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The mixed spin-1 and spin-1/2 Heisenberg octahedral chain with regularly alternating monomeric spin-
1 sites and square-plaquette spin-1/2 sites is investigated using a variational technique, localized-magnon
approach, exact diagonalization, and density-matrix renormalization-group method. The investigated model
has, in a magnetic field, an extraordinarily rich ground-state phase diagram, which includes the uniform and
cluster-based Haldane phases, two ferrimagnetic phases of Lieb-Mattis type, two quantum spin liquids, two
bound magnon crystals, in addition to the fully polarized ferromagnetic phase. The lowest-energy eigenstates
in a highly frustrated parameter region belong to flatbands and, hence, low-temperature thermodynamics
above the bound magnon-crystal ground states can be satisfactorily described within the localized-magnon
approach. The variational method provides exact evidence for the magnon-crystal phase with a character of
the monomer-tetramer ground state at zero field, whereas another magnon-crystal phase with a single bound
magnon at each square plaquette is found in a high-field region. A diversity of quantum ground states gives rise
to manifold zero-temperature magnetization curves, which may involve up to four wide intermediate plateaus at
zero, one-sixth, one-third, and two-thirds of the saturation magnetization, two quantum spin-liquid regions, and
two tiny plateaus at one-ninth and one-twelfth of the saturation magnetization corresponding to the fragmentized
cluster-based Haldane phases.
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I. INTRODUCTION

Quantum Heisenberg systems with antiferromagnetic in-
teractions may exhibit unconventional quantum ground states,
which are responsible for an anomalous course of magnetiza-
tion curves at low temperatures. One of the most spectacu-
lar quantum phases with an energy gap is the topologically
nontrivial Haldane-type phase, which has been discovered
in the ground state of the antiferromagnetic spin-1 Heisen-
berg chain [1,2]. A subtle nature of the Haldane phase has
been revealed by Affleck, Kennedy, Lieb, and Tasaki when
considering a more general bilinear-biquadratic version of
the antiferromagnetic spin-1 Heisenberg chain (the so-called
AKLT model), which has an exact valence-bond-solid ground
state with only slightly higher (about 5%) ground-state energy
in comparison with the Haldane phase [3,4]. It is noteworthy
that the valence-bond-solid ground state of the AKLT model
has the maximal value of the hidden string-order parameter,
which is ultimately connected with creating singlets between
all adjacent spin-1 particles symmetrically decomposed into
two fictitious spin-1/2 quasiparticles. Owing to this fact,
the valence-bond-solid ground state of the AKLT model
has a character of a unique singlet state with topologically
protected spin-1/2 edges, and the same holds true for the
Haldane phase being continuously connected to the valence-
bond-solid ground state of the AKLT model [5]. Electron-
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spin-resonance measurements on the nickel-based compound
Ni(C2H8N2)2NO2ClO4 being an experimental realization of
the antiferromagnetic spin-1 Heisenberg chain are consistent
with breaking of valence bonds (singlets) achieved through
a doping with the spin-1/2 impurities [6], whereas inelastic-
neutron-scattering data for pure and doped samples of another
nickel-based compound Y2BaNiO5 afforded more direct ev-
idence of edge states [7]. These experimental observations
have, thus, verified proximity of the Haldane phase to the
valence-bond-solid ground state.

From the viewpoint of the magnetization response, the
Haldane phase macroscopically manifests itself in a zero-
temperature magnetization curve as a zero plateau, which
breaks down at a critical field closing a singlet-triplet energy
gap associated with a field-driven quantum phase transition
towards the Tomonaga-Luttinger quantum spin liquid [8].
It is worthwhile to remark that intermediate magnetization
plateaus emergent in the magnetization process of quantum
Heisenberg antiferromagnets may correspond to exotic quan-
tum phases of diverse character, and they can occur at differ-
ent fractional values of the saturation magnetization [9–11].
Oshikawa et al. have found a rigorous criterion for the ex-
istence of the intermediate magnetization plateaus in one-
dimensional quantum Heisenberg systems, which may exhibit
magnetization plateaus on the assumption that the following
quantization condition is met: p(Su − mu) ∈ Z, where p is
a period of the ground state, Su denotes the total spin of
elementary unit, mu determines the total magnetization of the
elementary unit, and Z is a set of integer numbers [12,13].
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The aforementioned quantization condition would imply
that the higher the period of the ground state, the greater
the number of available magnetization plateaus. The spin-
1/2 Heisenberg orthogonal-dimer chain [14–17] represents
a rare example of a quantum spin chain, which exhibits, in
a zero-temperature magnetization curve, a peculiar sequence
of an infinite number of intermediate magnetization plateaus.
By numerical exact diagonalization (ED), Schulenburg and
Richter [15] have rigorously proved that infinite series of mag-
netization plateaus of the spin-1/2 Heisenberg orthogonal-
dimer chain at Z

2(Z+1) of the saturation magnetization is a di-
rect consequence of the fragmentation of the magnetic ground
state.

The fragmentation, which is caused by a local creation
of singlets, may be also responsible for the existence of
cluster-based Haldane-type phases as originally reported for
the Heisenberg diamond chain [18–21]. Recent experimental
discovery of cluster-based Haldane-type phases in minerals
fedotovite K2Cu3O(SO4)3 [22], euchlorine KNaCu3O(SO4)3,
and puninite Na2Cu3O(SO4)3 [23] has stimulated a renewed
interest in a search of other quantum spin chains possibly dis-
playing the cluster-based Haldane-type ground states [24,25].
Another exotic quantum ground state, which is manifested
in a zero-temperature magnetization curve as intermediate
magnetization plateaus emergent just below the saturation
field, may have a character of the bound magnon crystals
(MCs). It is worth mentioning that the localized nature of
bound magnons within the magnon-crystal phases enables
a description of low-temperature magnetization curves from
a mapping correspondence with classical lattice-gas (Ising)
models [26–28]. In our recent work, we have found that the
localized-magnon approach can be extended to cover a full
magnetization curve of the spin-1/2 Heisenberg octahedral
chain from zero up to saturation field whenever the lowest-
energy bound one- and two-magnon states are simultaneously
taken into consideration [29,30].

The present paper will be devoted to a detailed examination
of the mixed spin-1 and spin-1/2 Heisenberg octahedral chain
in a magnetic field. It will be demonstrated hereafter that the
considered quantum spin chain exhibits a lot of intriguing
quantum ground states including the cluster-based Haldane
phases, the bound magnon-crystal phases, the Lieb-Mattis fer-
rimagnetic phases, and the Tomonaga-Luttinger quantum spin
liquids, which will be the main subject of our investigations.

