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NMR relaxation in the spin-1 Heisenberg chain
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We consider the isotropic S = 1 Heisenberg chain with a finite Haldane gap � and use state-of-the-art
numerical techniques to investigate its dynamical properties at finite temperature, focusing on the nuclear
spin-lattice relaxation rate 1/T1 measured in nuclear magnetic resonance (NMR) experiments, for instance. In
particular, we analyze the contributions from modes with momenta close to q ≈ 0 and q ≈ π as a function of
temperature. At high-temperature we observe spin diffusion, while at low-temperature we argue that a simple
activated behavior 1/T1 ∝ exp(−�/T ) can be observed only at temperatures much smaller than the gap �.
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I. INTRODUCTION

Quantum magnets have long served as a test bed for discov-
ering and understanding complex quantum many-body phe-
nomena. The rapid advances in synthesis and characterization
techniques accompanied by successful modeling and simula-
tion using a range of diverse theoretical tools have constantly
pushed the frontiers of strongly interacting systems. However,
while experiments have probed both static and dynamic prop-
erties, theoretical approaches have primarily focused on static
properties. This is due to the technical constraints of calculat-
ing dynamic properties. Yet understanding the nature of and
the underlying mechanism behind the low-lying excitations is
a key facet of complex many-body systems, and dynamical
response functions constitute a major source of information.
For example, analysis of inelastic neutron scattering data
provides the most reliable insight into the ordering of spins
in a quantum magnet. In this work, we calculate the dynamic
structure factor for the S = 1 Heisenberg antiferromagnetic
(AF) chain to elucidate the mechanism of spin relaxation
probed in nuclear magnetic resonance (NMR) experiments.
Specifically, we shall investigate the nature of the spin relax-
ation in a gapped S = 1 spin chain at finite temperatures.

The S = 1 Heisenberg AF chain in one dimension is a
paradigmatic example of a gapped system as conjectured by
Haldane [1,2] and verified numerically [3–7] and experimen-
tally [8,9]. Its Hamiltonian is simply given by

H = J
∑

i

Si · Si+1, (1.1)

where J is the antiferromagnetic nearest-neighbor exchange
and the numerical value of the spin gap is � � 0.41J [3–7].

Dynamical properties in spin systems can be probed using,
for instance, inelastic neutron scattering to measure the dy-
namical spin structure factor S(q, ω) (see definition below).

For very low temperature, this spectral function is dominated
by a single magnon branch, with a minimum at momentum π ,
where the peak width and position are weakly temperature de-
pendent [10–13]. At intermediate temperatures (relative to the
gap � since we will use kB = 1 to convert temperatures into
energy scales), the competition between quantum and thermal
fluctuations makes the problem quite difficult, and recent
numerical work has shown that intraband magnon scattering
can lead to additional features in the spectral function [14,15].

In NMR spectroscopy, the nuclear spin-lattice relaxation
rate 1/T1 gives access to the local and dynamical spin cor-
relation function (see definition below). Since the system is
in a Haldane phase with a finite spin gap �, it is rather
natural to expect a simple activated law 1/T1 ∝ exp(−�/T ) at
low temperature. Indeed, such activated behavior was recently
observed numerically in gapped S = 1/2 chains [16,17].
However, for the S = 1 AF chain, there are some predictions
based on the low-energy effective field theory, namely, the
nonlinear σ model. In the large-N approximation, the simple
activated law above was found [10]. In a refined similar calcu-
lation, Sagi and Affleck confirmed this result up to ln(T/ω0)
corrections, with ω0 � J being the NMR frequency (we fix
h̄ = 1 for convenience), and also extended the result to finite
magnetic field and other anisotropic cases [18].

