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Cavity-mediated dissipative coupling of distant magnetic moments: Theory and experiment
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We investigate long-range coherent and dissipative coupling between two spatially separated magnets while
both are coupled to a microwave cavity in the strong coupling limit. A careful examination of the system
shows that the indirect interaction between two magnon modes is dependent on their individual mechanisms
of direct coupling to the cavity. If both magnon modes share the same form of coupling to the cavity (either
coherent or dissipative), then the indirect coupling between them will produce level repulsion. Conversely, if
the magnon modes have different forms of coupling to the cavity (one coherent and one dissipative), then their
indirect coupling will produce level attraction. We further demonstrate the cavity-mediated nature of the indirect
interaction through investigating the dependence of the indirect coupling strength on the frequency detuning
between the magnon and cavity modes. Our work theoretically and experimentally explores indirect cavity
mediated interactions in systems exhibiting both coherent and dissipative coupling, which opens an avenue for
controlling and utilizing light-matter interactions.
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I. INTRODUCTION

Light matter interactions in a hybrid system are of great
interest in modern physics as a building block for coherent
information processing [1–4]. Ideally, two distant quantum
systems can transfer information through their mutual cou-
pling to a resonant photon system, which is highly desirable
for any architecture of quantum information processing [5–8].
As a newly discovered form of light-matter interaction, the
strong coupling between microwave photons and magnons
has been attracting increasing attention in recent years, since
the interaction between electrodynamics and magnetization
dynamics spawns the cavity magnon polariton (CMP) [9–17].
The CMP dispersion manifests as an elegant level repulsion,
in which lies the profound physics of Rabi splitting [18].
The high spin density and low room temperature damping
rate of ferromagnetic insulators allows the coherent photon-
spin interactions to enter the ultrastrong coupling regime
[11,13,19]. Consequently, the magnon photon coupling pro-
vides a perfect platform for studying and illustrating coupling
related physics, in addition to being a promising candidate for
coherent information processing [8,20].

Interestingly, when a cavity mode couples to two macro-
scopic magnetic moments simultaneously, the quantized mag-
netic field of the photons links the dynamics of distant
magnons, thus inducing nonlocal interaction between the
magnon modes [21–24]. In turn, the coherent transport of
magnons may survive over macroscopic distances. Recently,
long range dispersive coupling between two macrospin sys-
tems has been demonstrated experimentally by a model
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system with two ferrimagnets within a cavity [21–23]. Com-
bined with state of the art spintronics technology, nonlocal
spin current manipulation over several centimeters has also
been achieved [24]. In fact, photon mediated magnon coupling
is so ubiquitous that it may even arise between ferromagnets
and antiferromagnets [25]. In this sense, cavity mediated
coupling can combine ferromagnetic and antiferromagnetic
spintronics within the frame of cavity spintronics. On the stor-
age end, gradient memory architectures have been developed
making use of the phase correlation and scalability of CMP
systems [26].

Aside from coherent coupling, a form of dissipative cou-
pling was revealed recently in CMP systems [27–32]. In
contrast to the level repulsion rising from coherent coupling
between resonant modes, dissipative coupling shows an exotic
level attraction. These two coupling mechanisms give us an
unprecedented degree of freedom to control photon mediated
interaction.

In this work, we revisit cavity mediated long range in-
teraction between two magnets from the perspective of con-
trolling coupling mechanisms. By placing two yttrium iron
garnet (YIG) spheres at different positions in a cavity, which
correspond to coherent coupling or dissipative coupling, we
experimentally show that the indirect coupling between the
two magnon systems in the strong coupling limit act as a
XOR-like logic gate in the coupling phenomenon. Specif-
ically, when both magnon modes share the same form of
coupling to the cavity (either coherent or dissipative), then the
indirect coupling between them will produce level repulsion.
Conversely, if the magnon modes have different forms of
coupling to the cavity (one coherent and one dissipative), then
their indirect coupling will produce level attraction. Treating
dissipative coupling on an equal footing with coherent cou-
pling, we are now able to establish the correlation between
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local magnon-photon coupling and nonlocal magnon-magnon
coupling. Our work reveals the cavity mediated dissipative
coupling between distant magnetic moments, which opens an
avenue for controlling and utilizing light-matter interaction.

