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We investigate phase transitions in the two-dimensional dipolar Heisenberg model with uniaxial anisotropy
with a specific ratio between the exchange and dipolar constants, δ = 1. We obtain the η-T (anisotropy vs
temperature) phase diagrams for typical values of magnetic field by a Monte Carlo method with an O(N )
algorithm. We find that at lower fields, the η-T phase diagram consists of the planar ferromagnetic (F),
perpendicular stripe-ordered (SO), and paramagnetic (P) phases, and is characterized by the triple point. In
the SO phase realized at larger η and smaller T , the SO pattern changes depending on the field. On the other
hand, we find that at higher fields, the SO phase does not exist, while the planar F phase robustly remains. We
study the properties of the phase boundaries in detail. We find that the slope of the spin-reorientation-transition
line is positive with and without field, i.e., dη

dT > 0, which implies that the planar F phase changes to the SO
phase with lowering temperature. In the phase diagrams we observe a characteristic shape of the P–planar F
phase-transition line, whose maximum point of η is located at an intermediate temperature. This structure leads to
the temperature-induced reentrant transition associated with P and planar F phases, which appears in successive
phase transitions with lowering temperature: P → planar F → P → SO phase at lower fields and P → planar
F → P phases at higher fields.

DOI: 10.1103/PhysRevB.100.094407

I. INTRODUCTION

Ultrathin magnetic films exhibit a variety of orderings due
to the competition between magnetic anisotropies, short-range
exchange, and long-range dipolar interactions. They are not
only of scientific interest but also of technological importance
because of potential applications such as magnetic recording.
The dipolar interaction in planar systems induces in-plane an-
tiferromagnetic (AF) order, the exchange interaction promotes
ferromagnetic (F) order, and the uniaxial anisotropy favors
Ising-spin (perpendicular to the plane) configurations. Such
a complicated situation gives rise to experimentally observed
spin-reorientation (SR) transitions between in-plane and out-
of-plane magnetic phases as temperature or thickness of the
film changes [1–5].

Due to such complexity, phase transitions in the magnetic
films including SR are a challenging subject. The long-range
nature of the dipolar interaction is the main obstacle for
theoretical and computational studies. Simulations of N-spin
systems with short-range interactions cost O(N ) computa-
tional time. However, usually O(N2) computational time is
necessary for those with long-range interactions, and analyses
of large systems are much more difficult.
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In spite of this difficulty, the two-dimensional (2D) dipo-
lar Heisenberg model with uniaxial anisotropy [see Eq. (1)]
has been intensively studied for understanding ultrathin-film
magnetism theoretically and computationally [6–19], as well
as the 2D dipolar Ising ferromagnet [20–33]. Especially, the
η-T (uniaxial anisotropy vs temperature) phase diagram of the
model (1) at zero field (H = 0) has been focused on, while
the phase diagrams for finite fields are almost unexplored.

The schematic η-T phase diagram at H = 0 is given in
Fig. 1. It is characterized by the triple point B. Phases I and II
are ordered ones depending on the value of the ratio δ between
the exchange and dipolar constants [see Eq. (1)], and phase
III is the paramagnetic (P) one. For δ = 0, i.e., the case of no
exchange interaction, phases I, II, and III are the perpendicular
AF, planar AF, and P phases, respectively [9,15]. On the other
hand, for δ � 1, the strong limit of the exchange interaction,
phases I, II, and III are the perpendicular F, planar F, and P
phases, respectively [7,34].

To characterize the SR transition line (AB) between the
ordered phases (phases I and II), the sign of the slope dη

dT

is crucial. For dη

dT > 0, the SR transition occurs from phase
II to phase I with lowering temperature, while for dη

dT < 0,
from phase I to phase II. However, the sign often becomes a
controversial topic. For δ � 1, dη

dT > 0 was reported [6,7], but
for δ = 0, both dη

dT > 0 [15] and dη

dT < 0 [9] were pointed out.
For intermediate values of δ at H = 0, perpendicular

stripe-ordered (SO) phases appear as phase I. The phase
diagrams in this case have been studied for limited values of
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FIG. 1. Schematic η-T phase diagram at H = 0 for the model
(1). Phases I and II are ordered ones whose properties depend on δ,
and phase III is the paramagnetic one.