Using a semiclassical approach to the O(3) nonlinear σ

model (although being integrable, finite-temperature correla-
tions are hard to compute), Sachdev and Damle improved the
previous result by taking into account spin diffusion which
occurs at long time [19]. Their result is

1

T1
∝ exp

(
−3

2
�/T

)
, (1.2)

with a factor of 3/2 in the activated law. Nevertheless, this
semiclassical prediction might not be correct in a full quantum
mechanical solution of the O(3) σ model.
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Thanks to progress that made in computing dynamical
properties for integrable models [20], Konik claimed to obtain
“exact low-temperature expansions of correlation functions”
for Haldane chains [21]. He was able to improve on previ-
ous results [18] by including higher-order terms, but he still
recovered purely ballistic transport and a simple activated
behavior. There are some subtleties in all approaches when
taking the long-time limit [22] or the zero-field limit [23],
and it could be that integrability or not of the model changes
results qualitatively [24,25].

From an experimental point of view, the situation is also
not so clear, as can be summarized from the following results,
all obtained for Haldane materials. Various teams have tried to
extract the activation energy measured in 1/T1 to compare it to
the spin gap �, i.e., measuring a γ factor defined as follows:

1

T1
∝ exp(−γ�/T ). (1.3)

Early experiments on the famous Ni(C2H8N2)2NO2ClO4

(NENP) compound have led to γ � 1 [26], but the applied
magnetic field has a strong effect on the spin gap value
[27,28]; later studies on Y2BaNiO5 [29] and AgVP2S6

[30,31] concluded instead that γ � 1.2 or 1.5 with some
uncertainty from the fitting window, the experimental error
bars, or the nucleus which is probed by NMR.

An unbiased numerical study of the full quantum one-
dimensional model is called for, and we shall provide results
in the following sections. The rest of the paper is organized
as follows. In Sec. II, we present the theoretical models and
provide useful definitions. Section III describes very briefly
the numerical techniques and thoroughly discusses the results.
Finally, we summarize our conclusion in Sec. IV and discuss
implications and open issues.

II. MODEL AND DEFINITIONS

The finite-temperature dynamic structure factor is defined
through the Källén-Lehmann spectral representation:

S(q, ω) = 3π

Z (β )

∑
m,n

e−βEm |〈n|Sz
q|m〉|2δ[ω − (En − Em)],

(2.1)

where the sum is performed over the eigenstates of the Hamil-
tonian (1.1) with the partition function Z (β ) = Tr(e−βH) at
inverse temperature β = 1/T . The factor of 3 comes from
SU(2) symmetry. The momentum space spin operators [32]
are related to those in real space via

Sq = 1

L

∑
r

e−iqr Sr, (2.2)

where for periodic boundary conditions the discrete momenta
are given by q = 2πn/L, n = 0, 1, 2, . . . , L − 1. Note that
thanks to SU(2) symmetry, we can measure equivalently diag-
onal (SzSz) or transverse (S±S∓) correlations and symmetrize
the data accordingly. In this paper, we focus on the local
dynamical spin correlation Gloc(ω) = ∑

q S(q, ω):

Gloc(ω) = 3 Re
∫ +∞

0
dt e−iωt 〈Sz

i (t )Sz
i (0)〉, (2.3)

Gloc(τ ) = 3

π

∫ +∞

−∞
dω Gloc(ω) exp(−τω), (2.4)

where we have a sum rule Gloc(t = τ = 0) = 〈S2
i 〉 = 2 and a

symmetry property: Gloc(−ω) = exp(−βω)Gloc(ω).
Quite interestingly, assuming a local hyperfine coupling

between the nuclear and electronic spins (and setting this
amplitude to 1 for simplicity), the 1/T1 nuclear relaxation rate
probed by NMR can be obtained directly from

1

T1
= Gloc(ω0) =

∑
q

S(q, ω0), (2.5)

where ω0 (� J, � T ) is the NMR frequency, which in many
cases can be taken to be zero in practice, although in some
regimes such as spin diffusion, data do explicitly depend on
the choice of ω0, and this issue will be of concern to us
here. Generically, spin diffusion is expected to occur at high
temperature [33] and corresponds to a regime where 1/T1

depends on the experimental parameters such as the NMR
frequency ω0 or the applied magnetic field. Numerically, it
will translate into an explicit dependence on the chosen cutoff
(finite time, nonzero frequency ω0, or finite system length).