This paper is organized as follows. The mixed spin Heisen-
berg octahedral chain will be defined in Sec. II in which
several complementary calculation techniques will also be
presented. The most interesting results for the ground-state
phase diagram, magnetization curves, and specific heat are
discussed in Sec. III. Finally, several concluding remarks are
mentioned in Sec. IV.

II. HEISENBERG OCTAHEDRAL CHAIN

In the present paper, we will explore the mixed spin-1 and
spin-1/2 Heisenberg octahedral chain diagrammatically illus-
trated in Fig. 1, which can be defined through the following

S1,j
J2

J1
S2,j
S3,j

S4,j
S5,j

S1, +1j

FIG. 1. A part of the mixed spin-1 (light red spheres) and spin-
1/2 (dark blue spheres) Heisenberg octahedral chain. Thick (blue)
lines denote the Heisenberg intraplaquette interaction J2, whereas
thin (red) lines represent the monomer-plaquette coupling J1.

Hamiltonian:

Ĥ =
N∑

j=1

[
J1(Ŝ1, j + Ŝ1, j+1) · (Ŝ2, j + Ŝ3, j + Ŝ4, j + Ŝ5, j )

+ J2(Ŝ2, j · Ŝ3, j + Ŝ3, j · Ŝ4, j + Ŝ4, j · Ŝ5, j + Ŝ5, j · Ŝ2, j )

− h
5∑

i=1

Ŝz
i, j

]
. (1)

Here, Ŝi, j ≡ (Ŝx
i, j, Ŝy

i, j, Ŝz
i, j ) labels three spatial components

of the spin-1 (spin-1/2) operator for the unit-cell index i =
1(i = 2–5). The exchange interaction J1 > 0 accounts for the
antiferromagnetic monomer-plaquette interaction between the
nearest-neighbor spin-1 and spin-1/2 particles, whereas the
interaction constant J2 > 0 accounts for the antiferromagnetic
intraplaquette interaction between the nearest-neighbor spin-
1/2 particles from the same square plaquette. The last term
in the Hamiltonian (1) represents the standard Zeeman’s term
for magnetic moments in an external magnetic-field h � 0.
The periodic boundary condition S1,N+1 ≡ S1,1 is assumed for
simplicity. Let us examine the Hamiltonian (1) by employing
a few complementary analytical and numerical techniques
thoroughly described in the subsequent subsections.

A. Variational principle

In a highly frustrated parameter region, one may adapt
a variational technique [31–34] in order to find an exact
ground state of the mixed spin-1 and spin-1/2 Heisenberg
octahedral chain in a zero magnetic field. The main idea of
this approach lies in decomposing the total Hamiltonian (1)
into a sum of cell Hamiltonians Ĥ = ∑N

j=1 Ĥ j where each

cell Hamiltonian Ĥ j pertinent to a six-spin cluster with a
geometric shape of an octahedron (see Fig. 2) is given by

Ĥ j = J1(Ŝ1, j + Ŝ1, j+1) · (Ŝ2, j + Ŝ3, j + Ŝ4, j + Ŝ5, j )

+ J2(Ŝ2, j · Ŝ3, j + Ŝ3, j · Ŝ4, j + Ŝ4, j ·Ŝ5, j + Ŝ5, j · Ŝ2, j ).

(2)

Subsequently, the variational arguments can be used term by
term in order to obtain a lower bound for the ground-state
energy of the mixed spin-1 and spin-1/2 Heisenberg octahe-
dral chain E0 from a sum of the lowest eigenenergies ε0

j of

cell Hamiltonians, i.e., E0 � ∑N
j=1 ε0

j . The energy spectrum
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FIG. 2. A six-spin cluster with the geometric shape of an ele-
mentary octahedron, which is used to built up the mixed spin-1 and
spin-1/2 Heisenberg octahedral chain.

of a single mixed spin Heisenberg octahedron with apical
spin-1 particles and a square base composed of four spin-1/2
particles (see Fig. 2 for illustration) can be expressed in terms
of five quantum spin numbers ST, j, S�, j, S24, j, S35, j , and S16, j ,

ε j = J1

2
ST, j (ST, j + 1) + J2 − J1

2
S�, j (S�, j + 1)

− J2

2
[S24, j (S24, j + 1) + S35, j (S35, j + 1)]

− J1

2
S16, j (S16, j + 1), (3)

which determine the total spin of the octahedron ST, j , the
total spin of the square-plaquette S�, j , the total spin of the
spin-1 apical particles S16, j , and the total spin of two spin-
1/2 particles from opposite corners of a square-plaquette
S24, j and S35, j , respectively. It follows from Eq. (3) that
the lowest-energy eigenstate of the mixed spin Heisenberg
octahedron in a highly frustrated parameter region J2 > 3J1 is
a degenerate state characterized by the quantum spin numbers
S�, j = 0, S24, j = 1, S35, j = 1, and ST, j,k = S16, j , whereas the
latter quantum spin numbers ST, j,k and S16, j can take any out
of three possible values 0–2. This result is taken to mean that
the four spin-1/2 particles from each square base are in a
singlet-tetramer state and the spin-1 particles from the apical
(monomeric) sites become completely free, i.e., paramagnetic
in character because the singlet-tetramer state breaks corre-
lation between the monomeric spins on both its sides. The
monomer-tetramer (MT) phase, thus, becomes the relevant
ground state of the mixed spin-1 and spin-1/2 Heisenberg
octahedral chain with the following eigenvector:

|MT〉 =
N∏

j=1

|0,±1〉1, j ⊗
[

1√
3

(|↑2, j↓3, j↑4, j↓5, j〉

+ |↓2, j↑3, j↓4, j↑5, j〉) − 1√
12

(|↑2, j↑3, j↓4, j↓5, j〉

+ |↑2, j↓3, j↓4, j↑5, j〉 + |↓2, j↑3, j↑4, j↓5, j〉

+ |↓2, j↓3, j↑4, j↑5, j〉)

]
, (4)

where the former eigenvectors refer to the monomeric spin-
1 particles and the latter eigenvector specifies state of the
plaquette spin-1/2 particles.

