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A study of spherical maghemite nanoparticles on a two-dimensional triangular array was carried out using a
stochastic Landau-Lifshitz-Gilbert approach. The simulation method was first validated with a triangular array of
simple dipoles, where results show the expected phase transition to a ferromagnetic state at a finite temperature.
The ground state exhibited a continuous degeneracy that was lifted by an order-from-disorder mechanism at
infinitesimal temperatures with the appearance of a sixfold planar anisotropy. The nanoparticle array consisted
of 7.5 nm diameter maghemite spheres with bulklike superexchange interactions between Fe ions in the core,
and weaker exchange between surface Fe ions and a radial anisotropy. The triangular nanoparticle array ordered
at the same reduced temperature as the simple dipole array, but exhibited different behavior at low temperatures
due to the surface anisotropy. We find that the vacancies on the octahedral sites in the nanoparticles combine
with the surface anisotropy to produce an effective random temperature-dependent anisotropy for each particle.
This leads to a reduction in the net magnetization of the nanoparticle array at zero temperature compared to the
simple dipole array.
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I. INTRODUCTION

Nanomagnetic materials are used in a wide range of appli-
cations due to their versatile properties that depend on their
shape and size. This versatility is due to the complex nature
of the magnetic structure of the individual nanoparticles, de-
termined by interatomic exchange interactions between atoms
and the single-ion anisotropy, and the correlations between
the nanoparticles which are determined by the long-range
dipolar interactions. Understanding the effect of each of these
interactions and the subtle interplay between them is essential
to the design and development of new nanoscale materials for
applications, including those involving magnetic hyperther-
mia and contrast agents for magnetic resonance imaging [1],
spintronics [2], and targeted drug delivery [3].

For nanoparticles composed of transition metal oxides, sur-
face effects (broken surface bonds and distorted coordination)
give rise to strong inhomogeneities in both the single-site
anisotropy and the exchange parameters. As we show in this
paper, the interplay between these interactions and the vacant
octahedral sites on maghemite nanoparticles plays an impor-
tant role in their magnetic behavior. While the precise nature
of this surface anisotropy is somewhat elusive it can neverthe-
less be tuned by changing the surface-to-volume ratio of the
nanoparticles, or by judicious doping [4–6]. Such control over
the magnetic structure of the transition metal nanoparticles
provides a means of synthesizing magnetic nanoparticles with
very specific properties.

In the case of nanoparticle assemblies the large mag-
netic moment of the individual nanoparticles can result in
an enhanced, long-range dipolar interaction between the in-
dividual nanoparticles. The impact of dipole interactions is
of particular interest as it depends on the geometric arran-

gement (or lack thereof) of the nanoparticles (e.g., into a
superlattice/superstructure) rather than the chemical bonds
and resulting exchange. Manipulating the magnetic and
waveguide properties of assemblies of magnetic nanoparti-
cles should be possible by changing the arrangement and
spacing between the nanoparticles. For example, while a
triangular array of simple point dipoles orders ferromagnet-
ically [7,8], magnetic order for a square array has antiparallel
stripes [7,9,10]. The structural sensitivity of low-dimensional
nanoparticle superlattices combined with the tunability of the
individual nanoparticles offers the potential to manipulate
their magnetic and waveguide properties in novel ways. To
fully exploit this potential, it is essential to understand the
often subtle and complex interplay between the long-range
correlations of the nanoparticles driven by the long-range
dipolar interaction between them and the magnetic properties
of the individual nanoparticles.

In this paper we present a theoretical study of assemblies of
single-domain maghemite (γ -Fe2O3) spherical nanoparticles
on a triangular array. The simulation studies are based on a
hierarchical approach used previously to study a fcc super-
lattice of spherical maghemite nanoparticles [11,12] in which
the nanoparticles are treated at an atomistic level using the
stochastic Landau-Lifshitz-Gilbert (sLLG) equations [13,14]
and the dipolar interactions between the nanoparticles are
incorporated through self-consistent magnetic fields calcu-
lated based on a point dipole model with periodic boundary
conditions. This approach is readily parallelized and hence
can be applied to systems comprising 500 to 1000 magnetic
nanoparticles each of which comprises in excess of 10 000
individual spins.

In this model, the nanoparticles comprise a core with bulk-
like exchange interactions and a surface layer with weaker
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exchange interactions and a single-ion radial anisotropy.
While in the temperature range of interest the core spins are
aligned along a common axis, the surface magnetization is far
more complex due to competition between the superexchange
interactions and the surface radial anisotropy. This competi-
tion gives rise to a region of frustrated surface spins in a nar-
row band located at the magnetic equator. This combines with
the random distribution of vacancies in the octahedral sites
in maghemite to produce an effective anisotropy below the
surface ordering temperature for each nanoparticle [11]. Since
this effective anisotropy is determined by the distribution of
the surface vacancies, its precise nature is unique to each in-
dividual nanoparticle and is strongly temperature dependent.

Since the particles are spherical and their internal magneti-
zation is uniform, the demagnetization field outside the sphere
is dipolar [15], thus motivating a point dipole approximation.
While there are general theoretical frameworks to deal with
arbitrary lattice structures [16], and arrays of nanoelements
that have crystalline anisotropy and nonuniform magnetiza-
tion [17], the lack of symmetry of the effective anisotropy
(that arises from the atomistic interactions) and its uniqueness
for each nanoparticle make it challenging to formulate the
effective anisotropy analytically.

II. MODEL AND METHODOLOGY

Maghemite has an inverse spinel structure in which each
unit cell has 32 O2−, and 8 Fe3+ occupying tetrahedral sites,
and 16 × (5/6) Fe3+ occupying octahedral sites. One sixth
of the octahedral sites are vacant to balance the charge. Each
nanoparticle in the lattice is described by a core-shell model
that has an energy

ENP = −
∑

〈i j〉(Ji j Ŝi · Ŝ j ) − Ks

∑
i∈surface

(Ŝi · n̂i )
2, (1)

where Ŝi is a unit vector in the direction of the spin i, and
n̂i is a radially oriented unit vector. The first term in Eq. (1)
describes the superexchange interactions between the iron
atoms that give rise to the ferrimagnetism. The second term
in Eq. (1) describes the radial surface anisotropy (Ks) of the
surface Fe spins. Since the magnetic moment per Fe cation
(gsS = 5μB) is relatively large, we use a classical Heisenberg
spin description.