III. NUMERICAL RESULTS

On periodic chains of small length, up to L = 12 typically,
it is straightforward to perform exact diagonalization (ED) of
the Hamiltonian (1.1) in order to get the full spectrum, using
symmetries such as fixing Sz

tot or the momentum. Since we
can also compute all matrix elements of observables such as
Sz(q), one can easily compute S(q, ω), and hence Gloc(ω),
using Eq. (2.1). Since it is given as a sum of δ peaks, we have
chosen to represent these spectral functions using histograms
with a suitably adapted bin width.

The quantum Monte Carlo (QMC) simulations were per-
formed using the stochastic series expansion (SSE) method,
which is based on importance sampling of the Taylor expan-
sion of the operator e−βH (see, e.g., Ref. [34]). The analytic
continuation is performed using a recently improved variant
of an approach called stochastic analytic continuation (SAC)
[35–37], which has been applied to various magnetic systems,
for instance [38–40]. The spectrum is represented by a large
number of equal-amplitude δ peaks whose positions are sam-
pled at a fictitious temperature 
 adapted to provide a good
fit (in a χ2 sense) of the imaginary-time data while avoiding
overfitting.

As discussed in Ref. [41] for the S = 1/2 Heisenberg
chain, it is better to first perform analytic continuation for each
q in order to obtain S(q, ω) and then sum to get Gloc(ω)—
and the NMR relaxation rate 1/T1—rather than the converse.
Indeed, there is more structure in Fourier space for S(q, ω).
This is particularly important to reproduce spin diffusion at
high temperature. As a result, at very low temperature for
finite L, very sharp oscillations will appear since in this
limit S(q, ω) ≈ aqδ(ω − ωq) is dominated by a single gapped
triplet excitation (triplon) [42] with the (approximately) rel-
ativistic dispersion relation ωq =

√
�2 + v2(q − π )2 [43],

where v is the spin velocity.
The QMC-SAC approach is supplemented by matrix prod-

uct state (MPS) [44] calculations that were performed [45] on
open chains of size L = 64 with a maximum bond dimension
of size m = 1000. Unlike the SSE QMC, the MPS method
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FIG. 1. Comparison of the dynamical local spin-spin correlation
Gloc(ω) defined in Eq. (2.3) at infinite temperature (βJ = 0) obtained
from ED (L = 8, 10, and 12) and MPS (L = 64).

is a ground-state technique. The finite temperature was sim-
ulated using a purification method, artificially enlarging the
Hilbert space size, or, equivalently, doubling the system size
(L = 128) to represent the mixed state as a pure state [46].
Ultimately, within this approach, the system with which we
work looks like a two-leg ladder where each leg holds physical
or auxiliary degrees of freedom. The infinite-temperature
state corresponds to a tensor product of maximally entangled
rungs, readily encoded at the beginning and time evolved with
e−βH/2 to obtain the corresponding state at inverse tempera-
ture β. The imaginary-time evolution is performed using the
time-evolving block decimation (TEBD) algorithm [47] along
with a fourth-order Trotter decomposition [48] (time step
τ = 0.1), where H acts only on physical degrees of freedom.
When the desired finite-temperature state is obtained, a real-
time evolution by e−iHt is carried out using the same TEBD
algorithm as for the imaginary-time evolution in order to
obtain the local dynamical correlation function 〈Sz

i (t )Sz
i (0)〉

[49] that one can relate to the dynamical spin correlation
Gloc(ω) by a standard Fourier transform [see Eq. (2.3)]. To
avoid finite-size effects, we measured the correlation in the
middle of the chain, i = L/2. Note that the real-time evolution
of a quantum state produces a rapid growth of entanglement
entropy [50], while the efficiency of the MPS formalism relies
on low-entangled states through the area law. This drastically
limits in practice the maximum time t one can reach in a sim-
ulation. In order to push the limit further, we have used a trick
which consists of evolving the auxiliary degrees of freedom
with −H in real time [51,52]. It is worth mentioning that we
have tried to compute time-dependent correlation functions in
momentum space with MPSs, but finite size effects, especially
open boundary effects, led to a strong low-energy (ω → 0)
contribution owing to the edge states of the S = 1 chain, as
observed in Ref. [14].