The variational principle, consequently, proves emergence
of the exact MT ground state provided that the condition
J2 > 3J1 is met. Under this circumstance, the apical spin-
1 particles are completely free in a zero field and become
fully polarized by any nonzero external magnetic field due
to a nonmagnetic character of the singlet-plaquette state of
four spin-1/2 particles forming a square base. Owing to this
fact, the MT ground state should manifest itself in a zero-
temperature magnetization curve as the intermediate one-third
plateau with regard to a full polarization of the apical spin-1
particles. Note, furthermore, that the singlet-tetramer state is
nothing but the localized two-magnon state.

B. Localized-magnon approach

The fully polarized ferromagnetic (FM) state represents
another ground state of the mixed spin-1 and spin-1/2 Heisen-
berg octahedral chain,

|FM〉 =
N∏

j=1

|1〉1, j ⊗ |↑2, j↑3, j↑4, j↑5, j〉, (5)

which emerges at high enough magnetic fields and has the
following energy EFM = N (4J1 + J2) − 3Nh. In the frustrated
parameter space, one may adapt the concept of indepen-
dent localized magnons [27,28] in order to determine an
exact ground state emergent below the saturation field. The
exact one-magnon eigenstates can be found with the help
of orthonormal basis |i, j〉 = Ŝ−

i, j |FM〉(i = 1–5, j = 1 − N ),
which forms the sector Sz

T = 3N − 1 with a single spin devia-
tion from the fully polarized FM state. If the Hamiltonian (1)
is applied on a given basis set, one gets the following set of
equations:

Ĥ|1, j〉 = (EFM + h−4J1)|1, j〉+ J1√
2

5∑
i=2

(|i, j − 1〉 + |i, j〉),

Ĥ|k, j〉 = (EFM + h − 2J1 − J2)|k, j〉 + J2

2
(|3, j〉 + |5, j〉)

+ J1√
2

(|1, j〉 + |1, j + 1〉) (for k = 2 or 4),

Ĥ|l, j〉 = (EFM + h − 2J1 − J2)|l, j〉 + J2

2
(|2, j〉 + |4, j〉)

+ J1√
2

(|1, j〉 + |1, j + 1〉) (for l = 3 or 5).

(6)

The set of equations (6) can be, subsequently, used for solving
the eigenvalue problem in the one-magnon sector Ĥ|�k〉 =
Ek|�k〉 by assuming |�k〉 = ∑5

i=1

∑N
j=1 ci,κeiκ j |i, j〉. The rel-

ative energy of exact one-magnon eigenstates referred with
respect to the energy of the fully polarized ferromagnetic
state εk = Ek − EFM can be calculated from the characteristic
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equation given by the secular determinant,∣∣∣∣∣∣∣∣∣∣∣∣∣∣

h − 4J1 − εk
J1√

2
(1 + e−iκ ) J1√

2
(1 + e−iκ ) J1√

2
(1 + e−iκ ) J1√

2
(1 + e−iκ )

J1√
2
(1 + eiκ ) h − 2J1 − J2 − εk

J2
2 0 J2

2
J1√

2
(1 + eiκ ) J2

2 h − 2J1 − J2 − εk
J2
2 0

J1√
2
(1 + eiκ ) 0 J2

2 h − 2J1 − J2 − εk
J2
2

J1√
2
(1 + eiκ ) J2

2 0 J2
2 h − 2J1 − J2 − εk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (7)

As a result, one gets five one-magnon energy bands of the
mixed spin-1 and spin-1/2 Heisenberg octahedral chain,

ε1 = h − 2J1 − 2J2,

ε2,3 = h − 2J1 − J2, (8)

ε4,5 = h − J1(3 ± √
5 + 4 cos κ ).

A dependence of the one-magnon bands (8) on the wave-
vector κ is illustrated in Fig. 3 at the saturation field for several
values of the interaction ratio J2/J1. It is worth noting that
three one-magnon bands (8) are completely flat (dispersion-
less), which indicate a bound (localized) character of magnons
within these flatbands [27,28]. The flatband with energy ε1 has
the lowest energy among all one-magnon eigenstates (8) in the
frustrated region J2 > 2J1 (see Fig. 3) where a single magnon
is preferentially trapped on an elementary square plaquette,

|lm〉 j = 1
2 (Ŝ−

2, j − Ŝ−
3, j + Ŝ−

4, j − Ŝ−
5, j )|FM〉. (9)

It is quite obvious from the previous argumentation that
one may construct exact many-magnon eigenstates of the
mixed spin-1 and spin-1/2 Heisenberg octahedral chain be-
cause the one-magnon eigenstate (9) is locally bound to an
elementary square plaquette. Owing to this fact, the localized
magnons of the type (9) can be independently placed on
square plaquettes, whereas the corresponding many-magnon

FIG. 3. The one-magnon energy bands (8) of the mixed spin-1
and spin-1/2 Heisenberg octahedral chain at the saturation field for
four different values of the interaction ratio: (a) J2/J1 = 1, hs/J1 =
6; (b) J2/J1 = 2, hs/J1 = 6; (c) J2/J1 = 3, hs/J1 = 8; (d) J2/J1 =
4, hs/J1 = 10.

eigenstates including r-bound one-magnon states (9) will have
the energy Er = EFM − r(|ε1| − h). This fact determines in
the frustrated region J2 > 2J1 a lower bound for the satu-
ration field because such bound many-magnon eigenstates
have lower (the same) energy in comparison with the fully
polarized ferromagnetic state below (at) the saturation field
hs = |ε1| = 2J1 + 2J2. In the frustrated region J2 > 2J1 and
magnetic-fields h < hs, the MC phase with the most dense
packing (r = N) of the localized magnons (9), consequently,
represents the lowest-energy eigenstate (ground state),

|MC〉 =
N∏

j=1

|11, j〉⊗1

2
(|↓2, j↑3, j↑4, j↑5, j〉−|↑2, j↓3, j↑4, j↑5, j〉

+ |↑2, j↑3, j↓4, j↑5, j〉 − |↑2, j↑3, j↑4, j↓5, j〉). (10)

The bound magnon-crystal phase (10) should manifest itself
in a zero-temperature magnetization curve as the intermediate
two-thirds plateau, which should exist within the field range
of h ∈ (J1 + 2J2, 2J1 + 2J2) provided that this ground state
appears due to a field-driven phase transition from the MT
ground state (4).

