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Creep of chiral domain walls
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Recent experimental studies of magnetic domain expansion under easy-axis drive fields in materials with
a perpendicular magnetic anisotropy have shown that the domain wall velocity is asymmetric as a function
of an external in-plane magnetic field. This is understood as a consequence of the inversion asymmetry of
the system, yielding a finite chiral Dzyaloshinskii-Moriya interaction. Numerous attempts have been made to
explain these observations using creep theory, but, in doing so, these have not included all contributions to
the domain wall energy or have introduced additional free parameters. In this article we present a theory for
creep motion of chiral domain walls in the creep regime that includes the most important contributions to the
domain-wall energy and does not introduce new free parameters beyond the usual parameters that are included
in the micromagnetic energy. Furthermore, we present experimental measurements of domain wall velocities as
a function of in-plane field that are well described by our model, and from which material properties such as the
strength of the Dzyaloshinskii-Moriya interaction and the demagnetization field are extracted.
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I. INTRODUCTION

The interest in nanomagnetic materials has grown steadily
since magnetic storage devices, such as the racetrack mem-
ory, were proposed as a new tool to meet the ever increas-
ing demand for computer storage capacity [1–4]. For such
applications the domain wall (DW) chirality is an impor-
tant parameter as it affects the speed and direction of DW
motion. The interfacial Dzyaloshinskii-Moriya-interaction
(DMI) [5,6] arises from perpendicular inversion asymmetry
in the system and affects the DW chirality. Hence it is of
paramount importance to be able to measure the magnitude of
the DMI using a simple experimental method. The interfacial
DMI is modeled as an effective field that lies in-plane (IP)
and is always perpendicular to the domain wall (DW) nor-
mal, hence preferring a Néel wall [7]. Superpositioning the
DMI field with an externally applied IP magnetic field could
provide means of measuring it. This has lead to a boom of
experimental studies on DW dynamics under the influence of
an IP magnetic field [8–17].

There are several regimes of DW dynamics, determined
by the strength of the DW driving force compared to the
pinning force. In the flow regime the driving force is signif-
icantly higher than the pinning force and in this regime IP
magnetic fields and DMI is successfully modeled by means of
the Landau-Lifschitz-Gilbert equation [18–20]. In the creep
regime however, the DW is considered to be mostly pinned
and in local equilibrium and has a net displacement because
the bias is assisted by thermal fluctuations.

The creep model was successfully implemented to interpret
magnetic domain growth driven by an external magnetic
field Hz in the direction of the magnetization of one of the
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domains, resulting in the famous universal creep law for
the DW velocity v: ln(v) ∝ H−1/4

z [21]. When introducing a
magnetic field perpendicular to the magnetization direction of
the domains, a modification to this creep law was proposed:
ln(v) ∝ (Eel/Hz )1/4, where Eel is the elasticity of the DW [8].
This modification turned out to describe experimental findings
well for small IP magnetic fields, but is not able to describe the
high-field region [10]. Recent attempts to improve the theoret-
ical model exposed the dispersive nature of the elasticity but
compromised on universality as extra free parameters were
introduced [14]. Chiral damping was proposed to explain the
asymmetric component of the velocity profiles [11,15,16,22].
We contend however that in the quasistatic creep regime
dynamic effects such as chiral damping should not play a
significant role.

In this paper we construct a theory for motion of chiral
domain walls in the creep regime which does not involve the
free parameters introduced in Ref. [14]. We use it to interpret
our experimental data on the DW velocity as a function of
the IP magnetic field. We show that our model allows for
quantitative determination of the strength of the interfacial
DMI from field-driven DW creep measurements.