This paper is split into two main sections, which discuss the
theoretical model and experimental results. In the theoretical
model part, we first provide a brief comparison between co-
herent and dissipative magnon-photon coupling, particularly,
the evolution of the eigenvector in the coupled system, which
allows us to clearly distinguish the cases of level repulsion and
attraction. Then we present the formula describing long-range
coherent and dissipative indirect magnon-magnon interactions
through their mutual coupling to a cavity photon mode.
Finally, we present the implementation of our experimental
setup and quantitatively compare the experimental observa-
tions with the theoretical model.

II. THEORETICAL MODEL

For a quantitative understanding of the long-range
magnon-magnon interaction, we first study a general theoret-
ical model involving coherent and dissipative coupling in a
two-mode system. From this we clearly see the distinguishing
features of level repulsion and level attraction in the disper-
sion, as well as the eigenvector of the coupled system. Then
we consider the long-range indirect interaction between two
magnon modes, which are coupled to a common microwave
cavity. We rewrite the eigenfrequencies and eigenvectors of
the system in a more explicit form using the dispersive
approximation, where the frequency detuning between the
magnon mode and the cavity mode is assumed to be large
compare to the coupling strength [33].

A. Eigenfrequency and eigenvector in a strongly coupled
magnon-photon system

We start with a general theoretical model of a two-mode
system involving both coherent and dissipative coupling,
which can be described by an equivalent non-Hermitian
Hamiltonian [27] as

H = h̄ωca†a + h̄ωmm†m + h̄g(a†m + ei�am†), (1)

where ωc (ωm) is the frequency of the cavity (magnon) mode,
a† (a) and m† (m) are the creation (annihilation) operators for
the cavity and magnon mode, respectively. The coupling rate g
is chosen to be a real positive number. The coupling phase �

describes the competing coherent and dissipative couplings:
� = 0 for level repulsion and � = π for level attraction [27].

In the Heisenberg picture, this leads to the equation of
motion

d

dt

(
a

m

)
= i

(
ωc g

ei�g ωm

)(
a

m

)
. (2)

Following the e−iωt convention, The hybridized eigenmodes
of the system are found by diagonalizing the matrix in Eq. (2)
and have eigenfrequencies

ω± = 1
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√
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FIG. 1. (a),(b) The hybridized mode frequencies, Re(ω±) − ωc,
are plotted as a function of the field detuning �H = ωm − ωc, for
level repulsion and attraction calculated using Eq. (3) at � = 0 and
� = π , respectively. The red and blue dashed lines represent the
uncoupled magnon mode ωm and cavity mode ωc. The phase cor-
relation, φm − φc, of magnetization and electrodynamics calculated
by Eq. (4) are plotted as a function of �H in (c) and (d), where inset
figures show the phase difference between the magnon component
m (red) and photon component a (blue). For simplicity, the phase
of a is set to be zero. Dotted lines in (b) and (d) indicated the
condition of �H = ±2g, where the two hybridized mode coalesce
at the exceptional point. All curves are colored by the contribution
from a (blue) and m (red).

and eigenvectors

(
a
m

)
=

⎛
⎝ g

�H/2 ±
√

�2
H/4 + ei�g2

⎞
⎠.

with �H = ωm − ωc. (4)

In the frequency domain, two coupled modes (indicated
by colored lines) repel each other for � = 0 and attract
each other for � = π as clearly shown in Figs. 1(a) and
1(b), respectively. As a result, for level attraction, the two
hybridized modes coalesce and have an identical eigenvector
at a condition of �H = ωm − ωc = ±2g, resembling an ex-
ceptional point [34,35] through linear dynamics in the absence
of damping.