C. Low-temperature thermodynamics in terms of an effective
lattice-gas model

On the basis of the previous results, it could be con-
cluded that the monomer-tetramer (4) and the bound magnon-
crystal (10) phase, respectively, are being the ground states of
the mixed spin-1 and spin-1/2 Heisenberg octahedral chain
in a highly frustrated parameter region (J2 > 3J1) at low and
high magnetic fields, respectively. Although the bound two-
magnon (singlet-tetramer) eigenstate is present at all square
plaquettes within the monomer-tetramer ground state (4),
the magnon-crystal ground state (10) involves, at all square
plaquettes, the bound one-magnon eigenstate.

With this background, our further attention will be aimed
at a proper description of low-temperature thermodynamics of
the mixed spin-1 and spin-1/2 Heisenberg octahedral chain,
which will be elaborated from bound many-magnon eigen-
states assuming, on square plaquettes, either the localized
two-magnon or the one-magnon states. The localized nature
of bound one- and two-magnon eigenstates allows us to
reformulate this problem using the language of a classical
lattice-gas model. For this purpose, let us introduce the chem-
ical potentials of two kind of particles μ1 = 2J1 + 2J2 − h
and μ2 = 4J1 + 3J2 − 2h, which determine an energy cost
associated with the creation of the bound one-magnon and
two-magnon eigenstates at a single square plaquette on the
fully polarized ferromagnetic background (see Fig. 4). The

094405-4



CLUSTER-BASED HALDANE PHASES, BOUND MAGNON … PHYSICAL REVIEW B 100, 094405 (2019)

S1,j
J2

J1
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S4,j
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zero-magnon
state

one-magnon
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two-magnon
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FIG. 4. A schematic of the mixed spin-1 and spin-1/2 Heisenberg octahedral chain and the equivalent two-component lattice-gas model
of hard-core monomers valid in a highly frustrated region J2/J1 > 3. Black (green) and shaded (violet) parallelograms denote hard-core
monomers, which represent one-magnon and two-magnon states of a square plaquette. The unoccupied white parallelogram denotes the fully
polarized (zero-magnon) state of a square plaquette.

localized many-magnon eigenstates of the mixed spin-1 and
spin-1/2 Heisenberg octahedral chain can be, subsequently,
described by the classical lattice-gas model,

H = E0
FM − h

⎛
⎝2N +

N∑
j=1

Sz
1, j

⎞
⎠ − μ1

N∑
j=1

n1, j − μ2

N∑
j=1

n2, j,

(11)

where E0
FM = N (4J1 + J2) represents the zero-field energy of

the fully polarized ferromagnetic state and the occupation
number n1, j = 0, 1(n2, j = 0, 1) determines whether or not the
ith square plaquette is being occupied by the quasiparticle
pertinent to the bound one-magnon (two-magnon) eigenstates,
respectively. It is worthwhile to remark that one should also
consider a hard-core constraint (1-n1, jn2, j) for two kinds of
quasiparticles, which excludes a double occupancy of square
plaquettes by the bound one- and two-magnon eigenstates
when calculating the partition function according to the
formula,

Z = e−βE0
FM+2βNh

N∏
j=1

∑
Sz

1, j

∑
n1, j

∑
n2, j

(1 − n1, jn2, j )

× eβ(μ1n1, j+μ2n2, j )+βhSz
1, j

= e−βE0
FM+2βNh(1 + 2 cosh βh)N (1 + eβμ1 + eβμ2 )N .

Here, β = 1/(kBT ), kB is Boltzmann’s constant, and T is the
absolute temperature. The Helmholtz free energy per elemen-
tary unit can be calculated from the relation,

f = −kBT lim
N→∞

1

N
ln Z

= (4J1 + J2) − 2h− kBT ln(1 + 2 cosh βh)

− kBT ln(1 + eβμ1 + eβμ2 ). (12)

The other thermodynamic quantities follow straightforwardly
from Eq. (12). For instance, the isothermal magnetization per
unit cell is given by

m = −
(

∂ f

∂h

)
T

= 2 + sinh βh

1 + 2 cosh βh
− eβμ1 + 2eβμ2

1 + eβμ1 + eβμ2
.

(13)

D. Density-matrix renormalization-group simulations of the
effective mixed spin Heisenberg chains

The Hamiltonian (1) of the mixed spin-1 and spin-1/2
Heisenberg octahedral chain can be reexpressed in terms of
the composite spin operator of a square-plaquette Ŝ�, j =
Ŝ2, j + Ŝ3, j + Ŝ4, j + Ŝ5, j and the composite spin operators
Ŝ24, j = Ŝ2, j + Ŝ4, j, Ŝ35, j = Ŝ3, j + Ŝ5, j of two spin pairs from
opposite corners of a square plaquette (see Figs. 1 and 2),

Ĥ = J1

N∑
j=1

(Ŝ1, j + Ŝ1, j+1) · Ŝ�, j − h
N∑

j=1

(
Ŝz

1, j + Ŝz
�, j

)

+ J2

2

N∑
j=1

(
Ŝ

2
�, j − Ŝ

2
24, j − Ŝ

2
35, j

)
. (14)

It can be readily proved that the Hamiltonian (14) commutes
with a square of all three introduced composite spin op-

erators [Ĥ, Ŝ
2
�, j] = [Ĥ, Ŝ

2
24, j] = [Ĥ, Ŝ

2
35, j] = 0, which, con-

sequently, represent locally conserved quantities with well-
defined quantum spin numbers. Although the Hamilto-
nian (14) is exactly equivalent to the original Hamiltonian (1)
of the mixed spin-1 and spin-1/2 Heisenberg octahedral chain,
it also allows derivation of several approximate effective
Heisenberg spin models when considering a particular com-
bination of the quantum spin numbers S�, j, S24, j , and S35, j