To describe the long-range dipole interactions in the tri-
angular array of these nanoparticles, we use the point dipole
approximation. In this approximation, the dipole field is cal-
culated by representing each nanoparticle as a magnetic dipole
at its center where the magnetic moment of the dipole equals
the magnetic moment of the corresponding nanoparticle. We
construct an L × L triangular array with a lattice parameter
a. Hence, the nanoparticles are located at sites n1 �a1 + n2 �a2,
where �a1 = a(1, 0, 0), �a2 = a(1/2,

√
3/2, 0), and n1 and n2

are integers between 1 and L. To account for the long-range
interactions in the array, we impose periodic boundary condi-
tions by using the Ewald summation method [18]. The dipolar
energy of a triangular array of L × L dipoles is given by

Ed = 1

2

L2∑
k

L2∑
l

3∑
α,β=1

σα
k

(
gk,l�

α,β

k,l

)
σ

β

l , (2)

where �
α,β

k,l is an element of a 3 × 3 tensor that depends only
on the relative position (�rk,l/a) between the sites k and l in
the array, σα

k is a Cartesian component of the normalized
magnetic moment of the nanoparticle at site k, and gk,l =
μ0mkml/4πa3 is the dipole interaction strength, where mk de-
notes the magnitude of the dipole moment of the nanoparticle
at the site k and μ0 is the vacuum permeability. Therefore, the
energy of a triangular array of the nanoparticles is

E = 1

2

L2∑
k

L2∑
l

3∑
α,ν=1

σα
k

(
gk,l�

α,ν
k,l

)
σ ν

l +
L2∑
q

Eq
NP, (3)

where Eq
NP is the energy due to the short-range interactions in

the nanoparticle on the site q in the array as defined in Eq. (1).
The random vacancy distribution on the octahedral sites and
the orientation of the maghemite unit cell are unique for each
nanoparticle.

The simulations were carried out using the sLLG equation
using the fourth-order Runge-Kutta algorithm for each of the
individual atomic spins in each of the nanoparticles in steps
of 4 × 10−4tu, where 1tu = 1.9 × 10−11s. The nanoparticle
arrays used a message passing interface, where each nanopar-
ticle was assigned to a single core processor and the dipole
field at each nanoparticle was updated every 12 time steps
to reduce the communication time between processors. The
integration of the sLLG equation is discussed in Appendix A.

III. DIPOLE ARRAYS

To validate our sLLG approach and to determine the nature
of the magnetic order due to the dipole interactions in triangu-
lar arrays, we first performed simulations of simple dipoles in
different sized triangular arrays. Each ensemble consisted of
500 arrays of simple point dipoles, where the array size was
L = 8, 16, 24, or 32. The magnetization and the energy were
determined as a function of the reduced temperature τ as the
temperature was decreased from τ = 1 to 0 in steps of 0.02.
The reduced temperature is defined as τ = T kB/g where g =
μ0m2/4πa3 and m is the magnitude of the dipole moment.
The arrays were left to equilibrate at each temperature step
for 1000 ξ and the data were recorded for another 1000 ξ

after equilibration for statistical averaging, where ξ = m/γ g
is the normalized time unit. Figure 1 shows the normalized

M
/M

(0
)

FIG. 1. The magnetization for different sizes of the triangular
array of magnetic dipoles as a function of reduced temperature.
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TABLE I. The free-energy barrier per site in units of τ for various
array sizes as calculated from the expansion in term of the harmonic
excitations.

L 8 16 32 64 128

� f /τ 0.0344 0.0242 0.0205 0.0194 0.0190

magnetization as a function of the reduced temperature for the
range of sizes; they all order ferromagnetically below a critical
temperature. Using finite-size scaling of the Binder parameter
(not shown), we found the critical temperature τc � 0.663,
in good agreement with previous Monte Carlo simulations
by Tomita [8]. Previous studies [19] of dipole interactions in
triangular arrays of planar spins showed a phase transition
at τc � 0.88, which is slightly higher than our results for
Heisenberg spins; out-of-plane fluctuations for the Heisenberg
case can occur and suppresses τc.

We found the ferromagnetic ground state to have energy
per site E/g � −2.757, in agreement with previous studies
[20,21]. The ground-state energy is independent of the direc-
tion of the net magnetization as long as the dipoles are parallel
and in-plane. It is worth noting that the ground state depends
on the crystalline and shape anisotropies of the individual
units that form the array. For example, a triangular array of
components with an out-of-plane easy axis, where the internal
anisotropy is significantly larger than the dipolar interactions
between the components, can be thought of in terms of the
Ising model. Such a model shows a degenerate antiferromag-
netic ground state (configuration of antiparallel stripes) in
the absence of an external field and more complicated struc-
tures by applying moderate out-of-plane fields [22]. Since
the dipole-dipole interactions act like a planar anisotropy,
our Heisenberg spin model and the planar spin model have
identical ground-state energies as pointed out by Rastelli et al.
[19]. Due to the finite value of the lattice size L, the net
magnetization does not vanish above τc, where the net magne-
tization of a fully random spin configuration would yield a net
magnetization M ∝ 1/

√
L2 = 1/L. We find that at low tem-

peratures M(0) − M(T ) ∝ T . This linearity is a characteristic
of the classical Heisenberg model that we used to represent
the dipoles (i.e., classical 3-dimensional dipoles) [23–25].

Our simulations identified that the net magnetization re-
mains effectively in-plane below τc. For the planar spin system
it has been shown that the ground-state degeneracy is lifted
and an order-from-disorder transition occurs at finite temper-
atures [19,26,27]. As a result, a sixfold in-plane anisotropy
arises in the planar spin system. We have performed the same
calculation for the Heisenberg case by expanding the free
energy in terms of harmonic excitations for several values of
L, and the array magnetization was found to prefer to be in
the directions φ = 30◦, 90◦, 150◦, 210◦, 270◦ as discussed in
Appendix B. We also found that the free-energy barrier per
site was dependent on the array size, as shown in Table I.