II. MODEL

In Fig. 1(a) the deformation of a DW due to a thermal
fluctuation in the presence of an easy-axis driving field Hz is il-
lustrated. The deformation size L is determined by the balance
between the gained Zeeman energy from the driving field and
the elastic energy cost. The deformations can be seen as nucle-
ations whose chance of survival is determined by L. For such
a nucleation process, Arrhenius’ law tells us that the rate at
which these surviving deformations will occur is determined
by the height of the energy barrier Fb (i.e., the free energy at
the tipping point): ln(v) ∝ −Fb/(kBT ) [23,24]. Jeudy et al.
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FIG. 1. (a) Top view of a DW (blue lines) that gets deformed
over a length L and displaced over a distance u due to a thermal
fluctuation. The DW can be tilted over an angle α. The magnetization
is indicated by the red vectors, which at the DW are characterized
by the IP angle ϕ. Note that the IP magnetization changes due to
the displacement, affecting the elasticity. The IP magnetic field Hx

(green) as well as the effective DMI field HD (yellow) and effective
Bloch field HB (purple) are indicated locally. (b) Model to describe
the deformation. (c) When an IP magnetic field is applied to a sample
with PMA, the magnetization inside a domain tilts towards the IP
magnetic field by an angle θt determined by the balance of PMA and
IP magnetic field β = MSHx cos(ϕ)/KP = sin(θt ) (orange) compared
to the β = 0 case (red).

have shown that defining Fb = Td [(Hd/Hz )1/4 − 1], in terms
of the depinning field Hd and an effective disorder temperature
Td , can describe the DW motion accurately in both the creep
and depinning regime [25,26]. A recent study also used this
form to capture the in-plane magnetic field effects into the
depinning field [27]. Instead of postulating a form of Fb we
will determine it from micromagnetics well inside the creep
regime; Fb = maxL F (L). We capture the complexity of the
asymmetric DW dynamics in F (L). As a consequence the
optimization required to determine Fb is semianalytical. Here
we introduce an insightful numerical procedure as opposed
to a full analytical treatment as has been done extensively in
literature [8,14,21,25]. This numerical approach allows us to
address a plethora of effects in the underlying physics of DW
dynamics in the creep regime.

F (L) is composed of the elastic energy cost and the Zee-
man energy gain, which depend not only on L, but also on the
DW displacement u: F (u, L) = Eel(u, L) + EZeeman(u, L). To
express u in terms of L we use u(L) = uc(L/Lc)2/3 [21,28,29],
where Lc is the Larkin length scale determined by minimizing
the sum of the elastic and pinning energy density for u = ξ ,
and uc is a proportionality constant. Hence the next step is
to determine the elastic energy to be able to compute Lc and
express u, and thereby F , in terms of L.

The elastic energy is defined as the difference in internal,
i.e., excluding pinning and driving, energy between the do-
main wall before and after the deformation. Due to the appli-
cation of the external IP magnetic field the DW energy density
itself depends on the orientation of the DW with respect to this
applied field. Furthermore, the IP magnetization of the sample
at the DW is affected by the exchange interaction.

Following Blatter et al. we model the deformation as
an angular shape for simplicity, see Fig. 1(b) [30]. Other
shapes are possible, but this is the lowest order approximation.
Note that Pellegren et al. chose an arc shape [14], but did
not implement the exchange energy cost due to the kink in
the connection with the straight DW segments, resulting in
unphysical divergences (as demonstrated in the Supplemental
Material [31]) that do not occur in our theory.

We have approximated the IP magnetization of each seg-
ment to be constant and implement a nearest neighbor ex-
change interaction at the bending points. The energy of the
system is then minimized (numerically) over the IP magneti-
zation angle of the two segments.

