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We discuss the quantum dynamics of the central spin model in a regime where the central spin and bath
are slaved to each other. The exact solution is found when the bath is static and is compared with the effect
of an external field, finding that they are inequivalent due to the quantum nature of the environment. When
the bath has dynamics, we analyze the differences between the numerical simulation using time-dependent
perturbation theory and the equation of motion technique, which shows better accuracy. We demonstrate that the
use of dynamical renormalization group (dRG), simultaneously with the equation of motion technique, provides
a suitable analytical tool to understand the physics, to capture the main physical processes, and a powerful
method to eliminate secular terms. In addition, this approach allows to separate classical nonlinear behavior
from corrections due to quantum correlations.
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I. INTRODUCTION

During the last decade, a growing interest in the under-
standing of dynamical quantum systems has emerged. Moti-
vated from both, theory and experiment, a whole new area of
physics is being developed, where quantum systems and their
dynamics play a dominant role. While noninteracting systems
are quite well understood, interacting systems can display
exotic new physics such as Floquet phases [1–3], time crystals
[4,5], many-body localization [6,7] and complex dynamics
[8,9]. While the simulation of classical complex systems with
nonlinearities can be challenging (weather forecast, stock-
market predictions, social behavior, or swarming), an extra
difficulty arises in quantum systems, due to the presence of
entanglement.

The central spin model is one of the canonical models to
study the dynamics of quantum interacting systems [10]. It
describes a quantum spin interacting with a set of localized
modes, and can mimic molecular magnets interacting with
impurities [11], flux qubits coupled to electric dipoles [12]
and many other effective two-level systems interacting with
localized modes. Interestingly, the dynamics in this model
can be quite complex, as it is known that the localized nature
of these modes requires a nonperturbative analysis and gives
rise to a rich dynamical behavior [13], which can be quite
different from the spin-boson model [14]. For example, in
some regimes, the bath dynamics is slaved to the motion of the
central spin, and the memory of the bath becomes important.
This is typically discussed in terms of the dimensionless
parameter |Ai|/| ��|, where Ai denotes the coupling strength
between the central system and the ith bath spin, and �� is the
external field that gives free dynamics to the bath spins [10].
Therefore, if the coupling between the two systems dominates
over the free Hamiltonian for the bath |Ai|/| ��| � 1, the
dynamics of the two systems is highly correlated.

In this work, we study the dynamics of the central spin
model in the regime where the dynamics of the central spin
and bath are slaved to each other. First, we exactly solve the

case of a static bath and demonstrate that the spin bath is
not equivalent to an external magnetic field, specially when
the bath is not in its ground state. This leads to a damping
of coherent oscillations at short times, which can be con-
fused with decoherence (however, in this case entanglement
between the two systems is not formed and it is purely a
dephasing effect, which can be reversed using spin echo).
Then we discuss the regime where the bath is dynamical,
and the new mechanisms which can modify the coherent
oscillations at different timescales. In particular, we show
how nonperturbative contributions from many-body effects
lead to instantonlike transitions in the central spin, and to a
suppression of the coherent oscillations due to the formation
of correlations with the bath. These mechanisms appear at
very different timescales and can be captured numerically
and analytically. This is possible due to the use of dynamical
renormalization group (dRG), which allows for a natural
timescale separation, when combined with the equation of
motion technique.

II. MODEL

We consider the next Hamiltonian describing a two-level
system (or qubit) interacting with a bath of spins �Ii of arbitrary
spin value Pi:

H = H0 + VB (1)

being

H0 = −BzS
z − B⊥Sx −

N∑
i=1

(�z − SzAi )I
z
i , (2)

VB = −
N∑

i=1

�⊥Ix
i . (3)

We have assumed that the interaction is purely longitudinal
(typically due to a large crystal field anisotropy), and that
the central spin and bath spins couple, in addition to the
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longitudinal fields Bz and �z, to the transverse fields B⊥ and
�⊥, respectively.

If the interaction Ai dominates, the central spin couples to
a longitudinal Overhauser field produced by the bath (it can
be experimentally quite large, as Ai does not scale as N−1/2,
which would be the case for delocalized modes), while each
bath mode couples to a weaker field, produced by the central
spin only. When the transverse fields are added, bath and
central spin precess at different rates, and spin-flip transitions
can happen, mediated by the interaction. Different Hamilto-
nians with more general couplings can also be studied using
this formalism, but Eq. (1) has the necessary ingredients to
produce interesting effects and simple analytical expressions.

III. EXACT SOLUTION FOR A STATIC BATH

For �⊥ = 0 the Hamiltonian reduces to H0 in Eq. (1),
and in this case, the model can be exactly solved and dis-
plays interesting features. In order to find the solution, it is
useful to consider the many-body basis |M; �P, �m〉, with M =
±1/2 labeling the two states of the central spin, and where
�P = (P1, . . . , PN ) and �m = (m1, . . . , mN ) are N-dimensional
vectors labeling the values of the bath spins at the different
sites and their projection onto the z axis, respectively. The
calculation of the magnetization is straightforward because
the system becomes block-diagonal for different spin bath
configurations �m. For example, the time evolution of the
longitudinal magnetization, assuming that initially the central
spin is in an eigenstate of Sz, yields (full expression and
derivation in Appendixes):

Sz(t ) =
∑
�P, �m

Sz
�m

(
1 + B2

⊥
cos (� �mt ) − 1

�2
�m

)
, (4)

where we have defined the central spin frequency for a given
bath configuration �m as

� �m =
√

B2
⊥ + (Bz − �A · �m)2 (5)

and Sz
�m = ∑

M M|M; �P, �m〉〈M; �P, �m| is the Sz operator for the
bath configuration �m.