We have also examined the behavior of the close-packed
triangular dipole array for different sizes (L). For each temper-
ature, we record 2000 measurements of the direction of the net
magnetization of each array at equally spaced time intervals.
We divide the planar angle φ between the net magnetization

s

FIG. 2. Histogram of the angle between the net magnetization
and �a1 for array sizes L = 8 (red) and 16 (blue).

and �a1 into sectors of 2◦ and determine nφ , the number of
times the net magnetization is found to be in each sector.
Figure 2 shows nφ at various reduced temperatures. We find
that the direction of the net magnetization exhibits a sixfold
symmetry and prefers to be at a 30◦ angle with respect to the
primitive vectors. At low temperatures, our arrays of Heisen-
berg spins behave like the arrays of planar spins [19]. Given
that the planar anisotropy has a sixfold symmetry, we aver-
aged over angles that were separated by 60◦ intervals to im-
prove the statistics. The probability of the net magnetization
being in a given sector is well approximated by nφ/n, where
n is the total number of measurements. Since the Boltzmann
factor exp (− fφL2/τ ) ∝ nφ/n, where fφ is the effective free
energy per site in units of g, then fφ/τ = − ln(nφ/n)/L2 + c,
where c is a constant. Figure 3 shows − ln(nφ/n)/L2 as
a function of φ at τ = 0.04 for sizes L = 8 and 16. The
effective free-energy barrier per site can be estimated from
the difference between the maximum and minimum values,
given by � fφ/τ � 0.0330 for L = 8 and � fφ/τ � 0.0232
for L = 16, in good agreement with the predictions given in
Table I. While the dipolar energy, given by Eq. (2), is not
invariant under a uniform rotation of the spins, its ground state
is nevertheless continuously degenerate [28]. This property
is common to a number of two-dimensional dipolar systems
[29]. This degeneracy can be removed by the presence of
disorder resulting in long-range magnetic order. The precise
nature of the ordering depends on both the lattice structure and
the form of the disorder. Such an effect is generally referred
to as “order from disorder” and can be induced by thermal
fluctuations or structural disorder [26,27,30,31]. While the net
magnetization in our system remains in-plane below τc, the
individual dipoles are not necessarily in-plane. This difference
is important for nanoparticle arrays as we will see later.

IV. MAGHEMITE NANOPARTICLES

The focus of this paper is on triangular arrays of maghemite
spherical nanoparticles with a diameter of 7.5 nm (core
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s

FIG. 3. − ln(nφ/n)/L2 as a function of φ for ensembles of dipole
arrays at τ = 0.04, and L = 8 (red) and 16 (blue). The points are the
simulation results and the solid line is a fit with a cosine function as
a guide to the eye.

diameter of 6.3 nm with the rest being the surface “shell”);
the surface-to-volume ratio of these nanoparticles is about
40%, in keeping with typical experimental values. We begin
by examining the magnetism of noninteracting (no dipolar
interactions) nanoparticles to determine their intrinsic spin
moments and overall magnetization temperature dependen-
cies. The core is assumed to have bulklike properties where
the superexchange between nearest neighbors, JT T , JOO, JOT ,
is −42, −17.2, and −56.2 K between tetrahedral-tetrahedral
sites, octahedral-octahedral sites, and octahedral-tetrahedral
sites, respectively [11,32,33]. These exchange constants were
determined from magnetization and Mössbauer spectroscopy
measurements on bulk maghemite using mean-field theory
[33–36]. However, mean-field theory neglects fluctuations and
usually overestimates the Curie temperature. Monte Carlo
and sLLG methods yield a lower Curie temperature and
so we have scaled these exchange constants so that Curie
temperature from sLLG yields reasonable agreement with the
experimentally extrapolated values. The ground state due to
the superexchange is ferrimagnetic where the spins of the
octahedral sites are parallel to each other and antiparallel
to the spins on the tetrahedral sites, resulting in an average
(effective) magnetization of (5/4)μB per magnetic site. This
is consistent with the experiments where the magnetization is
found to be the result of two antiparallel sublattices with a ra-
tio of 0.6 between the number of spins on each sublattice. The
small magnetocrystalline anisotropy of the maghemite core is
ignored for simplification (surface anisotropy effects will be
discussed below). Figure 4 shows the core [mc(T )] and the
total magnetization [mn(T )] of our 7.5 nm nanoparticle as a
function of temperature obtained using the sLLG simulations.
The core spins order at 850 K, comparable to the ordering
temperature of bulk maghemite [35], and for temperatures
below 50 K the core spins are (effectively) aligned fully.

Experimental results suggest that the surface spins order
at a much lower temperature than the core [37,38]. To model

FIG. 4. The total and the core magnetization of a 7.5 nm diameter
nanoparticle as a function of temperature. Previous results of mn(T )
[11] for a 5 nm diameter nanoparticle are shown in the inset.

this magnetism, we set the superexchange between the surface
spins to be 1/40 of the corresponding interactions between
the core spins so that the surface spins start to order around
25 K. Below 25 K, the core spins are fully aligned, but the
nanoparticle magnetization increases rapidly with decreasing
temperature, as shown in Fig. 4. This is in good agreement
with previous simulations of 5 nm nanoparticles (inset of
Fig. 4) [11] that were in agreement with previous Monte Carlo
simulations and experimental observations. Figure 5 shows
the magnetic moment of the 7.5 nm diameter nanoparticle for
Ks/kB = 0, 5, and 10 K at low temperatures. The core spins
are fully aligned below 60 K, and below 15 K the surface spins
are relatively well ordered. We find that the nanoparticle’s
magnetization decreases with increasing Ks, suggesting that
the surface radial anisotropy reduces the alignment between
surface spins.

FIG. 5. The magnetic moment of individual nanoparticles as a
function of temperature for various values of Ks. The open circles
are the core magnetic moment which is saturated at low temperatures
and is independent of Ks.
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FIG. 6. The temperature dependence of the nanoparticle array
net magnetization per site for different values of Ks.

V. TRIANGULAR NANOPARTICLE ARRAY

To study the interplay that results from the surface
anisotropy and dipole interactions between nanoparticles in
a triangular array, simulations of an array size L = 24 and
lattice parameter a = 7.5 nm were carried out. The dipole-
dipole interactions between nanoparticles were dealt with as
discussed above. The array was cooled from 55 K to 0 in steps
of 5 K, and the simulation was repeated for radial anisotropy
constants Ks/kB = 0, 5, and 10 K. The array was left to
equilibrate from 2500tu to 7500tu for each temperature step
and the statistics were collected for the same amount of time
after equilibration.

Figure 6 presents the temperature dependence of the aver-
age magnitude of the array magnetization per nanoparticle,
M(T )/L2, as a function of temperature. While the magne-
tization of each individual nanoparticle was relatively large
at 45 K (due to the ordering of core spins as shown in
Fig. 5), the net magnetization of the triangular array per
nanoparticle is significantly less due to the lack of alignment
of the nanoparticle magnetizations.