substantially reducing a computational complexity (dimen-
sion of the Hilbert space) of the studied problem. Indeed,
the first two terms of the Hamiltonian (14) correspond to a
ferrimagnetic mixed spin-(1, S�, j ) Heisenberg chain, whereas
the last term provides just a trivial shift of the energy depend-
ing on the size of chosen quantum spin numbers S�, j, S24, j ,
and S35, j . The ground state of the mixed spin-1 and spin-1/2
Heisenberg octahedral chain can be accordingly found from
the lowest-energy eigenstates of the effective mixed spin-
(S1, j, S�, j) Heisenberg chains unambiguously given by the
Hamiltonian (14) under the specific choice of the quantum
spin numbers S�, j, S24, j , and S35, j . Note that the total spin on
a square plaquette may achieve three different values S�, j =
0–2, whereas the former value of S�, j = 0 corresponding
to a singlet-tetramer state is responsible for a fragmentation
of the effective mixed spin Heisenberg chains. The lowest-
energy eigenstates of the effective mixed spin-(S1, j, S�, j)
Heisenberg chains, which involve the singlet-plaquette state
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S�, j = 0 at periodic positions, can be, thus, readily calculated
by exact analytical or numerical diagonalization of smaller
Heisenberg spin clusters. On the other hand, one has to
resort to some powerful numerical technique, such as the
density-matrix renormalization-group (DMRG) method in or-
der to obtain the lowest-energy eigenstates of the effective
mixed spin-(S1, j, S�, j) Heisenberg chains when considering
the states with S�, j = 1 and/or 2. Adapting subroutines
from the Algorithms and Libraries for Physics Simulations
(ALPS) project [35], we have, therefore, performed DMRG
simulations for several effective spin-(S1, j, S�, j) Heisenberg
chains with the translational period less than four and the
total number of spins 120, which are equivalent to the large-
scale DMRG simulations of the mixed spin-1 and spin-
1/2 Heisenberg octahedral chain with the total number of
spins 300.

E. Lanczos method and full exact diagonalization calculations

A substantial reduction of the dimension of the Hilbert
space achieved in Sec. II D is, however, balanced by inca-
pability of performing DMRG simulations for the effective
Hamiltonians (14) of the mixed spin-(S1, j, S�, j) Heisenberg
chains with all possible combinations of the quantum spin
numbers S�, j, S24, j , and S35, j . To avoid danger of overlooking
some ground states, we have, alternatively, performed an exact
diagonalization for the original Hamiltonian (1) of a finite-size
mixed spin-1 and spin-1/2 Heisenberg octahedral chain being
composed of four unit cells N = 4 (20 spins) by implementing
the Lanczos algorithm from the ALPS project [35].

Similarly, the effective lattice-gas model derived in
Sec. II C for a description of the low-temperature thermo-
dynamics of the mixed spin-1 and spin-1/2 Heisenberg oc-
tahedral chain in a highly frustrated parameter region is just
approximate, and hence, one also has to prove its reliability.
For this purpose, thermodynamic analysis of the effective two-
component lattice-gas model (11) was always confronted with
the exact numerical diagonalization of the finite-size mixed
spin-1 and spin-1/2 Heisenberg octahedral chain being com-
posed of three unit cells N = 3 (15 spins). This comparison
has allowed us to determine a temperature range over which
the effective lattice-gas model provides a plausible description
of thermodynamic properties of the original model.

III. RESULTS AND DISCUSSION

This section will be devoted to a detailed analysis of
the most interesting results, which have been obtained for
the ground state, magnetization curves, and low-temperature
thermodynamics of the mixed spin-1 and spin-1/2 Heisenberg
octahedral chain within the help of methods thoroughly de-
scribed in a previous section.

A. Ground-state phase diagrams and zero-temperature
magnetization curves

The overall ground-state phase diagram of the mixed spin-
1 and spin-1/2 Heisenberg octahedral chain is displayed in
Fig. 5 on the J2/J1-h/J1 plane as obtained from the DMRG
simulations of the effective mixed spin-(S1, j, S�, j) Heisen-
berg chains supplemented with exact calculations. It turns

FIG. 5. The ground-state phase diagram of the mixed spin-1
and spin-1/2 Heisenberg octahedral chain on the J2/J1-h/J1 plane.
The dotted line delimits a phase boundary along which a tiny one-
twelfth plateau related to the cluster-based Haldane phase with p = 4
appears in a narrow range of the magnetic fields. The numbers in
brackets determine the total spin of monomeric sites and square
plaquettes within a magnetic unit cell of a given ground state.

out that the investigated quantum spin chain already displays
a plethora of exotic quantum phases at zero magnetic field.
At relatively small values of the interaction ratio J2/J1 <

1.018, the ground state of the mixed spin-1 and spin-1/2
Heisenberg octahedral chain is the Lieb-Mattis ferrimagnetic
phase, which originates from the effective mixed spin-(1,2)
Heisenberg chain [36] with the highest possible value of the
composite spin S�, j = 2 on all square plaquettes. The other
ferrimagnetic phase with a doubled period of the magnetic
unit-cell (p = 2) can be only found in a relatively narrow
interval of the parameter space J2/J1 ∈ (1.018, 1.073). This
ground state follows from the lowest-energy eigenstate of the
effective mixed spin-(1,1,1,2) Heisenberg chain with a regular
alternation of the triplet (S�, j = 1) and quintet (S�, j = 2)
states on odd and even square plaquettes (or vice versa). It is
quite plausible to conjecture that this ground state also belongs
to a class of Lieb-Mattis ferrimagnetic states although the
four-sublattice character of the effective mixed spin-(1,1,1,2)
Heisenberg chain precludes the simple argumentation on the
grounds of the Lieb-Mattis theorem [37].

The uniform Haldane phase represents an exact ground
state in the parameter region J2/J1 ∈ (1.073, 2.577), and
this ground state can be descended from the lowest-energy
eigenstate of the effective spin-(1,1) Heisenberg chain with
the composite spin S�, j = 1 on all square plaquettes. Most
strikingly, one also encounters, in a relatively narrow range
of the interaction ratio J2/J1 ∈ (2.577, 2.583) and J2/J1 ∈
(2.583, 2.660), two related cluster-based Haldane phases,
which have a higher period of the magnetic unit-cells p = 4
and p = 3, respectively. In contrast to the uniform Haldane
phase, the fragmentized cluster-based Haldane phases disturb
the translational symmetry because of a periodic repetition
of the plaquette-singlet state S�, j = 0 breaking the octahe-
dral chain into smaller fragments. It is noteworthy that the
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FIG. 6. A schematic of (a) the monomer-tetramer phase, (b) the hexamer-tetramer state as the simplest cluster-based Haldane state with
the period p = 2, (c) and (d) the fragmentized cluster-based Haldane states with period p = 3 and 4, and (e) the uniform Haldane state. Solid
ovals and circles represent singlet-dimer and singlet-tetramer states, respectively, whereas shaded circles and ovals denote triplet states of a
given cluster.

stability of the fragmentized cluster-based Haldane phases is
inversely proportional to a period of the magnetic unit-cell
p. In fact, the hexamer-tetramer ground state with a regular
alternation of the triplet-hexamer and singlet-tetramer states
as the last member of this family with the specific period
p = 2 extends over a much wider interval of the parameter
space J2/J1 ∈ (2.660, 3) than the other two fragmentized
cluster-based Haldane phases together. The hexamer-tetramer
ground state originates from the effective mixed spin-(1,1,1,0)
Heisenberg chain with a regular alternation of composite
triplet (S�, j = 1) and singlet (S�, j = 0) states on odd and
even square plaquettes (or vice versa). Last but not least,
the monomer-tetramer ground state (4) with the composite
singlet state S�, j = 0 on all square plaquettes emerges in a
highly frustrated parameter region J2/J1 > 3 in agreement
with the variational arguments presented in Sec. II A. The
monomeric spin-1 particles become, within the monomer-
tetramer ground state (4), paramagnetic due to the absence of
spin-spin correlations across the singlet-tetramer state.