The phase correlation, φm − φc, of magnetization (m)
and electrodynamics (a) calculated by Eq. (4) is shown in
Figs. 1(c) and 1(d) for level repulsion and attraction, re-
spectively. In the level repulsion case, the phase correlation
between m and a is quite simple: φm − φc = 0 (correspond-
ing to in-phase a−m motion) for ω+, and φm − φc = −π

(corresponding to out-of-phase a− m motion) for ω−. For
level attraction, it can be found that the phase correlation is
completely different: For both ω±, φm − φc = 0 when �H <

−2g and φm − φc = π when �H > 2g; in between those �H

values the m phase for ω+ rotates anticlockwise from 0 to π
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with respect to a while for ω− the m phase rotates clockwise
from 0 to −π . Although the two hybridized magnon-photon
modes follow an identical dispersion over a wide range
for |�H | < 2g, Re(ω±) = (ωc + ωm)/2 and furthermore both
consist of half magnon and half photon, the two states are
independent because their correlation phases have opposite
signs.

B. Two distanced magnons coupled with a common
cavity mode

Based on the key features of level repulsion and attrac-
tion shown in Sec. II A, now we study a three-mode cou-
pled magnon-photon system, where two spatially separated
magnon modes, m1 and m2, couple with a cavity mode (a).
The schematic diagram of this three-mode coupled system is
illustrated in Fig. 2(a). The microwave current drives or im-
pedes the dynamics of magnetization through the competition
of Ampere’s law and the cavity Lenz effect (indicated by blue
arrow) [27]. Meanwhile, due to the effects of Faraday’s law,
the magnetization precession also creates a back action effect
onto the cavity field (indicated by red and green arrows). Thus
the two magnon modes are coupled to the cavity mode with a
coupling strength of g1,2. By exchanging virtual photons, the
two magnon modes are strongly coupled with an exchange
coupling rate of J (gray dashed arrow).

The equivalent non-Hermitian Hamiltonian of this three-
mode system can be written as

H = h̄ωca†a + h̄ωm1m†
1m1 + h̄g1(a†m1 + ei�1 am†

1 )

+ h̄ωm2m†
2m2 + h̄g2(a†m2 + ei�2 am†

2), (5)

where ωm1,m2, g1,2 and �1,2 are the frequency, coupling
strength to the cavity mode and coupling phase for the
magnon mode m1,2, respectively. Assuming sufficient spatial
separation between the two magnetic samples, we neglect
direct interactions between m1 and m2 [23]. The hybridized
eigenmodes of the system can be solved from the equation of
motion

d

dt

⎛
⎜⎝

a

m1

m2

⎞
⎟⎠ = i

⎛
⎜⎝

ωc g1 g2

ei�1 g1 ωm1 0

ei�2 g2 0 ωm2

⎞
⎟⎠

⎛
⎜⎝

a

m1

m2

⎞
⎟⎠. (6)

For this three-mode coupled system with two identical YIG
spheres placed within a cavity, a global magnetic field H is ap-
plied to tune the frequency of the magnon modes according to
ωm1,m2(H ) = γ (H + HA1,A2), where γ = 2π × 27.6 GHz/T
is gyromagnetic ratio, and HA1,A2 is the anisotropy field for
each individual YIG sample. In the meantime, the field at
each sphere can be locally adjusted by ±δH/2 via a small
coil. This form of multimode coupling has been previously
discussed in a variety of systems [36–40]. In the following
discussion, we operate the system in the dispersive limit,
where both magnons are significantly detuned from the cavity
(|�1,2|=|ωm1,m2 − ωc| � g1,2).

Figures 2(b)–2(e) show the calculated dispersions of the
hybridized modes for four cases based on the coupling state
of (�1,�2), describing either coherent or dissipative coupling
between the individual magnon modes and the cavity mode.