In order to provide some benchmark for these numerical
techniques, we plot in Fig. 1 the local spectral function
Gloc(ω) at infinite temperature (βJ = 0) obtained from ED
or MPS. Quite nicely, the results look very similar for large
|ω|/J , although they are computed differently. On the other
hand, the value at ω = 0 is not well defined (although it is
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FIG. 2. Comparison of the dynamical local spin-spin correlation
Gloc(ω) defined in Eq. (2.3) at βJ = 2 obtained with different nu-
merical techniques. Exact diagonalization was carried for systems
of size L = 10, 12. For the MPS, we used L = 64, where the local
dynamical correlation was measured up to time tJ = 50 before
performing the Fourier transform to frequency space. We also show
QMC data after performing analytic continuation for L = 128 and
L = 256. The different results and methods are discussed in the main
text.

a local quantity), which directly reflects the spin diffusion
phenomenon: in ED, the numerical value depends on the
length L; in MPS, the value explicitly depends on the real-time
cutoff tmax limiting the simulation.

At an intermediate temperature, βJ = 2, we compare the
local spectral function Gloc(ω) obtained with all three nu-
merical approaches (Fig. 2). Overall, the agreement is quite
good, although the QMC + SAC data cannot resolve the sharp
peaks. It is known that at high temperature, the small range
of imaginary-time data τ ∈ [0, β/2] limits the accuracy of
SAC [40]. Here it should be noted that both the ED and MPS
spectra may still underestimate the spin diffusion contribu-
tions at the inverse temperature, β = 2, used in Fig. 2, but the
QMC + SAC is most likely overestimating the spectral weight
at low frequencies. Unfortunately, it is difficult to compare
data at much lower temperature since MPSs cannot be applied
more accurately and ED becomes very sensitive to the discrete
nature of a finite-size spectrum with small L. Nevertheless, the
QMC + SAC has been proven in previous studies to provide
reliable results at lower temperature [37–40].

A. Spin diffusion at high temperature

On general grounds, a system is said to display spin dif-
fusion if the long-time decay form of some spin correlation
function is algebraic,

lim
t→∞

∣∣〈Sa
r (t )Sb

0(0)
〉∣∣ ∝ t−αr , αr � 0, (3.1)

where a priori the exponent αr could depend on the
distance r [53]. This behavior was first predicted in a
classical phenomenological diffusion theory describing the
time-dependent spin correlation function of the classical
Heisenberg model [the same Hamiltonian as in Eq. (1.1),
but where spin operators are replaced by unit length vec-
tors] [33,54–61]. This description is particularly valid at high
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temperature where quantum effects are suppressed and im-
plies a conserved quantity (such as the total magnetization Sz

tot
along the quantization axis) due to the associated continuity
equation. Specifically, a purely diffusive exponent α = d/2,
with d being the dimensionality, is found for the classical
Heisenberg model, which was verified numerically [62].

The next question is whether or not the exact treatment of
the microscopic quantum model is consistent with this pre-
diction. In this respect, the paradigmatic XXZ spin-1/2 chain
parametrized by uniaxial anisotropy � in the interaction has
been intensively studied [41,53,63–72]. The diffusion expo-
nent α of the local correlation function 〈Sz

0(t )Sz
0(0)〉 along the

quantization axis z is exactly equal to 1 at the noninteracting
point, as well as for the whole range −1 < � < +1, leading
to ballistic spin transport. For |�| > 1, the behavior of the
spin dynamics has been found to be diffusive with α = 1/2,
while more recently, α = 2/3, as in the Kardar-Parisi-Zhang
universality class [73] was observed at the isotropic � = 1
point [70,71,74,75]. This is very different from the exclusively
diffusive behavior that one gets with the classical Heisenberg
model but is now understood to be a consequence of the
integrability of the quantum spin-half chain (the classical
Heisenberg model is not integrable).