δ. For δ = 3, the SO, planar F, and P (or tetragonal) phases
appear in the phase diagram, in which the 〈4〉 stripe order
is realized in the SO phase. Here we classify SO phases by
using the notation introduced in Ref. [18]: 〈hn1

1 hn2
2 · · · hnm

m 〉,
in which hi is the width of a stripe and ni is the number
of consecutive stripes with the same width hi. The width is
measured in units of the lattice constant. There also exists
controversy about the slope of the SR transition line for δ = 3:
dη

dT < 0 by MacIsaac et al. [10] and dη

dT > 0 by Carubelli et al.
[15]. The nature of the phase transition between the P and
SO phases is also a delicate issue. Indeed, the former authors
suggested a second-order transition but the latter authors a
first-order transition.

In the present work, we study the η-T phase diagram for
δ = 1 with and without field. To reduce the difficulty of the
simulation, we adopt an O(N ) Monte Carlo (MC) algorithm
for long-range interaction spin models, called the stochastic
cutoff (SCO) method [35], with a modification efficient for
the models with the uniaxial anisotropy, which was adopted
in our previous study on the dipolar Ising ferromagnet [33].

Finite-size scaling methods are powerful tools to investi-
gate details of phase transitions. So far those approaches have
been applied in a limited number of studies [16,19]. However,
to settle the above-mentioned controversies, such systematic
approaches are becoming more and more important. Here we
investigate the phase diagram with analyses of the Binder
cumulants [36] of the order parameters.

We find the 〈1〉, 〈213〉, and 〈21〉 SO phases at H = 0, 1.3,
and 2, respectively, for relatively large η. These three SO
phases are consistently realized in the H-T phase diagram
for η → ∞, i.e., the dipolar Ising ferromagnet [33]. For
intermediate η, the SR transition between the planar F and SO
phases is observed except for high fields. We find that dη

dT > 0
holds for the SR transition line for δ = 1 with and without
field.

Frustrated interactions often cause complex phase transi-
tions. The temperature-induced reentrant transition observed
in spin-glass systems is a typical example [37–39]. Here
we use the term “reentrant transition” in a narrow sense,
namely the phase changes as A → B → A. In the reentrant
transition in spin glasses, phase A is a disordered one. The
main origin of the reentrant transition is the entropy effect

but the detailed mechanisms are generally complicated. The
reentrant transition associated with P and F phases was shown
in successive transitions in a frustrated Ising model such as P
→ F → P phase, or P → F → P → AF phase with decreasing
temperature [40].

In dipolar systems, the competition between the anisotropy,
short-range, and long-range interactions may cause new types
of reentrant phenomena [41–43]. Recently we found a field-
induced reentrant transition: uniform (paramagnetic) → 〈21〉
SO → uniform (paramagnetic) phase in the 2D dipolar Ising
ferromagnet with δ = 1 [33], which corresponds to the model
(1) with η → ∞. In the present work we find a temperature-
induced reentrant transition associated with P and planar F
phases for specific values of η. With decreasing temperature,
the following changes are observed: P → planar F → P → SO
phase at relatively low fields and P → planar F → P phase at
relatively high fields.

The rest of the paper is organized as follows. The model
and methods are briefly explained in Sec. II. An overview of
the phase diagrams is given in Sec. III A. The phase transition
between the P and planar F phases is discussed in Sec. III B.
The characteristics of the SR transition between the planar
F and SO phases are presented in Sec. III C. The phase
transition between the P and SO phases is argued in Sec. III D.
The temperature-induced reentrant transition is discussed in
Sec. III E. Section IV is devoted to the summary. In the
Appendix, we give an example to suggest that the results of
the present paper do not change when larger systems are used.