Since the nanoparticle magnetization, mn(T ), increases
significantly with cooling below 25 K (Fig. 5), the strength
of the dipole interactions between the nanoparticles, g(T ) =
μ0[mn(T )]2/4πa3, is strongly temperature dependent. Due to
finite-size effects, the simple dipole array discussed previ-
ously with L = 24 started to order at a reduced temperature
τ � 0.8, higher than τc. For the nanoparticle array, this corre-
sponds to

τ = T kB/g(T ) = 0.8 
⇒ T � (1.18 × 10−6)mn(T )2,

T � 44 K,

mn(T = 44 K) = 6100μB. (4)

For temperatures below 25 K, Fig. 6 shows that M/L2

decreases with increasing Ks. While some of this decrease
may be attributed to the decrease in the surface magnetization
with increasing Ks, this is not the whole story. To understand
this, we define an order parameter η = M(T )/[L2mn(T )]
and a reduced temperature τ = T kB/g(T ). Plotting the order
parameter η as a function of the reduced temperature τ , as

FIG. 7. The order parameter as a function of the reduced temper-
ature for dipole and nanoparticle arrays with L = 24.

shown in Fig. 7, removes the dependence of the data on
the net magnetic moment of the nanoparticles. The plots of
the rescaled data shown in Fig. 7 show that the nanoparti-
cles with no surface anisotropy (Ks = 0) behave as simple
dipoles. For Ks �= 0, the order parameter η(τ ) falls below
the curve of the simple dipoles at low temperature (τ < 0.22
for Ks/kB = 5 K and τ < 0.35 for Ks/kB = 10 K). While
there is no obvious difference between the nanoparticle array
and the dipole array near the array ordering temperature,
the nanoparticles have some attributes that are different from
simple dipoles. These differences may alter the critical be-
havior of the nanoparticle array. For example, the presence
of an effective surface anisotropy may shift the nanoparticle
array farther from the behavior of planar dipoles. In our
case, this nanoparticle anisotropy is negligible at the array
ordering temperature due to the lack of magnetic order at
the surface, as discussed later. Furthermore, the magnitude
of the nanoparticle magnetizations fluctuates slightly due to
thermal excitations. These fluctuations introduce additional
degrees of freedom and may change the universality of the
critical behavior. We speculate that the differences mentioned
above between the nanoparticle array and the dipole array are
negligible for the chosen parameters. Unfortunately, obtaining
statistically meaningful data to explore the critical behavior
of the nanoparticle array demands a simulation time beyond
what is currently feasible.

The effect of the surface radial anisotropy on η can be illus-
trated by comparing the magnetic configuration of an array of
nanoparticles for Ks = 0 at T = 0 (τ = 0) as shown in Fig. 8
(each arrow represents the magnetization of one nanoparticle)
with the corresponding magnetic configuration of the same
array for Ks/kB = 5 K and 10 K as shown in Fig. 9. Each
of the configurations was obtained after cooling the array
from 55 K to 0. In the case of Ks = 0, cooling the array
relaxes to a ferromagnetic state in which the nanoparticles
are perfectly aligned ferromagnetically along one of the six
preferred directions determined by the thermal fluctuations,
as discussed in Sec. III, giving an order parameter η = 1
for τ = 0. The corresponding magnetic configurations for the
case of Ks �= 0 show a much more complex structure with
out-of-plane components in addition to an in-plane disorder
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FIG. 8. The magnetic configuration of nanoparticle arrays with
Ks = 0 and L = 24 at T = 0. Each arrow represents the magnetiza-
tion of one nanoparticle. Each arrow represents the magnetization of
one nanoparticle. The directions of the arrows are color coded using
a composition of red, green, and blue colors to represents the x, y,
and z components (see the main axes on the top left). The golden
color of the arrows is the result of mixing red (x component) with
some green (y component).

that results in the formation of magnetic domains. These
results are similar to those reported by Russier [7] who studied
triangular arrays of nanoparticles that had no internal structure
but a random uniaxial anisotropy at 0 K, and he observed
a similar domain configuration. The interparticle disorder
in arrays of maghemite nanoparticles with nonzero radial
anisotropy suggests that an effective anisotropy arises for
each nanoparticle. This is consistent with previous atomistic
studies on fcc superlattice arrays of maghemite nanoparticles
[12]. The nature and origin of this anisotropy is discussed in
the following section.

VI. THE EFFECTIVE ANISOTROPY

While the existence of an effective anisotropy in the in-
dividual nanoparticles at low temperatures that is dependent
on the radial anisotropy of the surface spins would appear
to account for the reduction in the order parameter η at
low temperatures, the mechanism by which radial anisotropy
associated with the surface spins can give rise to such a term
is not obvious. To understand the origin and character of this
effective anisotropy we first note that for temperatures below
which the surface spins begin to order, the magnetization of
the nanoparticle core is essentially saturated and that the core
Fe ions have no single-site anisotropy. This implies that the
effective anisotropy of the nanoparticles originates from the
surface and its exchange with the fully saturated core. To
illustrate this, we consider a single nanoparticle in which the
magnetic moment of the core spins are assumed to be fully
saturated and to be in a fixed orientation, denoted by the
unit vector σ̂ . Using the standard Monte Carlo method, the
surface spins are given random directions and then allowed to
equilibrate at a given temperature followed by a calculation
of the total energy and magnetization of the surface spins for
each of the core magnetization directions. This calculation
is performed for N values of σ̂ which we denote by the set

FIG. 9. The magnetic configuration of nanoparticle triangular
arrays of size L = 24 with (a) Ks/kB = 5 K and (b) Ks/kB = 10 K at
T = 0. Each arrow represents the magnetization of one nanoparticle.
The color-coding scheme is the same as in Fig. 8.

{σ̂i} = (σ̂1, σ̂2, . . . , σ̂N ) and each of the data represented by a
point on a unit sphere.

The surface energy is calculated as a function of the index
i for three values of Ks/kB = 0 K, 5 K, and 10 K at a
temperature of 2 K as shown in Fig. 10. For Ks = 0 there is no
variation of the surface energy of the nanoparticle due to the
rotation of the core spins. This is consistent with the result
in Fig. 7 which shows that the dependence of the rescaled
order parameter η on the reduced temperature τ agrees closely
with the corresponding result for point dipoles. This is in
sharp contrast to the case of finite values of Ks for which the
surface energy of the nanoparticle shows a strong variation
as a function of the index i. This behavior suggests that
the preferred orientation of the nanoparticle magnetization is
determined by the variation in the surface energy with respect
to the orientation of the core magnetization, σ̂i, and can be
thought of as an effective anisotropy.