At this stage, let us provide a more comprehensive un-
derstanding of unconventional cluster-based Haldane phases,
which are for better illustration schematically depicted in
Fig. 6 along with the monomer-tetramer and uniform Haldane
phases. The shaded ovals represent the lowest-energy triplet
state of the finite-size spin-1 Heisenberg chain under the open
boundary condition as the underlying spin cluster, which is
isolated on both its sides through the singlet-plaquette state.
It should be pointed out that just three cluster-based Haldane
phases with the magnetic period p = 2–4 may represent true
ground states of the mixed spin-1 and spin-1/2 Heisenberg
octahedral chain (see the Appendix). This result is in sharp
contrast to an infinite series of ground states caused by

fragmentation reported by Schulenburg and Richter [15,16]
for the spin-1/2 Heisenberg orthogonal-dimer chain [14]. To
be more specific, the hexamer-tetramer ground state as the
simplest representative of the cluster-based Haldane phase
with the magnetic period p = 2 corresponds to a regular
alternation of the plaquette-singlet and octahedral (hexamer)
triplets [see Fig. 6(b)]. Moreover, the triplet state of the mixed
spin-1 and spin-1/2 Heisenberg octahedron (Fig. 2) emergent
within the hexamer-tetramer ground state is quite analogous to
the cluster-based Haldane state recently reported by Fujihala
et al. for the mineral-crystal fedotovite [22].

To provide an independent check of the character of the
cluster-based Haldane phases, we have depicted, in Fig. 7, lo-
cal magnetizations as a function of site numbering within this
peculiar class of fragmentized ground states, which should
manifest itself in zero-temperature magnetization curves as
intermediate plateaus at 1/3p of the saturation magnetiza-
tion. It should be noted that the four spins belonging to the
same square plaquette have the same local magnetization
and, hence, these local magnetizations were merged together.
All local magnetizations of the spin-1/2 particles within
the singlet-plaquette state are, of course, equal zero due to
its nonmagnetic nature. In the hexamer-tetramer phase, all
monomeric spin-1 particles have the same local magneti-
zation 〈Ŝz

1,i〉 = 0.75, whereas local magnetizations of four
spins from the square plaquettes alternate between the finite
negative value 〈Ŝz

j,2i−1〉 = −0.125 and the zero value 〈Ŝz
j,2i〉 =

0( j = 2–5) as exemplified in Fig. 7(a). As one can see from
Figs. 7(b) and 7(c), the local magnetization of the monomeric
spin-1 particles belonging to a finite cluster in a triplet state
is different inside of this cluster and at an interface with
the plaquette-singlet state. The local magnetization of the
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KARL’OVÁ, STREČKA, AND VERKHOLYAK PHYSICAL REVIEW B 100, 094405 (2019)

FIG. 7. Local magnetizations as obtained from DMRG simulations of the mixed spin-1 and spin-1/2 Heisenberg octahedral chain with
N = 12 unit cells (i.e., 60 spins) within (a) the one-sixth plateau (hexamer-tetramer phase with p = 2), (b) the one-ninth plateau (p = 3), (c) the
one-twelfth plateau (p = 4), and (d) the zero plateau (the uniform Haldane state with p = ∞). Each square represents a local magnetization
of four spin-1/2 particles from a square plaquette, whereas each circle represents local magnetizations of the monomeric spin-1 particle. The
shaded space denotes the magnetic unit cell.

monomeric spin-1 particles at edges with the plaquette-singlet
states is higher than the local magnetization of the monomeric
spins inside of the cluster. This difference could signal the
tendency for a formation of edge states, which are, however,
spread over a few lattice sites (the correlation length) within
the Haldane-type phase [7] in contrast to strictly localized
edge states of the AKLT model [3,4].

Next, our attention will be focused on a ground-state
analysis at finite magnetic fields. First, we will review the
magnetization values of all aforementioned zero-field ground
states. The two quantum ferrimagnetic ground states related
to the lowest-energy eigenstates of the effective mixed spin-
(1,2) and spin-(1,1,1,2) Heisenberg chains should manifest
themselves in zero-temperature magnetization curves as in-
termediate plateaus at one-third and one-sixth of the sat-
uration magnetization, respectively. Contrarily, the uniform
Haldane phase should be responsible for a zero magnetization
plateau, whereas three fragmentized cluster-based Haldane
phases with period p = 2–4 should cause one-sixth, one-
ninth, and one-twelfth plateaus, respectively. The monomer-
tetramer ground-state (4) affords another one-third plateau,
which solely arises from a full polarization of the monomeric
spin-1 particles.

The ground-state phase diagram depicted in Fig. 5 is espe-
cially diverse in a less frustrated parameter space J2/J1 < 3
with regard to existence of three quantum spin-liquid regions,

two of which come from the effective spin-(1,1) Heisenberg
chain, and the third one resulting from the effective mixed
spin-(1,2) Heisenberg chain. The ground state of the mixed
spin-1 and spin-1/2 Heisenberg octahedral chain originates
exclusively from the lowest-energy eigenstates of the effective
mixed spin-(1,2) Heisenberg chain when the coupling ratio
is weaker than J2/J1 < 1.018. The intermediate one-third
plateau related to the Lieb-Mattis ferrimagnetic phase accord-
ingly terminates at a field-induced quantum phase transition
towards the gapless Tomonaga-Luttinger spin-liquid ground
state emergent at the critical field hc/J = 2.733 [Fig. 8(a)]. If
the ratio of the coupling constants is from the interval J2/J1 ∈
(1.018, 1.073), one obtains the analogous zero-temperature
magnetization curve with only one exception that a tiny one-
sixth plateau pertinent to the ferrimagnetic phase with the
doubled period of the magnetic unit cell is present prior to
the more extensive one-third plateau.