II. MODEL AND METHODS

The 2D dipolar Heisenberg model with uniaxial anisotropy
is given by

H = −δ
∑
〈i, j〉

Si · S j +
∑
i< j

{
Si · S j

r3
i j

− 3(Si · ri j )(S j · ri j )

r5
i j

}

− η
∑

i

(
Sz

i

)2 − H
∑

i

Sz
i , (1)

where δ (> 0) is the ratio between the exchange and dipolar
constants, η is the single-ion anisotropy constant, and H is
the magnetic field. We consider N = L × L sites. The first
sum 〈i, j〉 runs over all nearest-neighbor pairs of spins and
the second one over all pairs of spins on a square lattice. The
spin variables Si = (Sx

i , Sy
i , Sz

i ) are normalized as |Si| = 1.
The distance between sites i and j, ri j , is measured in units of
the lattice constant. This model corresponds to the 2D dipolar
Ising ferromagnet for η → ∞.

To treat large systems and exclude the effect of edges,
we use a replica method which tiles replicas of the original
system with periodic boundary conditions [30,31,33]. We tile
2001×2001 replicas.

To study the planar F phase, we define the transverse
magnetization,

Mxy = 1

N

〈√√√√(∑
i

Sx
i

)2

+
(∑

i

Sy
i

)2〉
, (2)
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and the longitudinal magnetization,

Mz = 1

N

〈∑
i

Sz
i

〉
. (3)

Here 〈· · · 〉 stands for the statistical average. We also introduce
the orientational order parameter for the stripe order,

Ohv =
∣∣∣∣nh − nv

nh + nv

∣∣∣∣, (4)

where

nh =
∑

i

(1 − Si · Si+ex ) (5)

and

nv =
∑

i

(1 − Si · Si+ey ), (6)

as defined in Ref. [14]. To confirm that the detected SO phase
using Ohv is out of plane, we also define another orientational
order parameter,

Oz
hv =

∣∣∣∣nz
h − nz

v

nz
h + nz

v

∣∣∣∣, (7)

where

nz
h =

∑
i

(
1 − Sz

i Sz
i+ex

)
(8)

and

nz
v =

∑
i

(
1 − Sz

i Sz
i+ey

)
. (9)

If the values of Ohv and Oz
hv

are close, the detected SO phase
is out of plane.

We identify second-order phase transitions by evaluating
the fourth-order Binder cumulants [36] for Mxy and Ohv

defined by

U4 = 1 −
〈
M4

xy

〉
3
〈
M2

xy

〉2 (10)

and

Ũ4 = 1 −
〈
O4

hv

〉
3
〈
O2

hv

〉2 , (11)

respectively, and first-order phase transitions by investigating
hysteresis loops of the order parameters for strong hysteresis
or energy histograms for weak hysteresis.

As mentioned in the introduction, naive MC methods re-
quire O(N2) simulation time, and thus we adopt the O(N )
SCO algorithm [35] for the MC simulation in the present
study. The SCO algorithm is based on the stochastic potential
switching (SPS) algorithm with O(N ) switching time for long-
range interactions [44,45], and was first introduced to the
dipolar Heisenberg model without uniaxial anisotropy. How-
ever, when the uniaxial anisotropy is large such as in the dipo-
lar Ising model, the SPS procedure does not work efficiently
for short-range contributions. Then, all the interactions up to a
certain range should be taken into account in the conventional
algorithm, and the SPS procedure should only be applied out-
side of that range. Here we tune the range in the same way as
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FIG. 2. η-T phase diagrams at (a) H = 0, (b) H = 1.3, (c) H =
2, and (d) H = 3.2. The red squares and blue circles are first- and
second-order transition points, respectively.

in our previous study [33]. This modification provides enough
efficiency in the MC sampling. We use 0.5 × 105–1.0 × 105

MC steps for equilibration and 1.5 × 105–4 × 105 MC steps
for measurement at each temperature (or η) during gradual
change of temperature (or η). We take the average over 48
samples with different random number sequences to obtain
the physical quantities (order parameters) with error bars.