We compute the energy density of the domain wall by
inserting the domain-wall solution into the micromagnetic
energy functional

E (α, ϕ) = 2
√

1 − β2
J

λ
+ MSπλ{g(β )HB cos2(ϕ − α)

− f (β )[Hx cos(ϕ) + HD cos(ϕ − α)]}. (1)

For more details see [31]. The first term is the exchange
interaction J over λ, the DW thickness. The second term
is the demagnetization energy, expressed in terms of the
effective Bloch field HB (this energy favors a Bloch DW,
hence the nomenclature), the angle α between the DW normal
and the x axis and the angle ϕ the IP magnetization at the DW
with the direction of the IP magnetic field, see Fig. 1(a). The
third term is the Zeeman energy due to the applied IP magnetic
field Hx and the fourth is the DMI expressed in terms of an
effective field HD favoring a Néel type DW. The prefactors
involving β incorporate the tilting in the x direction of the
magnetic domains due to the external IP magnetic field [see
Fig. 1(c)]. The functions f and g are given in the Supplemental
Material [31].

Similarly, we obtain the Zeeman energy from the driving
field Hz,

EZeeman(u, L) = MSHztuL
√

1 − β2. (2)

Again, the factor
√

1 − β2 comes from the tilted domains
as illustrated in Fig. 1(c). By dividing out D(= MSλHD) in
Eqs. (1) and (2), the relevant dimensionless parameters be-
come J̃ ≡ Jλ−1D−1, H̃B ≡ 2HB/HD, H̃x ≡ Hx/HD, and H̃z ≡
Hz/HD.

Using Eq. (1), we compute the optimal orientation angle
of the undeformed DW α0 and the corresponding internal
magnetization IP angle ϕ0 by minimizing E (α, ϕ)/ cos(α).
The factor 1/ cos(α) arises because we allow the DW to
orient itself with respect to the IP magnetic field at the cost
of elongating. For example, a mixed Bloch-Néel DW tilts its
normal to better align with the external IP magnetic field. This
tilting however would induce a stretching factor of 1/ cos(α),
increasing the energy cost. This effect is illustrated in Fig. 1(a)
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FIG. 2. α0 as a function of the applied IP magnetic field (a) and
the corresponding minimized azimuthal angle of the internal mag-
netization ϕ0 (b). The green curve shows the solution for ϕ0 when
α is fixed at 8◦, which switches sign at Hx = 0. The corresponding
energy density however, remains continuous and smooth. Note that
the green curve does not saturate in but converges to the Néel wall.

and the optimal angle α0 and corresponding minimized angle
ϕ0 are shown as a function of Hx in Fig. 2. The energy of the
unperturbed DW is then given by LtE (α0, ϕ0).

The profile of ϕ0 shown in Fig. 2(b) exhibits sharp kinks
for both α(Hx ) = α0(Hx ) and α(Hx ) = 0. This feature arises
because in the energy density of Eq. (1) we neglected higher
order anisotropy terms proportional to cosn(ϕ − α) for n >

2 which are allowed by symmetry. As a consequence, this
simplified energy density yields a sharp transition in DW
type from mixed Bloch-Néel to pure Néel at f (β )(H̃x − 1) =
g(β )H̃B as demonstrated in Fig. 2 where ϕ0 saturates to
0 or π . To effectively include for the higher order terms
in the energy density, we adjust the value of α to some
nonzero value, e.g., α = 8◦ as done by Pellegren et al.
[14]. This removes the symmetry between the two deformed
segments and prevents the saturation of ϕ. With this mod-
ification, ϕ is smooth around ϕ = 0 or ϕ = π as demon-
strated by the green curve in Fig. 2(b). We will assume
D > 0 in this paper, the results for D < 0 are obtained by
H̃x → −H̃x.

A kink between two DW segments, as illustrated in
Fig. 1(b), gives an energy cost

Eben(ϕ1, ϕ2) = Jλ

a
[1 − cos(ϕ1 − ϕ2)], (3)

with ϕ1 and ϕ2 the IP angles of the internal magnetization
of the segments. Here a is the distance between neighboring
atoms in the magnetic layer. Due to variations in the lattice
structure and to account for non-nearest neighbor interactions,
an effective value of a ∼ 1 nm is used. The effect of a on the
DW dynamics is investigated in the Supplemental Material
[31].