The zero-magnetization plateau related to the uniform Hal-
dane phase emerges when the interaction ratio is selected from
the interval J2/J1 ∈ (1.073, 2.577), see Figs. 8(b)–8(f). The
uniform Haldane phase either breaks down at a discontinuous
field-driven quantum phase transition towards the ferrimag-
netic phase with a doubled period (one-sixth plateau) or a
continuous field-driven quantum phase transition towards the
Tomonaga-Luttinger quantum spin liquid [see Figs. 8(b)–8(e)]
or a discontinuous field-driven phase transition towards the
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FIG. 8. Zero-temperature magnetization curves of the mixed spin-1 and spin-1/2 Heisenberg octahedral chain. Solid lines display DMRG
simulations of the effective mixed spin Heisenberg chains composed of N = 60 unit cells (corresponding to 300 spins), whereas broken lines
display ED data obtained from Lanczos technique for the finite-size mixed spin Heisenberg octahedral chain with N = 4 unit cells (20 spins). To
illustrate overall diversity, the magnetization curves are plotted for six selected values of the interaction ratio (a) J2/J1 = 1.0; (b) J2/J1 = 1.2;
(c) J2/J1 = 1.4; (d) J2/J1 = 1.5; (e) J2/J1 = 2.0; (f) J2/J1 = 2.25. The inset in (f) shows, on an enlarged scale, the parameter region where
two tiny one-ninth and one-twelfth plateaus due to the cluster-based Haldane phases with periods p = 3 and 4 appear.

fragmentized cluster-based Haldane phase with period p = 4
corresponding to the one-twelfth plateau [see Fig. 8(f)].

It should be pointed out that the microscopic nature of a
wide one-third plateau basically depends on whether the in-
teraction ratio is smaller or greater than J2/J1 = 1.631. In the
former case J2/J1 < 1.631, the upper critical field associated
with the breakdown of the one-third plateau of Lieb-Mattis
type is independent of the coupling ratio J2/J1, whereas the
upper critical field of the one-third plateau relevant to the
monomer-tetramer phase (4) monotonically increases towards
the higher magnetic field upon strengthening of the interaction
ratio J2/J1 [cf. Figs. 8(a)–8(c) with Fig. 8(d)]. Owing to this
fact, the magnetic-field region inherent to the quantum spin

liquid of the effective mixed spin-(1,2) Heisenberg chain sub-
stantially shrinks whenever J2/J1 > 1.631. The other quan-
tum spin liquid arising from the effective spin-(1,1) Heisen-
berg chain exhibits a peculiar reentrant behavior when it also
appears at higher magnetic fields besides the low-field region
closing an energy gap above the uniform Haldane phase [see
Fig. 8(d)].

The zero-temperature magnetization curve involves the
two-thirds plateau inherent to the bound magnon-crystal
phase (10) whenever the interaction ratio exceeds J2/J1 =
1.685. The bound magnon-crystal phase is either wedged in
between two quantum spin-liquid regions [see Fig. 8(d)] or
it appears due to a discontinuous magnetization jump from
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(b)(a)

(d)(c)

FIG. 9. The magnetization (left panel) and specific heat (right panel) of the mixed spin-1 and spin-1/2 Heisenberg octahedral chain as a
function of the magnetic field for a few different temperatures and the interaction ratio (a) and (b) J2/J1 = 3; (c) and (d) J2/J1 = 4. Solid lines
represent the results stemming from the localized-magnon approach, whereas the broken lines follow from the full ED for a finite-size mixed
spin Heisenberg octahedral chain with N = 3 unit cells (15 spins).

the one-third plateau relevant to the monomer-tetramer phase
[see Figs. 8(e) and 8(f)]. It is noteworthy that the intermediate
two-thirds plateau due to the magnon-crystal state (10) with
a single magnon bound on each square plaquette can, alter-
natively, be interpreted as the saturated state of the effective
spin-(1,1) Heisenberg chain.

Last but not least, it follows from Fig. 5 that the ground-
state phase diagram is fully consistent with presence of the
monomer-tetramer state (4) and the bound magnon-crystal
state (10) predicted in Secs. II A and II B for the highly
frustrated parameter region J2/J1 > 3 by making use of the
variational procedure and the localized-magnon approach,
respectively. The localized nature of bound two- and one-
magnon states within the monomer-tetramer phase (4) and the
magnon-crystal phase (10) additionally allows a classical de-
scription of low-temperature magnetothermodynamics using
the localized-magnon approach elaborated in Sec. II C, which
will be comprehensively examined in the following section.

B. Magnetothermodynamics in a highly
frustrated parameter region

In the following part, we will take advantage of the
localized-magnon approach elaborated in Sec. II C in order
to discuss the most interesting results for a low-temperature
magnetothermodynamics of the mixed spin-1 and spin-1/2
Heisenberg octahedral chain in a highly frustrated parameter
region J2/J1 � 3. The magnetization process of the mixed

