
KINETIC EQUATION

To derive the quantum kinetic equation describing trans-
port on the TI surface coupled to the FM, we follow our
previous papers [34,36]. We consider the following total
Hamiltonian for the TI-FM heterostructure of Fig. 4,

Htot = HTI + Hdis + HFM + Htun. (A1)

Here HTI is the low-energy effective Hamiltonian for the TI
surface states in second-quantized form, which is given by

HTI = λ

∫
d2R

∑
α,β

c†
α (R)[εTI(R) − εFσ0 − eφσ0]αβcβ (R),

(A2)

where εTI(R) = −ih̄vF[(∇R × ẑ) · σσσ ], vF is the Fermi veloc-
ity of the Dirac surface states, εF is the Fermi energy, φ is
the electrostatic potential of any electric field (E = − ∇Rφ)
on the TI surface, and R is the 2D position vector on the
TI surface. The creation and annihilation operators of the TI
surface states are c†

α (R), cβ (R) (where (α, β ) are the spin

indices) which satisfy the equal-time anticommutator relation
{cα (R), c†

β (R′)} = λ−1δ(R − R′)δαβ normalized to the thick-
ness λ of the TI surface states. The disorder Hamiltonian Hdis

representing the impurities on the TI surface is given by

Hdis = λ

∫
d2R

∑
α

c†
α (R)Vdis(R)cα (R), (A3)

where Vdis(R) = Vdad�
NI
j=1δ(R − RI

j ) is the spin-independent
short-ranged impurity potential, Vd is the average impurity
potential for impurities on and close to the interface, RI

j
are the locations of the randomly distributed impurities, and
and ad is a normalization constant with unit of area for the
normalization of the δ function.

We consider the FM Hamiltonian HFM, which is given by

HFM =
∫

d3r
∑
α,β

d†
α (r)[εFM(r) − εFσ0 − eφcσ0]αβdβ (r).

(A4)

Here, εFM(r) = [− h̄2

2mc
∇2

r + εb]σ0 − 
exm · σσσ describes the
two spin-split bands in the FM, r is the 3D position vector
in the metal, mc is the effective mass for both the conduction
bands in the FM, εb is the band offset relative to the Dirac
point of the TI surface states, 
ex is the effective strength
of exchange interaction between the itinerant s-electrons and
the localized d-electrons in the FM, m is the unit vector
along the direction of magnetization in the FM and φc is the
electrostatic potential of any electric field in the FM. The
two bands of the FM will be spin splitted with an splitting
energy of 2
ex. The creation and annihilation operators in
the metal are d†

α (r) and dβ (r), which satisfy the equal-time
anticommutator {dα (r), d†

β (r′)} = δ(r − r′)δαβ . The creation
and the annihilation operators in the metal and on the TI
surface anticommutes, i.e., {cα (R), d†

β (r′)} = 0.
The coupling of the TI surface states to the FM is described

by a tunneling Hamiltonian Htun, which represents the trans-
mission of the electron in and out of the TI surface states from
and to the FM, given by

Htun = λ

∫
d2R

∫
d3r

∑
α,β

[d†
α (r)Tαβ (r, R)cβ (R) + H.c.].

(A5)

We consider a site-to-site (local) instantaneous tunneling
at the interface, and the tunneling matrix has the form
Tαβ (r, R) = tαβ f (R)δ(r‖ − R)δ(z), where tαβ f (R) describes
the nature of the tunneling. The dependence of tαβ on the
spin indices (αβ ) describes whether the tunneling is spin-
conserving or spin-selective but spin-nonconserving, and the
dependence of f (R) on R describes whether the tunneling is
momentum-randomizing or in-plane momentum-conserving.
In case of a rough interface, the tunneling will be momentum-
randomizing, and the tunneling is modeled by randomly
distributed tunneling centers with f (R) = at�

NS
i=1δ(R − RS

i ),
where RS

i are the positions of the tunneling centers, and at is a
normalization constant with unit of area for the normalization
of the δ function. In case of a smooth interface, the tunneling
will be in-plane momentum-conserving, and the tunneling is
modeled by a position-independent function f (R) (we take
f (R) = 1). For spin-conserving tunneling, the tunneling can
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be modeled by tαβ = t0δαβ , where the tunneling from both
the bands in the FM to the TI surface states (and vice versa)
have the same tunneling strength t0. For spin-selective but
spin-nonconserving tunneling, the tunneling from the two
bands in the FM to the TI surface states (and vice versa) will
have a different strength, and the tunneling can be modeled
by tαβ = (t↑P↑ + t↓P↓)αβ . Here P↑,↓ = (σ0 + m · σσσ )/2 are
the projection operators to the two spin split bands in the
FM, and t↑,↓ are the corresponding tunneling strength. If
t↑ �= t↓, the tunneling will be spin-nonconserving, and the
spin-conserving tunneling is a special case when t↑ = t↓ = t0.

The quantum kinetic equation obtained from the Keldysh
component of the Wigner transformed left-right subtracted
Dyson equation after gradient expansion is given by [40]

∂t G
K − e ∂tφ ∂εGK + 1

2
{v · ∇R, GK}

+ e ∇Rφ · ∇pGK + i

h̄
[εTI(p), GK]

= −i(�RGK − GK�A) + i(GR�K − �KGA). (A6)

Here εTI(p) = h̄vF(p × ẑ) · σσσ , v = vF (ẑ × σσσ ), GR,A,K and
�R,A,K are the the retarded (R), advanced (A), and Keldysh
(K) component of the Wigner transformed Green’s functions
(G) for the TI surface states and the self-energies (�) in terms
of the variable (R, t ; p, ε). Here, (R, t ) are the center-of-mass
position and time coordinates and (p, ε) are the Fourier trans-
formed momentum and energy of the relative position and
time coordinates. The self-energy has contributions from both
disorder and tunneling Hamiltonian, i.e., � = �dis + �tun,
where �dis is the self-energy due to disorder impurity potential
and �tun is the self-energy due to tunneling from the FM to
the TI surface states. We consider time-independent electric
fields on the TI surface, hence, the electrostatic potential will
be time-independent, i.e., ∂tφ = 0.

After impurity averaging, the self-energy for disorder is
given by

�
R,A,K
dis (R, t ; p, ε) = λa2

dV 2
d ni

h̄

∫
d2p′

(2π )2
GR,A,K(R, t ; p′, ε),

(A7)

where ni is the impurity concentration per unit area on the TI
surface. We introduce the quasiclassical Green’s function of
the TI surface states,

gR,A,K(R, t ; pFp̂, ε) = iλ

π

∫
dξp GR,A,K(R, t ; p, ε), (A8)

where pF is the Fermi momentum of the TI surface states, p̂
is the unit vector along p, and ξp = h̄vF|p| − εF. In Eq. (A8)
the integration is performed near the Fermi energy, and we
assume that the Fermi energy is in the conduction band of
the TI. Hence, only the projection of the Green’s function of
the TI surface states to the conduction band is relevant to the
transport, which is

GR,A(p, ε) = 1

2λ

σ0 + (p̂ × ẑ) · σσσ
ε − ξp ± i0+ . (A9)

So the quasiclassical Green’s functions and the disorder self-
energies are give by

gR,A = ±1

2
[σ0 + (p̂ × ẑ) · σσσ ],

�
R,A
dis = ∓ i

2τp
σ0, (A10)

where τp is the scattering time between the Bloch states in
the TI and is defined by 1/τp = πa2

dV 2
d niN/h̄, and N is the

DOS of the TI surface states at the Fermi energy. Since the
quasiclassical Green’s function of the TI surface states will be
peaked at the Fermi energy, we have

GK(R, t ; p, ε) = − iπ

λ
gK(R, t ; pFp̂, ε)δ(ξp), (A11)

and the Keldysh component of �dis is given by

�K
dis(R, t ; p, ε) = − i

τp
〈gK(R, t ; pFp̂, ε)〉, (A12)

where 〈·〉 denotes angular averaging over the Fermi contour of
the TI surface states.