To explore the origin of this effective anisotropy, we begin
by noting that one sixth of the octahedral sites are vacant and
that these vacant sites are randomly distributed throughout
the nanoparticle. Due to statistical variation the vacancies in
the nanoparticles will not be distributed uniformly. This is
clearly seen in Fig. 11 which shows the location of the surface
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FIG. 10. The change in the surface energy plotted as a function
of the index of the direction of the core magnetic moment calculated
for a single nanoparticle.

vacancies projected onto the surface of the unit sphere for
a typical nanoparticle. Of particular interest is the number
of surface vacancies located in the narrow band of octahe-
dral sites close to the equatorial plane perpendicular to σ̂ .
Figures 11(a) and 11(b) show the surface vacancies that are
located within a band of width ±11.5◦ for two values of σ̂

indicated by the red arrows. Denoting by ni = n(σ̂i ) the num-
ber of surface vacancies that are located within this equatorial
band of octahedral states for each of the core orientations {σ̂i},
Fig. 12 plots ni as a function of the index i together with
the corresponding value for the energies Ei = E (σ̂i ) shown in
Fig. 10. The data presented in Fig. 12 illustrate two important
features. The first is simply the variation in ni and the second
is the fact that ni appears to be anticorrelated with the energy
Ei. Using the surface energy data for Ks/kB = 10 K we have
evaluated a Pearson’s correlation

∑
i �ni�Ei√

(
∑

i �n2
i )(

∑
i �E2

i )
= −0.68,

where �ni = ni − 〈ni〉 and �Ei = Ei − 〈Ei〉.
The results in Fig. 12 clearly show that the distribution

of surface vacancies plays a critical role in determining
the relationship between the surface energy and the orien-
tation of the core spins. To obtain a qualitative understand-
ing of what exactly determines the nature and form of this

FIG. 11. The arrow indicates the direction of the core magneti-
zation, the red line indicates the magnetic equator, and the red band
indicates the region in which the vacancies on octahedral sites are
enumerated.

FIG. 12. The change in the surface energy (the same data that are
shown in Fig. 10) is plotted along with the number of vacancies on
the octahedral sites in the equatorial region for each direction of the
core magnetization for the same nanoparticle.

relationship, consider first the magnetic configuration of a
spherical nanoparticle at T ≈ 0 as illustrated schematically in
Fig. 13(a). Figure 13(a) shows a nanoparticle with no surface
vacancies, a uniformly magnetized core, and the surface spins
directed inward at the south pole and outward at the north
pole. While the detailed nature of the magnetic structure at
the poles is determined by the minimizing superexchange
interactions and the single-ion radial anisotropy at the surface
for a given core orientation σ̂ , it is nevertheless clear from
Fig. 13(a) that such a configuration must contain some form
of domain wall located at the magnetic equator separating
the two regions surrounding the magnetic poles. This has
been confirmed in simulation studies [11] and is shown to be
qualitatively similar to a Néel domain wall. Because the spins
contained within the domain wall are highly frustrated, their
energy will be higher than the surface spins located within the
regions surrounding the magnetic poles.

Consider now the case shown schematically in Fig. 13(b)
that shows the same system but with the core magnetization
rotated [39]. Qualitatively we would expect that the surface
spins rotate to align with the core spins and that the energy
would remain approximately constant. We also note that both
spin configurations contain four frustrated spins shown in red.
Compare this now with the situation shown schematically
in Figs. 13(c) and 13(d) in which we show essentially the
same two spin configurations but with two surface vacancies
indicated by the yellow dots. Whereas in the previous example
each configuration has four frustrated spins, the spin configu-
ration on the left [Fig. 13(c)] has four frustrated spins but the
spin configuration on the right has only two frustrated spins.
Since the frustrated spins (colored red) have a higher energy
than the other spins (colored blue) we would expect the energy
of the nanoparticle spin configuration on the right to have a
lower energy than the spin configuration on the left.

While the nanoparticles we consider are somewhat more
complicated than the very simplified system considered
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(a) (b)

(c) (d)

FIG. 13. (a) Illustration of the spin configuration of one nanopar-
ticle. The red color represents the high-energy spins. (b) The position
of the magnetic equator depends on the direction of the core magneti-
zation. (c) The yellow circles represent the random vacancies and the
nanoparticle has four spins with higher energy. (d) The nanoparticle
has only two higher-energy spins and an effective torque exerted on
the nanoparticle magnetization to minimize the overall energy.

above, the basic counting argument nevertheless provides a
qualitative description of the correlation between the vacancy
distribution and the surface energy demonstrated in Fig. 12
as a function of the orientation of the core magnetization.
The argument may be summarized as follows: for a given
orientation σ̂ of the core magnetization, the surface spins may
be divided into two distinct regions surrounding the magnetic
poles. These regions are separated by a domain wall located
on the magnetic equator. The spins in this region are highly
frustrated and have a higher energy than those located in
the polar regions. As we rotate the core magnetization the
surface spins respond such that the domain wall separating
the two polar regions lies in the plane perpendicular to σ̂

passing through the origin. As illustrated in Figs. 13(c) and
13(d), the greater the number of vacancies located within
the domain wall, the fewer the number of frustrated spins
and the lower the energy of the spin configuration. This is
akin to the pinning of domain walls by impurities and defects
in standard ferromagnetic materials.

To visualize the dependence of the surface energy of the
nanoparticle on the orientation of the core magnetization, we
subdivide the convex hull of the points {σ̂i} on the unit sphere
by constructing a Voronoi diagram that consists of a set of
polygons (the Voronoi regions) that enclose each of the points
{σ̂i}. Each Voronoi region is then color coded according to

61 67 73 79 86 92 98 104 110
Number of equatorial vacancies

250 188 125 62 0 -62 -125 -188 -250
Surface energy (K)

FIG. 14. The surface energy landscape of one nanoparticle with
Ks/kB = 10 K at (a) T = 5 K, and (b) the number of vacancies in the
equatorial band associated with each of the mesh points {σ̂i}.

the surface energy [Fig. 14(a)] and the number of vacancies
in the equatorial band [Fig. 14(b)] when the core magnetiza-
tion is in the direction of {σ̂i}. Clearly, the largest numbers
of equatorial vacancies coincide with the directions of the
core magnetization which gives the lowest surface energy. In
addition, since both the number of vacancies in the equatorial
band and the energy of a single nanoparticle given by Eq. (1)
calculated for a specific orientation {σ̂i} are invariant under
the inversion (σ̂i → −σ̂i ), the surface energy will consist of a
set of local minima composed entirely of several distinct sets
of degenerate pairs. Each pair of local energy minima may
be thought of as defining an effective anisotropy axis. The set
of such axes will be determined by the specific nature of the
surface and will therefore be unique to each nanoparticle and
will serve to characterize the effective anisotropy, alluded to
earlier, for each of the individual nanoparticles.