III. MONTE CARLO STUDY

A. Overview of the phase diagrams

First we give an overview of the phase diagrams obtained
by the MC method in the present study. The η-T phase
diagrams at H = 0, 1.3, 2, and 3.2 are given in Figs. 2(a)–2(d),
and the magnified ones around the triple and/or tricritical
points are shown in Figs. 3(a)–3(d). Snapshots of typical spin
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FIG. 3. Magnified phase diagrams at (a) H = 0, (b) H = 1.3,
(c) H = 2, and (d) H = 3.2. The red squares and blue circles denote
first- and second-order transition points, respectively. The error bars
of the first-order transition points for the SR transition line are
estimated from the widths of the hysteresis loops of Ohv and Mxy.
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FIG. 4. Snapshots of typical spin configurations at a low tem-
perature (T = 0.1) for different η and H . In each of (a)–(h), arrows
(left panel) denote vectors (Sx

i , Sy
i ) in a block of 5 × 5 spins. The

graduation of the color (right panel) indicates the magnitude of Sz
i

(red = 1, white = 0, blue = −1) in a block of 10 × 10 spins. In the
left panels of (a), (c), (e), and (g), spins are mainly oriented along
the x direction (x and y directions are equivalent), which suggests
stability of the planar F phase for any fields at η = 0. The right panels
of (b), (d), and (f) visualize the stripe patterns: 〈1〉, 〈213〉, and 〈21〉 at
H = 0, 1.3, and 2, respectively, and that of (h) shows no stripe order
at H = 3.2.

configurations at a low temperature (T = 0.1) are illustrated
in Figs. 4(a)–4(h). At H = 0 [Fig. 2(a), Fig. 3(a)] planar F, SO
〈1〉, and P phases appear. At relatively low fields, similarly
three phases exist but the SO phase varies the stripe pattern
as 〈1〉 → 〈213〉 → 〈21〉 with rising field [Figs. 2(b) and 2(c),
Figs. 3(b) and 3(c)]. At relatively high fields, e.g., H = 3.2,
the SO phase disappears but the planar F phase still remains
[Fig. 2(d), Fig. 3(d)].

B. Phase transition between the paramagnetic
and planar ferromagnetic phases

Hereafter we discuss details of the phase transitions. First
we focus on the transition between the P and planar F phases
at relatively small η. The temperature dependence of Ohv , Mxy,
and Mz at η = 0 for H = 0 and H = 3.2 is shown in Figs. 5(a)
and 5(b), respectively.

The transverse magnetization Mxy grows below T ≈ 1.6
at H = 0 and T ≈ 1.5 at H = 3.2, and the stripe order Ohv

is almost zero, which indicates the phase transition between
the P and planar F phases. It is noted that Mz �= 0 at H =
3.2 (actually also at H = 1.3 and 2) and the spins in the
planar F phase are tilted in the z direction. The temperature
dependence of U4 for L = 30, 36, 48, and 60 at η = 0 is given
for H = 0 and H = 3.2 in Figs. 5(c) and 5(d), respectively.
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FIG. 5. Temperature dependence of Ohv (red squares), Mxy (blue
circles), and Mz (green triangles) for L = 30 at (a) H = 0 and η = 0,
and (b) H = 3.2 and η = 0, and that of U4 at (c) H = 0 and η = 0
and at (d) H = 3.2 and η = 0 for L = 30, 36, 48, and 60.

The U4 curves cross at T = 1.55 and T = 1.46 in Figs. 5(c)
and 5(d), respectively, which suggests second-order phase
transitions. In the same way, we identify the second-order
phase transition points between the P and planar F phases in
the phase diagrams (Figs. 2 and 3), denoted by blue circles.

Next we investigate the phase boundaries around the triple
and/or tricritical points. The η dependence of Mxy and U4 at
H = 0 and T = 0.5 [Fig. 2(a) and Fig. 3(a)] is depicted in
Figs. 6(a) and 6(b), respectively. The transverse magnetiza-
tions Mxy with increasing and decreasing η overlap well, and
the corresponding U4 curves for different system sizes cross
at η = 4.35, and thus the transition is of second order.