In contrast, the transverse (compared to the quantization
axis) correlation 〈S±

0 (t )S∓
0 (0)〉 does not display any algebraic

decay at long time. This is because Sz
tot commutes with

the Hamiltonian and naturally appears in the momentum
space formulation of the longitudinal correlation function
〈Sz

0(t )Sz
0(0)〉 = ∑

q〈Sz
−q(t )Sz

q(0)〉/L at the q = 0 point, while
it does not in the transverse case. Spin diffusion implies that
the NMR relaxation 1/T1 explicitly depends on the NMR
frequency as 1/T1 ≈ ωα−1

0 (ω0 is playing the role of a cut-
off). Ultimately, a dominant contribution from q ≈ 0 modes,
especially over q ≈ π modes, which one naively expects to
dominate in antiferromagnets, is a signature of spin diffu-
sion [76]. For instance, this has been observed in the one-
dimensional S = 1/2 Sr2CuO3 [77] and Cu(C4H4N2)(NO3)2

[78] compounds, as well as in the S = 1 compound AgVP2S6

[31].
Using MPSs, we are able to compute the time-dependent

local spin-spin correlation function of the S = 1 chain, as
shown in Fig. 3. At high temperature βJ � 0.8, an algebraic
form is observed at long time t . The diffusion exponent
obtained by fitting the long-time decay by a simple power law
is found to be roughly independent of temperature and, on
average, equal to α � 0.62. This value is not equal to 1/2, as
would be expected for a nonintegrable model, nor is it equal
to 2/3, as for the isotropic spin-half Heisenberg chain and as
suggested by a recent field-theory approach [23]. According
to Ref. [25], where a more systematic study of the long-time
algebraic decay was performed, the value of α that we get
is simply a crossover value due to the finite time and will
eventually reach 1/2 at longer time.

B. Contributions of antiferromagnetic modes
(q ≈ π) to spin relaxation

Although we are ultimately interested in the local dynam-
ical spectral function, we focus now on small ω for the entire
S(q, ω) at finite temperature in order to investigate which
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L 2
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β = 0.3
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S(t) ∼ t−α

S(0) = 2

α 0.62

FIG. 3. Real part of the local correlation function 〈SL/2(t ) ·
SL/2(0)〉 versus time for various inverse temperatures 0 � βJ � 1,
computed using matrix product states on L = 64 spin chains. For
βJ � 0.8, spin diffusion behavior is found, with an algebraic long-
time decay ∝ t−α of the correlation function (see thick translucent
straight lines in the log-log scale). An exponent α � 0.62 indepen-
dent of temperature is found.

momenta contribute significantly to 1/T1. Indeed, from the
above definition of Eq. (2.5), the spin-lattice relaxation rate is
simply given as a sum over momenta q of S(q, ω0). We plot in
Fig. 4 these contributions to 1/T1 as a function of momentum
q. In order to check the finite-size effect, we multiply by L
so that 1/T1 is proportional to the integral under the curves,

FIG. 4. Momentum contribution S(q, ω0 � 0) to 1/T1 obtained
from QMC simulations on chains of length L = 64 and L = 128 for
various inverse temperatures βJ = 2, 3, 4, 5, 6, and 7. The values
have been multiplied by L so that we can compare systems with
different lengths L. The inset shows the ratio R of the contributions
close to q ≈ π versus q ≈ 0, as defined in Eq. (3.2). Three different
regions are observed: (i) corresponds to spin diffusion at high tem-
perature, dominated by q ≈ 0 modes with an explicit dependence of
the 1/T1 value on the NMR frequency ω0. In region (ii), at inverse
temperatures around the inverse spin gap, i.e., β ≈ 1/� = 2.44, the
spin-lattice relaxation rate is dominated by the q ≈ π contribution as
one might expect from an antiferromagnet. However, as the temper-
ature is lowered, a crossover is observed where q ≈ 0 contributions
start to dominate again in region (iii); see discussions in text.