(a)

(b) (c)

(d) (e)

FIG. 2. (a) (Color online) Cavity mediated coupling between two
magnon modes. Combining the effect of Faraday’s law (indicated
by red and green arrows), the competition of Ampere’s law and
the cavity Lenz effect (indicated by blue arrow) produces coherent
or dissipative coupling between the individual magnon mode and
the cavity mode with a coupling strength of g1,2. By exchange of
virtual photons, the two magnon modes are strongly coupled with
an exchange coupling rate of J (gray dashed arrow). (b)–(e) The
hybridized mode frequency �ω = ω − ωc (solid gray lines) is plotted
as a function of the local magnetic field δH , which is used to control
the frequency difference between ωm1 and ωm2. The red and green
dashed lines represent uncoupled magnon modes while the blue
dashed line represents cavity mode. The coupling effects of the
system produce level repulsion and level attraction of two magnon
modes indicated by dotted box. During the calculation, we set
g1/2π = g2/2π = 20 MHz and the magnetocrystalline anisotropy
field HA1,A2 = 0.

Focusing on the region highlighted by a dotted box, where the
two magnon modes (red and green dashed lines) cross each
other, level repulsion is observed for (0, 0) and (π , π ) states,
while level attraction is observed for (0, π ) and (π , 0) states.
In order to give a more detailed explanation for this striking
feature, we analytically solved Eq. (6) in the dispersive limit
and rewrite the frequencies of hybridized modes in an explicit
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FIG. 3. (a),(b) The hybridized dispersions of indirect long-range
interacted magnon modes for level repulsion and attraction calcu-
lated based on Eq. (6), respectively, which are colored by the mag-
nitude of |a|. The parameters are g1/2π = g2/2π = g/2π=20 MHz
and �/2π=78 MHz. The dashed lines indicate the uncoupled dis-
persion of the magnon modes. (c), (d) The calculated |a| is based
on Eq. (9) for level repulsion and level attraction, respectively,
normalized by a factor g/

√
|m1|2 + |m2|2 for clarity. Arrows indicate

the dark state.

form, which is similar to Eq. (3) for directly coupled a− m
system, as

ωm± = 1
2 [ω′

m1 + ω′
m2 ±

√
(ω′

m1 − ω′
m2)2 + 4ei(�1+�2 )J2],

(7)

where ω′
m1,m2 = ωm1,m2 + ei�1,2 g2

1,2/�1,2 includes a finite
Lamb shift [5,41,42] of the energy level, which can be ei-
ther blue- or red-shift dependent on not only the sign of
detuning �1,2 but also the nature of the coupling between
the magnon and cavity. J = 1

2 g1g2| 1
�1

+ 1
�2

| is the effective
coupling strength between m1 and m2.

Equation (7) indicates that the indirect coupling features of
the long-range magnon-magnon interaction are solely deter-
mined by the phase between them (�1 + �2): level repulsion
for cos(�1 + �2) = 1 and level attraction of cos(�1 + �2) =
−1. These relations well explain the coupling signature high-
lighted in Figs. 2(b)–2(e).

Figures 3(a) and 3(b) show a zoomed-in view of the boxed
areas in Figs. 2(b) and 2(d). A careful examination shows
that the hybridization modes always cross ωm1 at the point
where ωm1 = ωm2, which is different from the observations in
directly coupled system [Figs. 1(a) and 1(b)]. Mathematically,
this point results from the Lamb shift, which causes a shift in
the frequency detuning �ω with a magnitude of J for level
repulsion and a shift in field detuning �H with a magnitude
of 2J for level attraction. Physically, this point is related to
“dark” states of coupled systems [5,26] where the hybridiza-

tion of two magnon modes precess out of phase with an
identical amplitude, and as a consequence, their interactions
are decoupled from the cavity mode.