For H = 1.3, we find first-order transition points in the
vicinity of the triple point on the P–planar F transition line
[Fig. 2(b) and Fig. 3(b)], and there exists a tricritical point on
the line. Figure 7 illustrates energy histograms at H = 1.3 and
T = 0.3. Around the transition point η ≈ 4.22, the histograms
show double peaks with a little size dependence and the
peaks become sharper for larger L, which is evidence for the
first-order transition. For H = 2, we obtain the second-order
P–planar F transition line, similar to that for H = 0.

It should be noted that any SO phase does not exist at
H = 3.2, and that at low temperatures, a first-order-transition
line between the P and planar F phases appears [Fig. 2(d)
and Fig. 3(d)], which is confirmed by strong hysteresis of
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FIG. 6. η dependence at H = 0 and T = 0.5 of (a) Mxy for L =
30 and (b) U4 for L = 30, 36, 48, and 60.
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FIG. 7. Energy histogram P(E ) at H = 1.3 and T = 0.3 near the
transition point between the paramagnetic and planar ferromagnetic
phases [see also Figs. 2(b) and 3(b)]. P(E )’s for L = 60 at η =
4.2196 and for L = 48 at η = 4.2200 show double peaks, and the
peaks become sharper for larger L.

Mxy around the line (see Fig. 8 for T = 0.1). It terminates
at a tricritical point. We find that the planar F state is robust
against the external field, which is probably because the z
component of the spins in the planar F phase can change
continuously as the field varies. Here we find that in all cases
the maximum point of η of the transition line between the
planar F and P phases exists at an intermediate temperature.
A similar feature was found in the η-T diagram for δ = 3 and
H = 0 by Carubelli et al. [15].

The existence of the tricritical point on the P–planar F
transition line is nontrivial. We observe the tricritical point on
the transition line for H = 1.3 and H = 3.2 but not for H = 0
and H = 2 within the accuracy of the present simulation. On
the other hand, in the case of δ = 3 [10], the tricritical point
was reported for H = 0, and we do not rule out the possibility
of the tricritical point close to the triple point for H = 0 and
H = 2 for δ = 1.

The existence of the tetragonal liquid (TL) phase between
the P and SO phases has been pointed out theoretically [20,46]
and experimentally [47]. Booth et al. [20] reported that in the
temperature dependence of the specific heat, a broad shoulder
with a peak follows the sharp peak as the temperature is
raised for δ = 4.45 in the Ising limit. They suggested that the
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FIG. 8. η dependence of Mxy at H = 3.2 and T = 0.1 for L = 30.
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FIG. 9. η dependence of (a) Mxy and (b) Ohv and Oz
hv at H = 0

and T = 0.1 for L = 30. Large hysteresis loops are observed around
the SR transition point.

former originates from the transition between the TL and P
phases and the latter from that between the SO and TL phases.
However, the TL phase has no long-range order and the broad
shoulder might indicate a crossover rather than the phase
transition. Furthermore they also showed the broad shoulder
becomes much smaller for δ = 3. Here we could not detect
any signs of the TL phase for δ = 1.

C. Spin reorientation transition between the planar
ferromagnetic and stripe-ordered phases

Strong hysteresis of the order parameters is observed
around the boundary between the planar F and SO phases
with and without field. For example, at H = 0 and T = 0.1,
we see large hysteresis loops of Mxy [Fig. 9(a)] and Ohv and
Oz

hv
[Fig. 9(b)] along the η direction, and also at H = 0 and

η = 4.1, Mxy [Fig. 10(a)] and Ohv and Oz
hv

[Fig. 10(b)] along
the T direction. The values of Ohv and Oz

hv
are very close,

which is generally observed in the SO phases in the present
study (see following figures), and the SO phases are out of
plane. The first-order transition for SR is consistent with the
previous studies for different δ [6,8–10,12,15]. In the same
way, the first-order transition points for SR are identified in
the phase diagrams with and without field. Here the transition
points at T = 0 in Figs. 3(a), 3(b), and 3(c) are evaluated by
comparing the energies for the perfectly ordered planar F and
SO phases.