The elastic energy is computed by minimizing over ϕ1

and ϕ2:

Eel

t
= min

ϕ1,ϕ2

[
L

2

√
1 +

(
2u

L

)2

[E (α1, ϕ1) + E (α2, ϕ2)]

+ Jλ

a
[3 − cos(ϕ0 − ϕ1) − cos(ϕ0 − ϕ2)

− cos(ϕ1 − ϕ2)]

]
− LE (α0, ϕ0). (4)

The first term is the length of each of the two segments of the
deformed DW multiplied by their respective energy densities.
α1 and α2 are the orientations of the respective segments. The
second term is the bending energy for the three corners, see
Fig. 1(b). The third term is the energy of the unperturbed DW.

With this expression we compute Lc, express u in terms of
L, and thereby obtain F (L) = F [u(L), L] from which the DW
velocity is found as ln(v) ∝ −Fb/(kBT ). For more detail, see
the Supplemental Material [31] (and Refs. [32–36] therein). In
summary, the derivation of the DW velocity involves multiple
optimization steps to determine α0, ϕ0, ϕ1, ϕ2, Lc, and finally
Fb. Due to the complexity of the elastic energy, our results are
obtained numerically.

Approximating the elasticity to be proportional to u2/L
does allow for analytic solutions, but these are not able to
fully explain recent experimental observations. For example,
Je et al. approximated Eq. (4) by setting α0 = 0, ϕ0 = ϕ1 = ϕ2

and neglecting the ± arctan(2u/L) in the first two terms [8].
Because Pellegren et al. have chosen a different DW profile,
we cannot directly compare the expression in Eq. (1) with
their results [14]. They do, however, treat L as a free parameter
and do not find it by optimization. Moreover, they do not
account for the bending costs that we model by the terms
involving ϕ0 − ϕ1 and ϕ0 − ϕ1 in Eq. (1).

III. RESULTS

In Fig. 3(a) the modeled DW velocity as a function of the
applied IP magnetic field Hx is shown for different values
of H̃B (a). Figure 3(b) shows the asymmetric component
A = ln[v(↑↓)/v(↓↑)] for H̃B = 0.5. The kinks in the solid
lines at H̃x = 1 ± H̃B mark the saturation of internal DW
magnetization angle into a Néel wall perpendicular to the IP
magnetic field. These are expected from the form of Eq. (1)
where we neglected terms O[cos4(ϕ)]. The dashed curves
are the result of setting α = 8◦ fixed to compensate for the
simplified energy density.

In the high IP magnetic field regime, i.e., |H̃x| > H̃B, the
profile straightens out. In this regime the azimuthal angle of
the internal magnetization is saturated to align with the IP
magnetic field, yielding a Néel DW. Due to this saturation,
the orientation dependence of the elasticity no longer varies
with further increasing |Hx|. As a result, the elasticity becomes
isotropic and the logarithmic increase in velocity is solely due
to the gained Zeeman energy.

Note that the demonstrated asymmetry of the profile com-
pares well with experiments [10,11,14–17,37]. Furthermore,
the minimal velocity is not attained at H̃x = 1 as in the model
of Je et al. [8].
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FIG. 3. Dependence of the IP magnetic field H̃x of the DW
velocity (a) and the asymmetric component of the velocity A for
H̃B = 0.5 (b). The profiles in (a) are given a vertical offset for clarity.
The dashed lines represent the result for fixing α = 8◦. For this
calculation Hz = 10 mT.

Note moreover that the asymmetric velocity component
switches sign as |H̃x| increases. This feature has been observed
experimentally and explained by chiral damping [11,13,15].
In our model there are no chiral damping effects, showing that
this feature need not be an indication for chiral damping.