The energy landscapes for a nanoparticle with Ks/kB =
10 K are shown in Fig. 15 for (a) T = 5 K, (b) 15 K,
and (c) 25 K. The energy landscapes are characterized by
several distinct local extrema and while the overall scale of
the variation in the surface energy decreases with increasing
temperature, the location of the local extrema are relatively
insensitive to temperature. The variation of the surface energy
(and hence the effective anisotropy) decreases as the tempera-
ture approaches 25 K above which the surface spins disorder.
This behavior is consistent with the discussion presented
schematically in Fig. 13 since the spatial distribution of the
vacancies (which determines the location of the minima) is
independent of temperature, whereas the degree of frustration
of the surface spins located in the vicinity of the magnetic
equator will decrease as the surface magnetization decreases
with increasing temperature (which determines the magnitude
of the variation of the surface energy). In addition, above 25 K
the surface spins disorder and there is no well-defined domain
wall. As a consequence, the surface spin configuration has
a negligible effect on the dependence of surface energy on
the orientation of the core spins. This is consistent with our
results in Fig. 6 where the array magnetization is independent
of the surface radial anisotropy at temperatures above 25 K.
Furthermore, the increase of the surface effective anisotropy
with cooling (below a temperature at which the surface spins
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  Surface
energy (K)
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FIG. 15. The surface energy landscape of one nanoparticle with
Ks/kB = 10 K at (a) T = 5 K, (b) T = 15 K, and (c) T = 25 K.

begin to order) is consistent with experimental observa-
tions [38] of spherical noninteracting maghemite nanoparti-
cles. Such behavior is expected to be observed in magnetic
nanoparticles of materials other than maghemite due to crys-
talline defects or due to doping with nonmagnetic atoms.

In the nanoparticle arrays, the magnetization of each
nanoparticle approaches one of the directions that maximize
the number of the equatorial vacancies at the surface to reduce
the surface energy. At the same time, it tends to maintain
an in-plane direction that is close to the magnetizations of
the surrounding nanoparticles to minimize the energy of the
ferromagnetic dipolar interactions. As a result, the array can
be divided into magnetic domains where each group of neigh-
boring nanoparticles tends to have a local magnetization that
is different from the other groups. With reducing the radial
surface anisotropy, the ferromagnetic long-range dipolar in-
teractions become more dominant over the localized surface
effective anisotropy and the size of each domain increases.
As the size of the magnetic domains increases with weakened
radial anisotropy, the number of the magnetic domains in the
array decreases as shown in Figs. 8 and 9.

VII. CONCLUSIONS

We have studied a system of spherical maghemite nanopar-
ticles on a two-dimensional triangular array using an sLLG
approach. As a benchmark, we have first studied dipole-dipole
interactions in triangular arrays of classical three-dimensional
spins with periodic boundary conditions. We find, as expected,
that triangular arrays of simple dipoles order ferromagneti-
cally below a critical temperature Tc = 0.663μ0m2/4πa3kB,
and have an infinitely degenerate ferromagnetic ground state
that corresponds to an in-plane net magnetization. Below the
critical temperature, the net magnetization remains in the

plane and a sixfold planar anisotropy arises due to an order-
from-disorder process at low temperatures. We have calcu-
lated the anisotropy barrier and we find excellent agreement
with the simulations.

Simulations of a triangular array of 7.5 nm diameter
maghemite nanoparticles were performed using the point
dipole approach. The temperature dependence of the mag-
netization for an array of nanoparticles that have no surface
anisotropy may be mapped onto the corresponding curve for a
simple dipole array by a simple rescaling of the magnetization
and temperature. For particles with a surface radial anisotropy,
an effective random temperature-dependent anisotropy arises
which competes with the dipole interactions and leads to a re-
duction of the low-temperature magnetization of the array. Al-
though the magnetization of each nanoparticle increases with
decreasing temperature, the effective anisotropy increases
more rapidly, so as to decrease the alignment between the
nanoparticle magnetizations in the array when Ks/kB � 5 K.
We find that the radial anisotropy results in the formation
of magnetic domains in the array where the number of the
domains increases with Ks.

For individual nanoparticles, the competition between the
radial anisotropy and the superexchange interactions on the
surface results in a Néel-like domain wall on the magnetic
equator. The high-energy domain wall on the magnetic equa-
tor gives rise to an inhomogeneity in the energy of the sur-
face spins that depends on the direction of the nanoparticle
magnetic moment. The random vacancy distribution on the
octahedral sites results in a static inhomogeneity in the dis-
tribution of surface spins. The interplay between the energy
distribution on the surface and the static (inhomogeneous)
spin distribution gives rise to an effective torque that is exerted
on the nanoparticle magnetization to minimize the energy
of the surface spins. In other words, each nanoparticle has
a unique effective anisotropy that is temperature dependent.
We find that the effective anisotropy increases with the radial
anisotropy constant Ks and with cooling.

Finally, as mentioned in the introduction, the nature of the
equilibrium magnetization in an order-disorder transition de-
pends on the specific nature of the disorder. It has been shown
that competing forms of disorder, most notably structural and
thermal fluctuations, can give rise to phase transitions that
reflect the competing nature of the two forms of disorder. It
is interesting therefore to speculate, given that the thermal
disorder decreases with decreasing temperature while the dis-
order due to the effective anisotropy increases with decreasing
temperature, that the competition between these two forms of
disorder might also result in some form of transition between
two distinct magnetic states. Such a possibility may account
for the presence of the domains observed in the equilibrium
configurations shown in Fig. 9 in which the spins exhibit a
significant out-of-plane component in comparison with Fig. 8.

ACKNOWLEDGMENTS

This work was supported by the Natural Sciences and
Engineering Research Council (NSERC) of Canada (RGPIN-
2018-0501), Compute Canada, and the University of Mani-
toba.