The existence of a canted SO phase between the planar F
and SO phases was indicated for hi � 3 (δ > 2) at H = 0 in
the ground state (T = 0) [17]. Indeed, for δ = 4.45 [14] and
δ = 6 [18] at H = 0, canted SO phases between the planar
F and SO phases were reported at low temperatures. In the
present study the maximum stripe width in the SO phases is
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FIG. 10. Temperature dependence of (a) Mxy and (b) Ohv and
Oz

hv at H = 0 and η = 4.1 for L = 30. Hysteresis loops are observed
around the SR transition point.
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(a) Ohv , Oz

hv , Mxy, and Mz for L = 30, and (b) Ũ4 for L = 30, 36,
48, and 60.

hi = 2, and any canted SO phase does not exist for δ = 1 with
and without field.

We find that for δ = 1, dη

dT > 0 is realized in the SR
transition at H = 0 in Fig. 3(a). This result for δ = 1 has the
same tendency as that for δ = 3 by Carubelli et al. [15] and
not that by MacIsaac et al. [10]. We also find that dη

dT > 0 in
the SR transition holds for finite fields. It is worth noting that
instead of the SR transition line, dη

dT > 0 is realized for the
P–planar F line at H = 3.2.

D. Phase transition between the paramagnetic
and stripe-ordered phases

In this subsection we study the phase transition between
the P and SO phases, which is observed at relatively large
η. For H = 0, we find that the phase transition between the
P and 〈1〉 SO phases [see Fig. 2(a)] is of second order.
Figure 11(a) illustrates the temperature dependence of Ohv ,
Oz

hv
, Mxy, and Mz at H = 0 and η = 5, and Fig. 11(b)

shows the temperature dependence of the Binder cumu-
lant Ũ4 for Ohv for L = 30, 36, 48, and 60. The or-
der parameter Ohv changes continuously and Ũ4 clearly
crosses at T ≈ 0.356, which indicates a second-order tran-
sition at Tc = 0.356(2). In the same manner we deter-
mine the second-order transition points on the P-SO phase
boundary in Fig. 2(a). This second-order transition for
δ = 1 shows a similar tendency to the result for δ =
3 by MacIsaac et al. [9] and not to that by Carubelli
et al. [15].

We found the second-order transition in the Ising limit in
our previous study [33], and the second-order P-SO transition
line is naturally extended to the Ising limit (η → ∞). We
notice that the critical temperature is little affected by the
value of η, and that the values of the Binder cumulant at
the crossing points, Ũ4 ≈ 0.55, are the same as that in the
Ising limit [33]. For η � 4.4, the model is considered as the
Ising dipolar one. As we pointed out in Ref. [33], there have
been controversial results about the phase boundary for δ = 1
and H = 0 in the Ising dipolar ferromagnet, i.e., first order
[24–26] or second order [29,31,32]. The present analysis also
supports a second-order transition.

For finite fields (H �= 0), the nature of the phase boundary
depends on its value. For H = 1.3, the SO phase has the
〈213〉 stipe pattern, and the boundary between the P and SO
phases is of second order as well [see Fig. 2(b)]. For H = 2,
however, the boundary between the P and 〈21〉 SO phases
is of first order [see Fig. 2(c)], which is identified by the
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FIG. 12. Energy histogram P(E ) at H = 2 and η = 5 near the
transition point between the paramagnetic and 〈21〉 stripe-ordered
phases. The red and blue symbols denote P(E ) for L = 60 at T =
0.2858 and for L = 48 at T = 0.2862, respectively.

energy-histogram analysis. As an example, we show in Fig. 12
the energy histograms around the transition temperature (T ≈
0.286 with a slight size dependence) at η = 5, in which double
peaks exist and the peaks become sharper for larger L. The
transition temperature hardly depends on the value of η as well
as in the H = 0 case.