We can understand this effect by deducing the eigenvector
of the m1−m2 subsystem(

m1

m2

)
=

(
ei�1 J

δ/2 ±
√

δ2/4 + ei(�1+�2 )J2

)
,

with δ = ω′
m1 − ω′

m2. (8)

Following the similarity between Eqs. (8) and (4), the phase
correlation φm2 − φm1 can be determined exactly the same
way as φm − φa for the directly coupled a−m system shown
in Figs. 1(c) and 1(d). Using the approximation of �1 � �2 �
� in the dispersive limit, the photon part of the eigenstate can
be deduced as

a = g1m1 + g2m2

�
. (9)

Combining Eqs. (8) and (9), we can determine that the dark
state (a = 0) appears at

δ = ei�1 g2
1 − ei�2 g2

2

�
. (10)

As an example, the calculated |a| (normalized by a factor
g/

√
|m1|2 + |m2|2 for clarity) is plotted in Figs. 3(c) and 3(d)

for g1=g2 and � > 0, where the dark state clearly appears at
δ = 0 on the ωm− branch for �1 = �2 = 0 (level repulsion),
and at δ = 2J on the right exceptional point for �1 = 0 and
�2 = π (level attraction). Since φm2 − φm1 for ωm+ and ωm−
only differ in sign for the level attraction case [similar to φm −
φa in Fig. 1(d)], it does not affect the amplitude of g1m1 +
g2m2 and hence |a|. As a result, |a| is identical for both ωm+
and ωm− branches as shown in Fig. 3(d).

In previous studies [43], the dark state always occurs at the
hybridized mode closer to the cavity mode in frequency. Here,
we find that the dark state of long-range coherent coupling
may also reside in the outer branch of the hybridized modes
if both magnon modes are dissipatively coupled to the cavity
mode (�1 = �2 = π ). Our model indicates that the dark state
can be adjusted by phases �1 and �2 in addition to the sign
of � [23].

If g1 �= g2, the dark state appears away from these sym-
metric points on the hybridized magnon-magnon dispersion.
However, by substituting the lamb shift into Eq. (9) one
can find a general relation for the dark state where ωm1 =
ωm2, regardless of the detailed coupling feature between the
individual magnons and the microwave cavity. Here, the dark
state is induced by the hybridization of the two magnon
modes when they precess out of phase, ( m1

m2
) = ( −ei�1 J

ei�1 g2
1/�

),
and their coupling effects on the cavity mode cancel each
other, resulting in a vanishing total response of the magnon
dynamics to the cavity mode.

Until this point, we have discussed the cavity mediated
interaction between two magnon modes regardless of their
intrinsic dissipation. To give a quantitative illustration of the
effects of intrinsic loss, we integrate the damping parameters
of the magnon modes (α = 1 MHz) and cavity mode (β =
10 MHz) into Eq. (6) by substituting ωmi − iαi, ωc − iβ for
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FIG. 4. (a),(b) Hybridized dispersions of indirect long-range in-
teracted magnon modes in the presence of intrinsic damping dis-
playing level repulsion and attraction. The damping parameters are
α1 = α2 = 1 MHz and β = 10 MHz for the magnon modes and the
cavity mode, respectively. The dashed lines indicate the dispersions
shown in Fig. 3 with no damping considered.

ωmi, ωc, and recalculated the dispersions of the hybridized
modes. During the calculation, the same parameters as used
for calculations in Figs. 2(b)–2(e) are applied. ωm+(−) with
(black circles) and without (green dashed lines) intrinsic
damping are compared in Figs. 4(a) and 4(b), corresponding to
(0, 0) and (0, π ) states. For (0, 0) states, no obvious difference
is observed between the dispersions with or without damping.
While in the (0, π ) states, the coalescence of level attraction is
deferred on the left side. Note that the deferred side reverses
in the (π , 0) state.