spin-1 and spin-1/2 Heisenberg octahedral chain is depicted
in Fig. 9(a) as a function of the external magnetic field
for three different temperatures and the interaction ratio
J2/J1 = 3 representing a lower limit for applicability of the
localized-magnon approach. As one can see from Fig. 9(a),
the magnetization curve of the mixed spin-1 and spin-1/2
quantum Heisenberg octahedral chain exhibits two interme-
diate plateaus at one-third and two-thirds of the saturation
magnetization, which correspond to the monomer-tetramer
phase (4) and the bound magnon-crystal phase (10) in ac-
cordance with the ground-state phase diagram (see Fig. 5).
It is obvious that an increase in temperature causes a gradual
smoothing of the stepwise magnetization curve. The magneti-
zation data obtained from the localized-magnon approach are
in plausible agreement with the full ED data at low enough
temperatures, whereas both results start to deviate from each
other at moderate temperatures kBT/J1 ≈ 0.5 due to a low-
energy excitations presumably towards the hexamer-tetramer
ground state. The hexamer-tetramer ground state coexists with
the monomer-tetramer ground state at the specific value of
the interaction ratio J2/J1 = 3, which accordingly represents
a lower limit for the usability of the localized-magnon ap-
proach. The higher the temperature, the higher the deviation
between the outcomes of the ED and the localized-magnon
approach. It can be seen from Fig. 9(b) that the specific heat
of the mixed spin-1 and spin-1/2 Heisenberg octahedral chain
shows even more pronounced differences between the ED data
and the respective results gained within the localized-magnon
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approach. However, both approaches predict the qualitatively
same temperature dependence of the specific heat with two
separate peaks located in the proximity of critical magnetic
fields at which the magnetization undergoes, at zero tem-
perature, a discontinuous jump. It is evident from Fig. 9(b)
that the localized-magnon approach undervalues the specific
heat primarily at low magnetic fields where the excited states
related to the hexamer-tetramer state are not accounted for. As
a matter of fact, better quantitative agreement can be obtained
if one considers higher values of the interaction ratio J2/J1,
which would fall deeper inside into a phase stability of the
monomer-tetramer ground state, e.g., J2/J1 = 4. To illustrate
the case, the magnetization curve and specific heat of the
mixed spin-1 and spin-1/2 of the Heisenberg octahedral chain
is displayed in Figs. 9(c) and 9(d) for this particular value
of the interaction ratio. As one can see, the magnetization
data obtained from the localized-magnon approach are in
perfect agreement with the ED data up to relatively high
temperatures of kBT/J1 � 0.5, and the same conclusion can
be reached for the field dependence of specific heat. It can
be understood from Fig. 9(d) that the quantitative discrepancy
between the specific-heat data obtained from the localized-
magnon approach and full ED gradually diminishes as the in-
teraction ratio J1/J strengthens. In fact, the localized-magnon
approach gives just slightly undervalued specific heat when
comparing it with ED data at a relatively high temperature
(kBT/J1  0.5) due to excited states neglected within the
proposed localized-magnon scheme.

IV. CONCLUSION

The present article provides a detailed study of the mixed
spin-1 and spin-1/2 Heisenberg octahedral chain by the use
of several complementary analytical and numerical methods.
The mixed spin-1 and spin-1/2 Heisenberg octahedral chain
exhibits a plethora of exotic quantum states with the character
of the uniform Haldane phase, the cluster-based Haldane
phases, the ferrimagnetic phases of Lieb-Mattis type, the
quantum spin liquids, and the bound magnon-crystal phases.

The low-temperature magnetothermodynamics was elabo-
rated in the highly frustrated parameter region J2/J1 > 3 by
the use of the localized-magnon approach, which allows to
examine a magnetization process and other basic thermody-
namic quantities in a full range of magnetic fields from zero
up to saturation. This approach is based on a two-component
lattice-gas model accounting for the lowest-energy eigenstates
being composed of bound one- and two-magnon states. A
comparison between the results obtained from the localized-
magnon approach and exact diagonalization has proved a
satisfactorily description of low-temperature magnetothermo-
dynamics of the mixed spin-1 and spin-1/2 Heisenberg oc-
tahedral chain in a full range of the magnetic field up to
moderate temperatures kBT/J ≈ 0.5.

The most spectacular quantum ground states relate to three
cluster-based Haldane phases, which exhibit a higher period
of a magnetic unit cell due to a spontaneous breaking of the
translational symmetry. The cluster-based Haldane phases are
constituted from a finite spin cluster in a triplet state (a few
connected octahedra), which can be effectively described by
the open spin-1 Heisenberg chains with an odd number of

spins separated from each other by the plaquette-singlet state.
Although two fragmentized cluster-based Haldane phases
with periods p = 3 and 4 are stable only in a relatively nar-
row parameter region, the hexamer-tetramer phase as another
special case with period p = 2 is stable in a relatively wide
interval of the magnetic fields. It is worthwhile to remark
that the analogous cluster-based Haldane phase has been
recently predicted also for the mineral crystal fedotovite [22].
The cluster-based Haldane phases are the subject of current
intense interest from the viewpoint of quantum processing
of information and quantum computing because appropriate
modification of them could possibly lead to a creation of topo-
logically protected edge states. This represents a challenging
task for future study.
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APPENDIX: A CRITERION FOR THE EXISTENCE OF
CLUSTER-BASED HALDANE PHASES

An existence of the cluster-based Haldane phases is closely
connected to a fragmentation of the mixed spin-1 and spin-1/2
Heisenberg octahedral chain into smaller spin clusters with
the character of the effective finite-size spin-1 Heisenberg
chain under open boundary conditions, which are isolated
from each other by plaquette-singlet states. The effective
Hamiltonian for the cluster-based Haldane phases developed
from the Hamiltonian (14), consequently, reads

Ĥ12p−1−0 = J1

⎡
⎣(N/p)−1∑

l=0

p−1∑
j=1

(Ŝ1,l p+ j+Ŝ1,l p+ j+1)·Ŝ�,l p+ j

⎤
⎦

− N

p
J2(p + 1), (A1)

where p is the magnetic period of the ground state determining
a regular repetition of the plaquette-singlet state. The ground-
state energy corresponding to the effective Hamiltonian (A1)
of the period-p cluster-based Haldane phase can be expressed
as follows:

E12p−1−0

(
2N, ST = N

p

)
= N

p

[
J1ε

1
2p−1 − J2(p + 1)

]
. (A2)

Here, the symbol ε1
2p−1 denotes the ground-state energy of the

spin-1 Heisenberg chain with the odd number of spins 2p − 1
and unit coupling constant, which belongs to the triplet sector
with the total spin ST = 1. According to the formula (A2),
the energy of the (p + 1)-periodic cluster-based Haldane state
is smaller than the energy of the p-periodic cluster-based
Haldane state when the intraplaquette coupling constant J2 is
smaller than the critical value,

J2(p → p + 1) = J1
[
(p + 1)ε1

2p−1 − pε1
2p+1

]
. (A3)
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A stability condition of the cluster-based Haldane phase with
period p, which would be wedged in between the (p − 1)- and
(p + 1)-periodic cluster-based Haldane phases, is then given
by the inequality J2(p − 1 → p) > J2(p → p + 1) taking the
following equivalent form:

ε1
2p−1 − 2ε1

2p+1 + ε1
2p+3 > 0. (A4)

If the prerequisite (A4) would hold for any period p, one
could prove by induction existence of an infinite series of the
cluster-based Haldane states. However, exact diagonalization
data for the spin-1 Heisenberg chain with the odd number of
spins 2p − 1 imply that the condition (A4) is met for period
p = 2–4 only.
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