E. Temperature-induced reentrant phase transition

We find a temperature-induced reentrant phase transition:
P phase → planar F phase → P phase. The reentrant tran-
sition is observable in the following four cases of successive
transitions with lowering temperature.

Case I: P phase → planar F phase → P phase → SO 〈1〉
phase.

Case II: P phase → planar F phase → P phase → SO 〈213〉
phase.

Case III: P phase → planar F phase → P phase → SO 〈21〉
phase.

Case IV: P phase → planar F phase → P phase.
Cases I, II, III, and IV occur for 4.20 � η � 4.38 at H = 0,

4.10 � η � 4.30 at H = 1.3, 4.15 � η � 4.28 at H = 2, and
3.97 � η � 4.25 at H = 3.2, respectively. We give examples
for cases II and IV (cases I and III are not shown). For
case II, we show the temperature dependence of Ohv , Oz

hv
,

and Mxy, at η = 4.2 and H = 1.3 in Figs. 13(a) and 13(b).
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FIG. 13. Temperature dependence of Mxy, Ohv , and Oz
hv at H =

1.3 and η = 4.2 for L = 30 in the (a) overall temperature region and
(b) region 0 < T < 0.4. The reentrant transition occurs as paramag-
netic → planar ferromagnetic → paramagnetic → SO 〈213〉 phase
with lowering temperature.
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FIG. 14. Temperature dependence of (a) Mxy and (b) Ohv and Oz
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at H = 3.2 and η = 4.1 for L = 30. The reentrant transition occurs
as paramagnetic → planar ferromagnetic → paramagnetic phase
with lowering temperature. A hysteresis loop is observed around the
transition point between the paramagnetic and planar ferromagnetic
phases.

With lowering temperature, Mxy grows below T ≈ 0.80 and
disappears at T ≈ 0.28, and Ohv grows below T ≈ 0.22. The
P phase exists for 0.22 � T � 0.28. For case IV, we depict
the temperature dependence of Mxy [Fig. 14(a)] and Ohv and
Oz

hv
[Fig. 14(b)] at η = 4.1 and H = 3.2. The stripe order Ohv

virtually vanishes (small values at low temperatures are due
to a finite-size effect). With lowering temperature, Mxy grows
below T ≈ 0.70, and disappears at T ≈ 0.10 with hysteresis.
The transition from the planar F to P phases at η = 4.1 and
H = 3.2 is of first order, while it is of second order at η = 4.2
and H = 3.2. It is noted that in case IV the ground state is not
an ordered state.

IV. SUMMARY

We studied details of the η-T phase diagrams for the
2D dipolar Heisenberg model with the uniaxial anisotropy
η with and without magnetic field for δ = 1. To obtain
the phase diagrams, we used the SCO O(N ) MC algo-
rithm for long-range interaction spin models with a mod-
ification efficient for models with the uniaxial anisotropy.
We expect that the phase diagrams do not change when
larger system sizes such as L = 120 are taken into account
(see the Appendix).

At lower fields (H < 2.8), the phase diagram is charac-
terized by the triple point at which the three phases en-
counter, i.e., the planar ferromagnetic (F), stripe-ordered
(SO), and paramagnetic (P) phases. The stripe pattern of
the SO phase varies with rising field as 〈1〉 → 〈213〉 →
〈21〉 (Fig. 3). On the other hand, at higher fields (H > 3.0),
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FIG. 15. Energy histogram P(E ) at H = 1.3 for L = 120.
(a) T = 0.3, (b) T = 0.4.

any SO phase does not appear, while the planar F phase
survives.

There are controversial results for δ = 3 at H = 0 about
the nature of the transition between the P and 〈4〉 SO phases
[10,15]. Concerning δ = 1, we found that the transition be-
tween the P and 〈1〉 SO phases is of second order at H = 0,
and the order of the transition varies depending on the value
of the field; i.e., it is of second order between the P and 〈213〉
SO phases at H = 1.3 but of first order between the P and 〈21〉
SO phases at H = 2.