We have assumed the dispersive limit conditions are always
met for the system, where �1,2 is dominated by its real
part. In fact, level attractionlike dispersions may also rise
from indirect coherent coupling when the cavity becomes
highly dissipative as suggested by Yu et al. [44]. In that
case, �1,2 is overwhelmed by its imaginary part iβ. Setting
ωc = (ωm1 + ωm2)/2 and β = 100 MHz, we calculate the
real part and imaginary part of the eigenvalues. As plotted
in Figs. 5(a) and 5(b), the dispersions of the two interested
modes (black dots) show an attractionlike behavior while
the linewidths show a characteristic damping repulsion when
varying δ. The effective coupling strength can be described as
J = 1

2 g1g2| 1
�1

+ 1
�2

| ∼ g1g2

β
as discussed in Refs. [44,45].
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FIG. 5. (a),(b) Real and imaginary part of the eigenfrequencies
obtained from Eq. (6) using β = 100 MHz. The attracted modes
are displayed using black dots and the dashed lines indicate the
uncoupled dispersion of the magnon modes and the cavity mode.

FIG. 6. (a) Experimental setup, with a VNA measuring the mi-
crowave transmission through a waveguide loaded with two YIG
spheres. The simulated h field amplitude for the cavity mode at the
middle plane. YIG1 (white) is fixed at either a node or antinode of the
h− field, while we rotate YIG2 (black) anticlockwise covering areas
of coherent and dissipative coupling. The static bias field H is applied
along θ � 112◦. (b) The net coupling strength g2 as a function
of YIG2 position θ . The red and blue areas represent different
regimes of coherent coupling and dissipative coupling, respectively.
Experimental transmission spectra as a function of position angle
of YIG2 when YIG1 is located at the h− (c) node or (d) antinode.
The yellow dotted line stands for 70.5◦ where the coupling regime
switches. The dashed lines indicate the uncoupled modes of ωm1 and
ωc as a guide to the eye. The insets show the approximate positions
Ai and Bi of the YIG spheres when they strongly interact.

III. EXPERIMENT RESULTS AND DISCUSSION

The experimental setup of our measurement system is
schematically shown in Fig. 6(a). The microwave cavity used
in this work is a Fabry-Perot-like cavity based on the Ku band
(12–18 GHz) assembled waveguide apparatus, where circular
waveguides are connected through circular-rectangular transi-
tions to coaxial-rectangular adapters, and the two transitions
are rotated by an angle of 45◦ [16]. The inner diameter of
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the circular waveguide is 16.1 mm. The indirect magnon-
magnon coupling is studied by placing two identical 1-mm
diameter single crystal YIG spheres in the midplane of this
quasi-one-dimensional cavity. Both YIG spheres are placed
approximately 2 mm from the inner edge of the waveguide.

For our cavity resonance we use the TE11 mode (where
the overall electric field is maximum at the midplane of our
cavity) at ωc/2π = 12.76 GHz [16]. The intrinsic damping
parameters are α = 7.60 × 10−5 and β = 8.49 × 10−3 for the
magnon and cavity modes, respectively. During the measure-
ment, a constant static magnetic field, H , is applied along
θ = 112◦ (θ is defined as 0◦ or 180◦ for h− antinodes). Two
samples labeled as YIG1 and YIG2 are carefully mounted
on the fixed and rotatable part of a waveguide insert. The
special design enables us to rotate YIG2 around the cavity
axis within a angular precision of 0.5◦. The profile of the
microwave magnetic (h−) field the midplane was simulated
using Computer Simulation Technology Microwave studio,
which is shown in Fig. 6(a). When changing the position
of YIG2 by rotating the waveguide insert, g2ei�2 evolves
dramatically from coherent coupling to dissipative coupling
with θ [27]. Meanwhile, the direction of the magnetocrys-
talline anisotropy field of YIG2 also rotates relative to the
external field, producing an oscillating local field of H + HA2,
and a sinusoidal dispersion of ωm2 [46,47]. By fixing one
YIG sphere and rotating the other, we are able to precisely
manipulate the frequency detuning ωm1 − ωm2 as well as the
coupling regime. Using a vector network analyzer (VNA) we
measure the microwave transmission S21 of this three-mode
system.