In case of a rough interface, the retarded, advanced and
Keldysh components of the tunneling self-energy �

R,A,K
tun =

�
R,A,K
tun (R, t ; p, ε) are obtained after averaging over the ran-

dom distribution of the tunneling centers, and momentum
randomization happens in the tunneling process. As a result,
the tunneling self-energy is given by

�
R,A,K
tun = λa2

t ns

h̄

∫
d3k′

(2π )3
t̃†GR,A,K

FM t̃, (A13)

where ns is the density of the tunneling centers per unit area,
GR,A,K

FM = GR,A,K
FM (R, z = 0, t ; k′, ε) are the retarded, advanced

and Keldysh components of the Green’s function of the FM
at the interface z = 0 with k′ being the 3D momentum in the
FM, and t̃ = (t↑P↑ + t↓P↓) is the spin-dependent part of the
tunneling (note that t̃ is Hermitian, i.e., t̃† = t̃).

The retarded and advanced Green’s functions of the FM are

GR,A
FM (k, ε) = P↑

1

ε − ξk↑ ± i0+ + P↓
1

ε − ξk↓ ± i0+ . (A14)

where ξk↑,↓ = h̄2

2mc
k2

↑,↓ + εb ∓ 
ex − εF. Considering inco-
herent superposition of up and down electrons in the FM, the
Keldysh component of the Green’s function of the FM, which
will be peaked at the Fermi energy, can be written as

GK
FM = −iπ [P↑g̃K

↑ (kF↑k̂↑, ε)δ(ξk↑) + P↓g̃K
↓ (kF↓k̂↓, ε)δ(ξk↓)],

(A15)

where g̃K
↑,↓ are the Keldysh components of the quasiclassical

Green’s functions for the up and down electrons in the FM,
kF↑,↓ are the Fermi momentum of the up and down electrons in
the FM, and in Eq. (A15) the position and time dependence of
the Keldysh components of the Green’s functions are implicit.
It should also be noted that, the Keldysh component of the
tunneling self-energy is given by the Keldysh component of
the Green’s function of the FM evaluated at the interface.
However, the assumption of a constant Keldysh component
of the Green’s function of the FM with position inside the
FM will be self-consistent (because the thickness of the FM is
considered to be small and the conductivity of the FM is much
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higher than the conductivity of the TI, and, after considering
transport inside the FM it can be shown that the variation of
the nonequilibrium up and down electrochemical potential of
the FM with position inside the FM will be negligible [37]).

The retarded, advanced and Keldysh components of the
tunneling self-energy become

�
R,A
tun = ∓i(γ↑N↑P↑ + γ↓N↓P↓),

�K
tun = −i(γ↑N↑P↑g↑ + γ↓N↓P↓g↓), (A16)

where γ↑,↓ = πλa2
t t2

↑,↓ns/h̄ are the strengths of tunneling
between the up and down spin electrons in the FM and the TI
surface states, N↑,↓ are the DOS of the up and down electrons
in the FM at the Fermi energy, and g↑,↓ = 〈g̃K

↑,↓〉 denotes
the value of the Keldysh component of the quasiclassical
Green’s function for the up and down electrons in the FM after
averaging over the solid angle of the respective Fermi surfaces
of each spin bands in the FM.

In case of a smooth interface, in-plane momentum con-
servation happens in the tunneling process, and the tunneling
self-energy is given by

�
R,A,K
tun = λa2

t ns

h̄

∫
d3k′

(2π )3
t̃†GR,A,K

FM t̃ (2π )2δ(k′
‖ − p)

= λa2
t ns

h̄

∫
dk′

z

2π
t̃†GR,A,K

FM (R, z = 0, t ; k′
‖, k′

z, ε)t̃ .