We investigated the spin-reorientation (SR) transition be-
tween the planar F and SO phases and confirmed that this
transition is of first order, which agrees with previous studies
for different δ [6,8–10,12,15]. We found that the slope of
the SR transition line in the η-T diagram is positive at zero
field, i.e., dη

dT > 0. There exists controversy on the sign of dη

dT
for δ = 0 [9,15] and δ = 3 [10,15]. Considering the present
result for δ = 1, previous studies for δ � 1 [6,7], and experi-
mentally observed transitions from the in-plane ferromagnetic
phase to the out-of-plane stripe-ordered phase with decreasing
temperature [1–5], dη

dT > 0 for the SR transition would be
more plausible.

In all cases with and without field, we found a character-
istic shape of the transition line between the P and planar F
phases, whose maximum point of η is located at an interme-
diate temperature in the η-T phase diagram. The P–planar F
phase transition line is of second order in a wide region of high
temperatures. We found a tricritical point on the transition line
at a low temperature at H = 1.3 and H = 3.2. However, we
could not find it at H = 0 and H = 2 within the accuracy of
the present simulation.

The characteristic shape of the P–planar F transition line
causes a temperature-induced reentrant transition: P phase to
planar F phase to P phase. So far reentrant transitions have
been studied mainly in systems with competing short-range
interactions [40] as observed in spin glasses [37–39]. Here
we found a reentrant transition due to the competition be-
tween the uniaxial anisotropy and short-range and long-range
interactions. This reentrant transition is observable in the
following four cases of successive transitions with lowering
temperature: P phase → planar F phase → P phase →
SO phase (〈1〉, 〈213〉, or 〈21〉) at lower fields, and P phase
→ planar F phase → P phase at higher fields. A similar
shape of the P–planar F phase transition line was reported
for δ = 3 and H = 0 [15], and the reentrant transition might
be observed in that case: P phase → planar F phase → P
phase → SO 〈4〉 phase. We hope that the present study pro-
motes further research for fully understanding ultrathin-film
magnetism.

ACKNOWLEDGMENTS

The present study was supported by a Grant-in-Aid for
Scientific Research C (No. 17K05508) from MEXT of Japan,
and the Elements Strategy Initiative Center for Magnetic
Materials (ESICMM) under the outsourcing project of MEXT.
Some of the numerical calculations were performed on the
Numerical Materials Simulator at the National Institute for
Materials Science.

094407-7



KOMATSU, NONOMURA, AND NISHINO PHYSICAL REVIEW B 100, 094407 (2019)

APPENDIX: SYSTEM SIZE DEPENDENCE

Although the maximum system size of L = 60 is used in
the main text, we consider that the phase diagrams do not
change qualitatively and quantitatively when larger system
sizes are simulated. This is justified by analyzing the follow-
ing example with L = 120.

Around the tricritical point on the P–planar F phase-
transition line at H = 1.3 in Fig. 3(b), we identify first-order
and second-order points at T = 0.3 and T = 0.4, respectively.
The energy histograms at H = 1.3 for L = 120 at T = 0.3
and T = 0.4 are given in Figs. 15(a) and 15(b), respectively.
To obtain the histograms, four samples with different random-

number sequences are simulated at each value of η with
1 × 105 and 4 × 105 Monte Carlo steps for equilibration and
measurement, respectively.

Clearly, Figs. 15(a) and 15(b) are qualitatively different. In
Fig. 15(a), a jump between the two peaks occurs around η =
4.218. With further tuning of the value of η, a clear double
peak as shown in Fig. 7 is observed. These observations
characterize the first-order phase transition. In Fig. 15(b),
on the other hand, the histogram shifts continuously around
the transition point, which indicates the second-order phase
transition. From these results, we naturally expect that the
phase diagrams do not change when larger system sizes such
as L = 120 are taken into account.
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