We first calibrate the coupling effects between the cavity
mode and a single YIG sphere. YIG1 is fixed at a position
with an angle either θ = 180◦ (h− antinode) or θ = −90◦
(h− node). The S-parameter measurement for this single
YIG allows us to determine g1/2π=55 MHz and �1 = 0 for
θ = 180◦ and g1/2π=19 MHz and �1 = π for θ = −90◦.
Separately, YIG2 is rotated over an angle range of −22◦ �
θ � 112◦ covering two distinct coupling regimes of coherent
coupling and dissipative coupling. The deduced coupling
strength, g2, as a function of the angular position θ for YIG2
are summarized in Fig. 6(b), from which we found that the
critical angle where the coupling regime switches is 70.5◦.

By placing YIG1 at θ = 180◦ corresponding to the co-
herent coupling region of g1 and rotating YIG2 within the
cavity, we measure the long-range coupling between magnon
modes mediated by the cavity photon. Figure 6(c) shows the
results for a fixed static magnetic field μ0H = 488 mT, where
ωc/2π = 12.76 GHz and ωm1/2π = 12.85 GHz indicated by
dashed lines are the uncoupled cavity mode and YIG1 magnon
mode frequencies. By rotating YIG2, the interaction between
the two magnon modes is clearly seen in Fig. 6(c) when
ωm2 approaches ωm1, indicated by arrows label as A1−3. At
conditions A1 and A2, where both ωm1 and ωm2 are coherently
coupled with ωc [(0, 0) state], the long-range interaction
between the two magnon modes shows a characteristic feature
of the avoided level crossing. As we rotate YIG2 clockwise
across 70.5◦, the two spheres enter different coupling regions.
When their frequencies again meet at the condition A3 [(0, π )
state], level attraction between the indirectly coupled magnon
modes is experimentally demonstrated.

FIG. 7. Zoomed-in view of transmission spectra at conditions A1,
B1, and B3 in Figs. 6(c) and 6(d), corresponding to three coupling
states of (�1, �2), i.e., (0, 0), (π , 0), and (π , π ). The black dashed
lines indicate calculated dispersion by solving the determinant of
Eq. (6) using the measured coupling strength g1/2π = 55 MHz and
g2/2π = 52 MHz for A1, g1/2π = 19 MHz and g2/2π = 52 MHz
for B1, and g1/2π = 19 MHz and g2/2π = 20 MHz for B3.

Next we place YIG1 at θ = −90◦ corresponding to the
dissipative coupling region of g1 and repeat the above mea-
surement. The results are summarized in Fig. 6(d). Despite
the same rotation trajectory of YIG2, the behavior of the
long-range interaction between the magnon modes shows a
different pattern. At conditions B1 and B2 [(π , 0) state], where
the two YIG spheres have different coupling mechanisms to
the cavity mode, a characteristic feature of level attraction
occurs. Meanwhile, level repulsion is observed when both
YIG spheres are dissipatively coupled with the cavity at B3

[(π , π ) state].
This experiment unambiguously validates our model,

demonstrating long-range indirect coherent and dissipative
interactions between two spatially separated magnons in the
strong coupling limit. The characteristic features of the long-
range interaction are solely determined by the relative phase
between �1 and �2. Furthermore, the dark state is clearly
seen at the condition A1, where g1 � g2. At conditions A2, A3,
B1, and B2, the dark state predicated by Eq. (10) appears far
away from the strongly coupling regime due to the significant
difference between g2

1 and g2
2 and is thus not well resolved in

current experiment.
To quantitatively explain the experimental observation of

long-range interactions between two magnon modes, we cal-
culated the dispersion by solving the determinant of Eq. (6).
We focus on the three conditions A1, B1, and B3, which cor-
respond to three typical cases of long-range magnon-magnon
interaction: (a) both magnon modes coherently coupled with
the cavity, (b) one magnon mode coherently and the other
dissipatively coupled with the cavity, and (c) both magnon
modes dissipatively coupled with the cavity. For the calcu-
lation, g1 and g2 are determined by experimental measure-
ments. For simplicity, we assume ωm2 follows a relation as
ωm2 − ωm1 ∝ sin(θ − θ0) + C within a 20◦ range where θ0

and C are constants. As shown in Fig. 7, the comparison
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FIG. 8. (a) For long-range coherent coupling, transmission spec-
tra at various external field demonstrate the decay of the coupling
strength J when increasing �. (b) J as a function of � at A1 when
both magnon modes are coherently coupled with the cavity mode.
Black squares are determined by measured data in (a), while the red
line represents the calculation result based on Eq. (6) and the blue
dashed line follows the g1g2/� dependence in the dispersive limit.