094411-4



NMR RELAXATION IN THE SPIN-1 HEISENBERG CHAIN PHYSICAL REVIEW B 100, 094411 (2019)

and we can compare systems with different lengths L. As
expected, since this is a local dynamical quantity, it does not
depend much on L at fixed β. Regarding the temperature
dependence, we propose to quantify the relative importance
of momenta close to zero and π by defining the ratio

R =
∑

π
2 �|q|�π S(q, ω0)∑
0�|q|� π

2
S(q, ω0)

. (3.2)

As seen in Fig. 4, there is a rather sharp crossover around
βJ � 6 below (above) which low-energy spectral weight is
mostly at q ≈ π (q ≈ 0). It can be expected that, due to anti-
ferromagnetic interaction, excitations with momentum q ≈ π

should be important, and thus R > 1. However, as has been
known for a long time [10,18], relaxation is, in fact, dominated
by two-magnon processes at very low temperature (due to
energy conservation); hence we do expect q ≈ 0 to dominate
at low enough temperature (much lower than the gap), which
is illustrated when R < 1 at large β. We can also observe
a divergence at small q for any finite temperature T , which
would correspond to spin diffusion. Indeed, our QMC data can
be well fitted as ∝ q−1 for small q (data not shown), so that we
formally get a divergence as ln L, which would correspond to
spin diffusion: namely, the 1/T1 relaxation rate does depend
explicitly on a cutoff, which is experimentally the NMR
frequency ω0. We seem to observe the same behavior for
any temperature, with an exponent α = 1 quite different from
our MPS results, for which we found α � 0.62. However, as
stated above, we do not trust quantitatively SAC results at
small β (see Fig. 2).

C. Temperature dependence of 1/T1

Combining our numerical results, we can obtain the full
behavior of 1/T1 versus inverse temperature β (see Fig. 5).
At high temperature, we are more confident in MPS results
since imaginary-time simulations are limited to small time
τ = β/2 and cannot produce very reliable results [40], but for
temperature above the Haldane gap (β � 1/�), there is a spin
diffusion regime where 1/T1 depends explicitly on the cutoff
procedure (see above).

For intermediate and low temperature, we can rely on only
QMC simulations since real-time data obtained from MPSs
are limited to time tJ ≈ 50 and strong oscillations prevent
a reliable estimate of the Fourier transform (note that 1/T1

becomes exponentially suppressed). As already seen in Fig. 4,
there is another crossover between a regime with dominant
q ≈ π contributions (1/� � βJ � 6) where 1/T1 decreases
very fast. Note, however, that, in this intermediate tempera-
ture regime, the subdominant q ≈ 0 contributions would be
compatible with a modified activated law ∝ exp[−(3/2)�β].
At lower temperature, the signal becomes extremely small,
and in order to have some intuition into the quality of our
data, we have performed a bootstrap analysis of our QMC
data using ten bootstrap samples followed by SAC. We extract
some tentative error bars from this analysis (see Fig. 5). In
this low-temperature regime βJ � 6, we observe that q ≈ 0
contributions are dominant and overall behavior seems to
better follow a simple activated law ∝ exp(−�β ).

FIG. 5. NMR spin-lattice relaxation rate 1/T1 versus inverse tem-
perature β obtained from QMC simulations on a chain with L = 128
spins (white circles) and from MPS calculations on a chain with
L = 64 spins. In the latter case, we show only data where Gloc(ω0)
could be precisely determined, i.e., with a “relatively fast” decay
of the correlation 〈SL/2(t ) · SL/2(0)〉 to perform a proper Fourier
transform despite the maximum time t we could reach in practice. We
also plot separately the contributions coming from q ≈ 0 (downward
red triangles) and q ≈ π (upward green triangles) of the QMC data.
The gray solid (dashed) line corresponds to a simple (modified)
activated law ∝ exp(−β�) (∝ exp[−(3/2)β�]). For discussion, we
have shown the inverse spin gap 1/� � 2.44. Spin diffusion data at
high temperatures have been discarded since they explicitly depend
on the NMR frequency ω0 and were discussed earlier on their own.