Finally, we compared and fitted our model to experimental
data. The results are shown in Fig. 4 showing good quantita-
tive agreement in a broad variety of samples over a wide range

FIG. 4. Fitted DW velocity curve (dashed line) to experimental
data (dots) of three different samples. The data shown in (b) and
(c) are obtained for this paper. The data in (a) are from Ref. [10]. The
obtained fit parameters are shown in the table. (d) The HD(1/tfilm)
trend for a cobalt film thickness sample study in Pt/Co(tfilm)/Gd
(orange) and Pt/Co(tfilm)/Ir (blue) stacks. The corresponding data
and fits can be found in the Supplemental Material [31].

of IP magnetic fields. The asymmetric behavior is clearly
demonstrated in the experiment.

We performed measurements on two different samples
stacks, see Figs. 4(b) and 4(c). The samples are grown via Ar
DC magnetron sputter deposition in a sputter chamber with a
base pressure of ∼3 × 10−9 mbar. The detailed composition
of the samples is

Sample a SiO2/Ta(4)/Pt(4)/Co(0.6)/Pt(4);
Sample b SiO2/Ta(4)/Pt(4)/Co(0.8)/Gd(3)/Pt(2);
Sample c SiO2/Ta(4)/Pt(4)/Co(0.9)/Ir(4).

The number in parentheses indicates the thickness of the
layer in nanometers. These samples are representatives of
the variety of the velocity profiles observed in the literature
of asymmetric domain expansion experiments [8,10,12,13].
We image the magnetic domains and the expansion of those
domains with a Kerr microscope setup. We use an OOP pulse
magnet with a pulse length of 0.8–400 ms and strength up to
±33 mT, and an IP magnet with a strength up to ±300 mT.
Furthermore, we also interpret data from previous research of
Ref. [10] in Fig. 4(a). In Fig. 4(d) the obtained values for HD

are plotted as a function of the film thickness t and confirm
our expectation that HD should decrease as a function of t
[20,31,38].

IV. CONCLUSION

The DMI and IP magnetic field complexify DW dynamics
significantly due to the orientation dependence of elasticity.
To grasp and expose this complexity, we defined a model
following creep theory and solving the dynamics semianalyt-
ically. The model has a profound sensitivity to DMI and de-
magnetization. As a result, the model provides a quantitative
interpretation of experimental data of DWs that demonstrate
asymmetric velocity profiles as a function of Hx.

Experimental studies that do not exhibit a kink at Hx =
HD ± 2HB are often fitted with the constant elasticity model
proposed by Je et al. [8]. In these studies the measurement
range of Hx might not be large enough to expose these kinks.
Figure 4(b) demonstrates that our model resembles results
from the constant elasticity model of Je et al. [8], but yields
a different value of the DMI: at Hx = HD, the velocity is not
minimized.

The parameter α has been set to a fixed value to account for
the omission of higher order anisotropy terms in the energy
density. As a result the angle ϕ will not saturate for large Hx.
Previous research used α as a fitting parameter to account for
roughness [14]. If roughness forces the DW to tilt, the tilting
angle is not fixed to one value. Hence a fixed value of α should
not be interpreted as a physical tilting of the DW.

We remark that assuming ϕ to be constant along an axis
normal to the DW is only a first approximation. For a mixed
Bloch-Néel DW, ϕ will adjust so that the magnetization aligns
with the IP magnetic field well inside the domains, but does
not at the DW. As ϕ plays a key role in the DW dynamics,
future research could focus on the exact behavior of ϕ.

In recent publications the asymmetric shape of the DW
velocity profile as a function of Hx is used as an argument
for significant effect of chiral damping on the DW dynam-
ics [11,15,16]. However, our model demonstrates a similar
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asymmetry without chiral damping. Furthermore, in the qua-
sistatic creep regime dynamic effects such as chiral damping
should not affect creep motion.

The comparison experimental data demonstrates the broad
applicability of our model. Future research could apply our
model to an extensive sample study to investigate the effects
of sample growth parameters and layer thickness on param-
eters of the model such as the effective lattice spacing a.
Furthermore, measurements over a broader range in Hz could
be performed to test the universality.
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