094416-9



B. ALKADOUR et al. PHYSICAL REVIEW B 100, 094416 (2019)

APPENDIX A: THE STOCHASTIC
LANDAU-LIFSHITZ-GILBERT METHOD

The simulations were carried out using the sLLG equa-
tion [13,14] which may be written in Cartesian coordinates
for a single atom with magnetic moment vector �S(t ) =
(x1, x2, x3)μ as

dxi

dt
= − γ

1 + λ2

[
εi jkx j

(
Hk + H th

k

)

+ λ(r2δi j − xix j )
(
Hj + H th

j

)]
, (A1)

where μ is the local (spin or dipole) magnetic moment and
Hi and H th

i denote the ith component of the effective field
(applied field + interactions) and the fluctuating field, respec-
tively, acting on the magnetic moment vector �S(t ) with

Hi = − 1

μ

∂E

∂xi
and H th

i =
√

2Dξi(t ), (A2)

while γ = 1.76 × 1011(s T)−1 is the gyromagnetic ratio, λ =
0.5 is the microscopic damping constant, D = λkBT/γμ de-
notes the strength of the thermal fluctuations, and {ξi(t )} de-
fine a set of three statistically independent stochastic variables
(typically assumed to be but not necessarily normal variants)
with the properties

〈ξi(t )〉 = 0, (A3)

〈ξi(t )ξ j (t
′)〉 = δi jδ(t − t ′). (A4)

Equation (A1) may be expressed in terms of the Weiner
processes Wi(t ) = ∫ t

0 ξi(t ′)dt ′ as a kind of Riemann-Stieltjes
integral with Wi(t ) as the sample function:

dxi = − γ

1 + λ2

∑
k j

[εi jkx j + λ(xixk − r2δik )]Hkdt

−
√

2Dγ

1 + λ2

∑
k j

[εi jkx j + λ(xixk − r2δik )]dWk, (A5)

where dWi(t ) are normal variants with

〈dWi(t )〉 = 0, (A6)

〈dWi(t )dWj (t )〉 = δkl dt . (A7)

Equation (A5) may be written in the standard drag-diffusion
form as

dxi = Aidt +
∑

j

Bi jdWj (t ) (A8)

with

Ai = − γ

1 + λ2

∑
k

⎡
⎣∑

j

εi jkx j + λ(xixk − r2δik )

⎤
⎦Hk, (A9)

Bik = −
√

2Dγ 2

1 + λ2

⎡
⎣∑

j

εi jkx j + λ(xixk − r2δik )

⎤
⎦. (A10)

Stochastic integrals of the form
∫ t

0 f (t ′)dW (t ′) are defined
by partitioning the interval 0 → t into N subintervals and
calculating the limit

∑N
n=1 fn(Wn+1 − Wn)N→∞ where fn ≡

α f (tn+1) − (1 − α) f (tn) with 0 � α � 1. However, unlike
Riemann integrals, stochastic integrals depend on the value
of α even in the limit N → ∞. Two commonly used forms
are the Ito stochastic integral with α = 1 ⇒ fn = f (tn) and
the Stratonovich stochastic integral with α = 1/2 ⇒ fn =
[ f (tn+1) + f (tn)]/2. It can be readily shown that, to order dt ,
any function f (x(t )) satisfies the following rules [40]:

Ito:

df =
⎛
⎝∑

i

Ai
∂ f

∂xi
+ 1

2

∑
i jk

BikB jk
∂2 f

∂xi∂x j

⎞
⎠dt

+
∑

i j

Bi j
∂ f

∂xi
dWj (t ). (A11)

Stratonovich:

df =
∑

i

Ai
∂ f

∂xi
dt +

∑
i j

Bi j
∂ f

∂xi
dWj (t ). (A12)

While the Ito calculus and Stratonovich calculus, as ex-
pressed by the above formula, are different, it is nevertheless
possible to calculate df (x(t )) for any value of α using the Ito
definition of fn = f (tn) by the addition of a drift term [40]
such that Ai(x, t ) → Aα

i (x, t ) = Ai(x, t ) + α�i(x, t ) with

�i(x, t ) = −
∑

jk

Bk j
∂Bi j

∂xk

= −4Dγ 2(1 + r2)xi. (A13)

While any given choice of α provides a mathematically
valid interpretation of stochastic differential equations (SDEs)
given by Eq. (A5) the probability distribution of the sample
trajectories at time t , p(x, t ) for a given initial state x0 at time
t0 will depend on the particular choice of the parameter α. The
appropriate choice of α must therefore be determined by other
than purely mathematical criteria. In this case the choice of α

is determined by the requirement that the probability distri-
bution of the sample trajectories must be consistent with the
Fokker-Planck equation (FPE) and the fact that the modulus
r2(t ) = ∑

i x2
i (t ) = 1. It is well established that, in general,

it is the Stratonovich interpretation that leads naturally to
sample trajectories that are consistent with the FPE as the
rules of the Stratonovich calculus are similar to those of the
regular calculus [40,41].

However, the distinction between the Ito and the
Stratonovich SDEs, and indeed for any arbitrary value of α,
is complicated by the physical constraint r2(t ) = 1, and has
been and continues to be the source of much debate. Much
of the early discussion revolved around the paper by Berkov
and Gorn [42], who pointed out that the additional drift term
�i defined by Eq. (A13) is a radial vector, and argued that
any numerical integration scheme that preserves the modulus
of the magnetic moment will therefore be independent of the
choice of α as this additional drift term will be zero. Berkov
and Gorn’s argument was embraced with some enthusiasm by
many, though not all, of those working in the field. Despite
this lack of consensus, Berkov and Gorn’s result nevertheless
drew attention to the subtle nature of the relationship between
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the constraint that the sample trajectories lie on the unit sphere
and the dependence of the results on the choice of α.

A somewhat different perspective on the constraint∑
i x2

i = 1 and the radial nature of the additional drift term
is presented in by Martinez et al. [43]. Calculating dr2(x) to
order dt using Eqs. (A11) and (A12) for f (x) = ∑

i x2
i and

using the results that
∑

i xiAi(x) = ∑
i xiBi(x) = 0 and

1

2

∑
i jk

BikBk j
∂2 f

∂xi∂x j

∣∣∣∣∣∣
f =r2

= 2Dγ 2r2(1 + r2), (A14)

we obtain from Eq. (A11)

dr2(t ) =2Dγ 2(1 + r2)(r2 − 2α)dt, (A15)

which for r2 = 1 yields dr2 = 2Dγ 2(1 − 2α)dt . We thus
obtain the result that dr2 = 0 if and only if α = 1/2. The same
result may be obtained directly from Eq. (A12).

This result implies that if the drift term is modified to
include the �i term then setting α = 1/2 one obtains an SDE
that yields sample trajectories that are consistent with the
FPE and that satisfy the constraint

∑
x2

i = 1. While this re-
sult illustrates further the relationship between the geometric
constraint

∑
i x2

i = 1 and the role of the parameter α, how
this relationship carries over to numerical integration methods
involving finite values of �t is unclear as the definition of
� f = ∫ t+�t

t f (t ) = f (n)(Wn+1 + Wn) with fn = α f (tn+1) −
(1 − α) f (tn) does not serve as a practical scheme for numer-
ical integration regardless of the choice of α. Indeed, in the
case of numerical integration, the challenge is to construct or
adapt a numerical technique that can be used to efficiently and
accurately integrate the sLLG that yields sample trajectories
that lie on the surface of the unit sphere and that are consistent
with the FPE. If this can be achieved then the Ito/Stratonovich
question is of secondary importance.