IV. DISCUSSION AND OUTLOOK

Our numerical study relies on different numerical tech-
niques: MPSs, expected to be valid at high temperature, and
SAC on top of QMC simulations, which we trust for low-
temperature studies. We can summarize our key findings in
different temperature regimes:

(i) High temperature (T > �). We have observed a spin
diffusion regime which prevents any universal prediction
since, by definition, 1/T1 depends explicitly on some numer-
ical cutoff or experimental parameters. More precisely, our
MPS data suggest an exponent in real-time correlation data
which is not really one half, as expected for a nonintegrable
model, but rather α � 0.62. According to Ref. [25], where
a more systematic study was performed, this is a finite-time
effect, and the value that we get is simply a crossover which
will eventually go to 1/2 at longer time.

(ii) Intermediate regime (1/� < βJ � 6). We have shown
that the dominant contributions to 1/T1 come from momenta
q ≈ π , which can be simply interpreted since there is a large
Lorentzian peak at the antiferromagnetic wave vector π and
single magnon excitation can be thermally excited in this
temperature range.

(iii) Low-temperature regime (βJ � 6). Due to energy
conservation, the dominant contribution to 1/T1 is due to
two-magnon processes [10,18] and occurs at q ≈ 0. Our best
data in this regime are compatible with a simple activated law,
1/T1 ∝ exp(−β�), as shown in Fig. 5.

From an experimental point of view, one has to remember
that a precise comparison of 1/T1 depends on which nucleus
is probed and what the hyperfine couplings to the electronic
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spins are. Indeed, for instance, if the NMR nucleus is coupled
symmetrically to two S = 1 magnetic ions, then the q ≈ π

contributions will be filtered out due to the form factors.
We have shown that there is a nontrivial crossover when
comparing the q ≈ π and q ≈ 0 component contributions, as
shown in Fig. 5. As a result, we do expect that depending on
the NMR details (such as the nucleus probed and hyperfine
couplings), the temperature behavior could be nonuniversal in
a temperature range of the order of the spin gap. This could
explain the various results obtained when comparing the acti-
vation energy from 1/T1 and the spin gap (which can also be
extracted from the NMR signal through the Knight shift, for
instance), as discussed in the Introduction when summarizing
experimental measurements. Also, it could hinder any attempt
to fit the 1/T1 behavior in this intermediate regime.

Some puzzles remain, however, for instance, AgVP2S6,
in which the activation gap seems larger than the spin gap,
independent of the NMR nucleus [31], roughly compatible
with a γ factor of 3/2, as found in some theoretical predictions
[19,23]. As pointed out by Konik [21], one cannot exclude that
easy-axis spin anisotropy, weak interchain interaction, or spin-
phonon couplings could qualitatively change the temperature
behavior. In particular, these additional ingredients are already
known to modify strongly spin diffusion [79]. Let us also
point out that, since the spin gap is field dependent, the finite
magnetic field needs to be taken into account for a quantitative
analysis [27,28,80,81]. In some other related systems, such
as an explicit dimerized S = 1/2 chain (which is also a
one-dimensional gapped system), it has been shown, for in-
stance, that a simple activated law, 1/T1 ∝ exp(−β�), holds
[17,82] for the NMR relaxation rate. It will be interesting to
investigate other simple, yet nontrivial, gapped one-

dimensional systems such as a spin-1/2 ladder or other dimer-
ized chains where a simple activated law is often measured
[83–89].

As a final remark, it would be interesting to investigate
NMR relaxation for a more general spin-1 model, such as the
XXZ chain with Ising anisotropy � or single-site anisotropy
D, which has nontrival spin dynamics at finite temperature
[15,90], or, even more relevant for experiments, a quasi-one-
dimensional system [91].
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