(A17)

For diffusive transport in the FM, the the Keldysh components
of the quasiclassical Green’s functions g̃K

↑,↓ for the up and
down electrons in the FM can be expanded with an isotropic
and an anisotropic component (with respect to the momentum
direction k̂↑,↓). In the diffusive limit, the isotropic component
will be proportional to the up and down electrochemical
potential in the FM, while the anisotropic component will be
determined by the spatial variation (gradient) of the isotropic
component. Since the variation of the up and down elec-
trochemical potential in the FM will be negligible [37], the
anisotropic component of the quasiclassical Green’s functions
g̃K

↑,↓ of the FM can be neglected. So, if the quasiclassical
Green’s functions g̃K

↑,↓ are isotropic in k↑,↓ space, from
Eq. (A17) we obtain that the retarded, advanced and Keldysh
components of the tunneling self-energy are given by the
same relation as that of Eq. (A16) with γ↑,↓ = πλt2

↑,↓/h̄ and
N↑,↓ will be the corresponding 1D DOSs calculated with the
constraint of in-plane momentum conservation.

The quantum kinetic equation in terms of the quasiclassical
Green’s function gK of the TI surface state is obtained after
performing ξp integration of Eq. (A6), which is

∂t g
K + vF

2
{ẑ × σσσ · ∇R, gK} + ivFpF[(p̂ × ẑ) · σσσ , gK]

= −gK

τp
+ 〈gK〉

τp
+ 1

2τp
{(p̂ × ẑ) · σσσ , 〈gK〉}

− {(γ↑N↑P↑ + γ↓N↓P↓), gK}
+ (γ↑N↑P↑g↑ + γ↓N↓P↓g↓)

+ 1

2
{(p̂ × ẑ) · σσσ , (γ↑N↑P↑g↑ + γ↓N↓P↓g↓)}. (A18)

For spin-conserving tunneling, t↑ = t↓ = t0, and γ↑ = γ↓ =
γ , and we obtain Eq. (1) in the main text with the identification
g = gK and g↑,↓ = g↑,↓. However, to recover Eq. (A18) from
Eq. (1), the replacement γ N↑ → γ↑N↑ and γ N↓ → γ↓N↓
should be performed.

The term F · ∂ f
∂p in the classical Boltzmann equation

which is the term −eE · ∇pGK in the quantum kinetic equa-
tion, Eq. (A6), drops out of the quantum kinetic equation,
Eq. (A18), written for the Wigner transformed quasiclassical
Green’s function gK(r, pFp̂, t, ε) after ξp integration, because
of the assumption that the Fermi energy is the largest energy
scale in the problem [40]. The substitution ∇R → ∇R + eE∂ε

that appears in the quantum kinetic equation for the gauge
invariant Wigner-transformed Green’s function g̃K(r, p, t, ε)
as done in Ref. [33], cancels out in the quantum kinetic
equation, Eq. (A6), written for normal (not gauge invariant)
Wigner transformed quasiclassical Green’s function gK (that
we use in this work) [40], giving rise to a term proportional to
∂tφ which is zero in case of time-independent external electro-
static potential. However, the external electrostatic potential φ

appears in the expression for the actual nonequilibrium charge
density of the electrons nneq and can therefore be subsumed
by defining an effective nonequilibrium charge density n, as
mentioned in the main text.

In the most general case of spin-selective but spin-
nonconserving tunneling, Eqs. (29)–(31) also will be modified
and can be obtained by the replacement γ N↑ → γ↑N↑ and
γ N↓ → γ↓N↓. Equation (29) will become[

	 − 1 −i
x

−i
x f2 − 1

][
n

2sy

]

=
[

e2Nτp(γ↑N↑μ↑ + γ↓N↓μ↓)

e2Nτpmy(γ↑N↑μ↑ − γ↓N↓μ↓)

]
, (A19)

where we have 	 = 1 + (γ↑N↑ + γ↓N↓)τp − iωτp and 
x =
qxvFτp + i(γ↑N↑ − γ↓N↓)τpmy. Then the modified continuity
equation of the charge density on the TI surface, i.e., Eq. (30),
becomes

dx jx = γ↑N↑(e2Nμ↑ − n) + γ↓N↓(e2Nμ↓ − n)