Two recent reviews [44,45] compare several numerical
integration schemes in Cartesian coordinates. These include
both implicit (e.g., midpoint) and explicit (Heun, higher-order
adaptive and nonadaptive time step Runge-Kutta) normaliza-
tion of the modulus of the magnetic moment. As with all
numerical techniques, each of the integration schemes stud-
ied offers advantages and disadvantages; however a detailed
comparison between the various methods shows that there
is nevertheless good overall agreement between them. This
somewhat heuristic demonstration of the validity of each
of these techniques suggests that Berov and Gorn’s original
conjecture is indeed of relevance to the Ito/Stratonovich in-
terpretations in determining the suitability of norm-preserving
numerical integration schemes of the sLLG.

In the present work, the sLLG equation was integrated
using the fourth-order Runge-Kutta algorithm for each of
the individual atomic spins in the modulus of the magnetic
moment that is normalized at each step of the integration
process. This approach and several variants of it have been
extensively tested and have shown good agreement with both
equilibrium and quasiequilibrium results obtained from ana-
lytical and simulation studies for a wide range of systems. The
results presented in the present work provide detailed com-
parisons between results obtained from numerical integration
of the sLLG equation, Monte Carlo methods, and analytical

results. These comparisons not only provide confidence in the
methods used but also insights into the underlying processes
that govern the behavior of these interesting systems.

APPENDIX B: ORDER FROM DISORDER

Consider the Hamiltonian describing dipole-dipole interac-
tions between Heisenberg classical spins located at the sites of
a two-dimensional triangular lattice:

H = g

2

∑
i=1

∑
j=1

3∑
α=1

3∑
β=1

Dαβ
i j Sα

i Sβ
j , (B1)

where g is the dipole interaction strength and

Dαβ
i j = δαβ

|�ri − �r j |3 − 3(�ri − �r j )α · (�ri − �r j )β

|�ri − �r j |5
is a traceless symmetric tensor. The �ri are the lattice positions
for each site i in units of the nearest-neighbor spacing a and
Sα

i are the Cartesian components of the unit spin at each site.
The basis vectors of the lattice are �a1 = (1, 0, 0) and

�a2 = (1/2,
√

3/2, 0) in units of a and the positions of the
lattice sites are given by �r = n1�a1 + n2�a2 where n1 and n2 are
integers. We divide the lattice up into cells of size L × L where
both n1 and n2 are restricted to the range 1 . . . L. The infinite
system is generated using periodic boundary conditions and
the Hamiltonian can be rewritten as

H = g

2

N∑
i=1

N∑
j=1

3∑
α=1

3∑
β=1

�
αβ
i j Sα

i Sβ
j , (B2)

where the sums over i and j are restricted to the cell. The
interaction tensor �

αβ
i j is calculated using the Ewald method.

Since the triangular lattice only has x and y coordinates, �xz
i j =

�
yz
i j = 0. However, �zz

i j = −�xx
i j − �

yy
i j since it is a traceless

tensor.
Consider a ferromagnetic ground state with the spins in the

plane of the lattice:

Sx
i = cos(φ0), Sy

i = sin(φ0), Sz
i = 0 ∀i, (B3)

where φ0 is the direction of the spins in the plane with respect
to the x axis.

Hence the expectation value of H in the ground state is

〈H〉 = g

2

∑
i

∑
j

[
�xx

i j cos(φ0)2 + �
yy
i j sin(φ0)2 + �

xy
i j sin(2φ0)

]

(B4)

= gN

2
[�̃xx(�k = 0) cos(φ0)2 + �̃yy(�k = 0) sin(φ0)2

+ �̃xy(�k = 0) sin(2φ0)], (B5)

where

�̃αβ (�k) =
N∑

j=1

�
αβ
i j ei�k·(�ri−�r j ) (B6)

is the Fourier transform of the interaction tensor.
At �k = 0,

�̃αβ (�k) = δαβ2ε0 (B7)
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for α, β = x, y, with

�̃zz(�k) = −�̃xx(�k) − �̃yy(�k)

and

ε0 = −2.758.

Hence 〈H〉 = Ngε0 = −Ng2.758 is independent of φ0.
Now consider expanding H in terms of harmonic devia-

tions from the ground state δi = (φi − φ0), γi = (θi − π/2):

H = Ngε0 + g

2

∑
i, j

[δiAi jδ j + γiBi jγ j

+ γiCi jδ j + δiC
′
i jγ j], (B8)

where

Aii = − cos(φ0)2�̃xx(0) − sin(φ0)2�̃yy(0) − sin(2φ0)�̃xy(0),

Ai j = sin(φ0)2�xx
i j + cos(φ0)2�

yy
i j − sin(2φ0)�xy

i j ,

Bii = Aii,

Bi j = �zz
i j ,

Ci j = 0,

C′
i j = 0. (B9)

Thus

H = Ngε0 + g

2

∑
�k

[A(�k)δ�kδ−�k + B(�k)γ�kγ−�k], (B10)

where

A(�k) = − 2ε0 + sin(φ0)2�̃xx(�k) + cos(φ0)2�̃yy(�k)

− sin(2φ0)�̃xy(�k),

B(�k) = − 2ε0 + �̃zz(�k). (B11)

TABLE II. The values of a and b for various array sizes.

L a b

8 0.7463 0.0172
16 0.7435 0.0121
32 0.7417 0.0103
64 0.7409 0.0097
128 0.7407 0.0095

The partition function is

Z =
∏

�k

∫ ∞

−∞
δ�k

∫ ∞

−∞
γ�ke−Nε0g/T − g

2T A(�k)δ�kδ−�k− g
2T B(�k)γ�kγ−�k

= e−Nε0g/T
∏

�k

[
2πT

gA(�k)

]1/2[ 2πT

gB(�k)

]1/2

. (B12)

The free energy is given by

F = −T ln Z = Nε0g + (T/2)
∑

�k
ln A(�k) (B13)

plus terms independent of φ0. We only need terms dependent
on φ0 to study order from disorder.

Hence

dF/(gN ) = (T/g)
1

2L2

∑
�k

ln A(�k) (B14)

or simply

df /τ = 1

2L2

∑
�k

ln A(�k), (B15)

where τ = T/g is the reduced temperature and df is the
change in free energy per site in units of g.

A numerical calculation for different L yields the form

df /τ = a + b cos(6φ0) (B16)

with the values of a and b listed in Table II. The minima lie at
30◦, 90◦, 150◦, 210◦, 270◦, 330◦ and the barrier height is 2b.
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