between simulation and experiment illustrates a quantitative
agreement.

Thanks to the high sensitivity of our experimental imple-
mentation, we can study the dependence of the indirect cou-
pling strength J on detuning � by varying the static magnetic
field H . As clearly seen in Fig. 8(a), the amplitude of the
hybridized magnon modes decreases with increasing �, and
furthermore the gap between the hybridized magnon modes
shrinks. Although the amplitude of the hybridized magnon
modes gradually decrease, the dark state is well resolved.

For the case of indirect coherent coupling, the coupling
strength J can be directly determined from the polariton gap
(=2J) of the dispersion as indicated in Fig. 3(a). The mea-
sured amplitude of J is plotted as black squares in Fig. 8(b).
To compare with our model, we first calculate the dispersion
[dashed lines in Fig. 8(a)] using Eq. (6), which is in agreement
with experimental results. During the calculation one set of
parameters (g1/2π = 55 MHz, g2/2π = 52 MHz, and �1 =
�2 = 0) was used. The J deduced from our calculations
(solid line) is in agreement with experimental results. In the
dispersive limit, the predicted value (dashed line) follows
J = g1g2/�. Comparing this to the experimental results, it is

FIG. 9. (a) For long-range dissipative coupling, transmission
spectra at various external field demonstrate the decay of the cou-
pling strength J with increased �. (b) J as a function of � at B1 with
one magnon coherently and one dissipatively coupled with the cavity
mode. Black squares are determined by measured data in (a), while
the red line represents the calculation results based on Eq. (6) and the
blue dashed line follows g1g2/� dependence in the dispersive limit.

overestimated in the strong coupling range. In the strongest
coupled case at ωm1 = ωm2 = ωc, the gap between the two
hybridized magnon modes is 2

√
g2

1 + g2
2 rather than the in-

finite value at � = 0, which is predicted for the dispersive
limit.

A similar dependence is also revealed for long-range
indirect dissipative coupling in Fig. 9. Here the coupling
strength J is directly determined from the range (= 4J) of
the coalescent of hybridized magnon modes [as indicated
in Fig. 3(b)]. The calculated dispersion [dashed lines in
Fig. 9(a)] used g1/2π = 19 MHz, g2/2π = 20 MHz, �1 =
π , and �2 = 0 determined by independent experiments.
Again, when � becomes comparable to gi, all three modes are
highly hybridized, leading to the breakdown of the dispersive
approximation.

IV. CONCLUSIONS

We have presented a systematic study of the effect of
indirect coupling between two magnon modes mediated by
a cavity mode. A theoretical model based on a phenomeno-
logical approach was developed to describe the dispersions
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and phase information of the system in the dispersive limit.
The characteristic properties of XOR-like coupling relations
and magnon dark states are revealed both theoretically and
experimentally in the strong coupling limit. Putting magnets
on a similar basis to qubits and atoms in cavities, our work
provides a method for studying cavity mediated coupling
in the framework of cQED. Furthermore, in a general con-
text, our model system demonstrates the transition rule of
the coupling state where two subsystems interact with each
other through a mediating oscillator, which can act as a
building block to further understand long range light-matter
interactions.

Note added. Recently, we found a preprint theoretical work
on dissipative long-range magnon-magnon interactions in a
coupled magnon-photon system, Ref. [42], which presents an
alternative consistent theoretical picture for our experiment.
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