+ my(γ↑N↑ − γ↓N↓)
jx
vF

. (A20)

The modified diffusion equation for the charge current density
on the TI surface, i.e., Eq. (31), becomes

jx = 1

(1 + ξ )

[ − v2
Fτp∂xn − vFτpmy{γ↑N↑(e2Nμ↑ − n)

− γ↓N↓(e2Nμ↓ − n)}], (A21)

where the new ξ will be redefined by ξ = (γ↑N↑ + γ↓N↓)τtr.
However, for μ↑ = μ↓ = μc, the forms of Eqs. (32) and (33)
remain the same with the above-mentioned redefined ξ and a
redefined η given by η = (γ↑N↑ − γ↓N↓)/(γ↑N↑ + γ↓N↓).

APPENDIX B: SOLUTION OF THE
TRANSPORT EQUATIONS

In this section, we provide the solution of the electrochem-
ical potential μ on the TI surface underneath the FM for dif-
ferent boundary conditions corresponding to different circuit
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geometries as shown in Fig. 4. From Eq. (39a), the general
solution of μ′ = (μ − μ0

c ) is given by μ′ = A1er1x + A2er2x,
where r1,2 = bmy ± c, b = ξη/ltr and c = √

2ξ (1 + ξ )/ltr.
Then from Eq. (39b), the current density jx on the TI sur-
face can be written as jx = −σ ′c(A1er1x − A2er2x ), and the
unknown constants A1,2 are determined from the boundary
conditions on jx.

For the circuit geometries of Figs. 4(a), 4(c), and 4(e),
the boundary conditions are jx(x = 0) = 0 and jx(x = L) =
I/W . Hence, μ and jx are given by

μ = μ0
c − I csch(cL)

σ ′cW
e−bmyL

(
er1x + er2x

2

)
, (B1a)

jx = I csch(cL)

W
e−bmyL

(
er1x − er2x

2

)
. (B1b)

For the circuit geometries of Figs. 4(b), 4(d), and 4(f), the
boundary conditions are jx(x = 0) = I/W and jx(x = L) =
0. Hence, μ and jx are given by

μ = μ0
c + I csch(cL)

σ ′cW

(
er1x−cL + er2x+cL

2

)
, (B2a)

jx = − I csch(cL)

W

(
er1x−cL − er2x+cL

2

)
. (B2b)

For the circuit geometries of Figs. 4(g) and 4(h), the boundary
conditions are jx(x = 0) = jx(x = L) = I/W . Hence, μ and

jx are given by

μ = μ0
c − I

σ ′cW

[
(1 − er2L )er1x + (1 − er1L )er2x

(er1L − er2L )

]
, (B3a)

jx = I

W

[
(1 − er2L )er1x − (1 − er1L )er2x

(er1L − er2L )

]
. (B3b)

Equations (40), (41), and (42) are obtained from Eqs.
(B1a), (B2a), and (B3a), respectively.

The tunneling current density jtun flowing from the FM to
the TI surface through the interface is given by the right-hand
side of the modified continuity equation for transport on the
TI surface, i.e., Eq. (32). So, we have

jtun = 2ξσ

l2
tr

(
μ0

c − μ
) + ξηmy

ltr
jx, (B4)

and, the modified continuity equation for transport on the TI
surface now can be written as

dx jx = jtun. (B5)

After integrating the above equation, i.e., Eq. (B5), from 0
to L, and using the fat that

∫ L
0 dx dx jx = jx(L) − jx(0), we

obtain the total tunneling current density jtot
tun to be

jtot
tun =

∫ L

0
dx jtun = jx(L) − jx(0). (B6)

The above equation, i.e., Eq. (B6), implies current conserva-
tion. In all the cases considered above, using Eqs. (B1)–(B3) it
is straightforward to check that the current conservation holds.
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