Equation (4) has very interesting features, some of which
have been discussed in Ref. [15]. In this case, the expression
applies for arbitrary bath spin values Pi and to any initial state
configuration (e.g., this expression can be applied if the spin
bath contains different nuclear isotopes). The main feature is
the summation over all spin bath configurations

∑
�P, �m which

can radically modify the central spin dynamics, depending
on the initial condition for the bath. In this case, the initial
state preparation becomes quite relevant for the subsequent
dynamics.

When the bath is at low temperature T � |Ai|, | ��|, mostly
the ground state will be occupied and the summation over bath
configurations reduces to a single term which has a shifted
Zeeman splitting Bz → Bz − �A · �m. On the other hand, for
many experimental setups the interaction with each spin is
weak, and although the central spin will be at low temperature,
the bath will be in the high-temperature regime | �B| � T �
|Ai|, | ��|. This implies that almost all hyperfine levels will be
equally occupied, and the sum over bath configurations has

FIG. 1. Comparison between the free dynamics and the case with
a bath of spins for different spectral functions J (α) characterized by
σ . We have chosen B⊥/Bz = 0.5 and an initial spin up state.

many terms, where each of them contributes with a different
frequency � �m. In this case, although the system has a Poincare
recurrence time at long times τrec ∼ |Ai|−1, the dynamics
resembles a “decoherence” process due to the bath. In many
cases, the hyperfine levels are close to each other and broad-
ening is large enough as to make them overlap. Then, one can
approximate the sum over bath configurations by an integral
with a density of states J (α) = ∑

�m, �P δ(α − Bz + �A · �m), and
calculate its contribution using a stationary phase approxima-
tion. This transforms Eq. (4) into

Sz(t ) 
 Sz

(
1 + B2

⊥

∫ ∞

−∞
J (α)

cos (�αt ) − 1

�2
α

dα

)
, (6)

where we have defined �α =
√

B2
⊥ + α2 , and the spectral

function is given by

J (α) = e− (α−Bz )2

2σ2

√
2πσ 2

, σ =
√

1

6

∑
i

A2
i P2

i

Pi + 4

Pi + 2
(7)

for the case of large Pi bath spins. The assumption of large
Pi is not required, but simplifies the expressions (the general
case is analyzed in Appendixes).

Then, the dynamics is governed by a Gaussian distribution
peaked at Bz, which broadens with the number of bath spins
as N1/2, and linearly with Ai and Pi. Importantly, this happens
even for the case of ordered couplings Ai = A, indicating
that it is purely a bath effect, and not a disorder average.
Figure 1 shows a comparison between the free dynamics and
the case with a spin bath for different values of σ . It shows
that the coherent oscillations produced by the transverse field
are damped due to a phase interference between the different
bath configurations. Furthermore, the bath controls both the
damping of the oscillations and the average value of the
longitudinal magnetization.

It is important to realize that the reason why the coher-
ent oscillations are suppressed is because the bath does not
act as a classical magnetic field, and its quantum nature
allows different bath configurations to evolve with different
phases, resulting in the suppression of coherent oscillations.
Interestingly, when the width of the bath distribution σ is of
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FIG. 2. Comparison between the exact dynamics for �⊥/B⊥ =
0 (black) and 0.03 (red), for the case of homogeneous couplings
A/B⊥ = 0.05, N = 100, and Bz = �z = 0. The dynamics of the
bath spins, produced by �⊥ 
= 0, leads to instantonlike transitions
in the central spin at long timescales, when N � 1 (this transition
gets more abrupt as N increases). (Blue) Numerical solution of the
mean-field equations. When �⊥/B⊥ � 1 the short time dynamics is
identical to the case �⊥ = 0, with a static bath. The initial condition
is a product state with central spin up and all bath spins up.

the order of the splitting Bz, the coherent oscillations remain
for a long time. This shows that by tuning Bz one can minimize
the effect of the bath, or by studying the time evolution as a
function of Bz, extract information about the density of states
(DOS) of the environment.

IV. DYNAMICAL BATH

When the bath couples to a transverse field (�⊥ 
= 0),
the longitudinal magnetization for the bath becomes time-
dependent as well. This makes both systems precess at dif-
ferent rates, as typically the central spin dynamics is much
faster. However, as their time evolution is not independent,
a resonance can happen at longer timescales, and produce
substantial changes in the dynamics of the central spin. This is
shown in Fig. 2, where we have calculated the exact time evo-
lution for the longitudinal magnetization of the central spin,
for an initially fully polarized bath (with this initial condition
the previously discussed “false decoherence,” induced by the
sum over bath configurations, is absent. Therefore all changes
are a consequence of the bath dynamics). The black line shows
the static bath case (�⊥ = 0), and the red line shows the case
with a small transverse field (�⊥/B⊥ � 1). When the bath
is static, the central spin coherently oscillates with amplitude
proportional to B⊥/(Bz − �A · �m) and frequency � �m; however,
when the bath is dynamical two main effects can happen
at different timescales: (1) The amplitude of the oscillations
gets damped at short timescales, and (2) the central spin
magnetization flips at long timescales. The first effect is a
consequence of the formation of entanglement between the
central spin and the bath spins, while the second effect is
produced due to a resonance between the central spin and the
bath.

A. Perturbation theory

As a first approach, let us consider time-dependent pertur-
bation theory around the unperturbed solution (i.e., for a static
bath with �⊥ = 0). A general state |	(t )〉 can be expressed in
this basis as

|	(t )〉 =
∑

M, �P, �m
cM, �P, �m(t )e−itEM

�m |M, �P, �m〉, (8)

where H0|M, �P, �m〉 = EM
�m |M, �P, �m〉 and

EM
�m = −�z

∑
i

mi + M� �m. (9)

From the time-dependent Schrödinger equation, one finds that
the time evolution is given by1

ċM, �m(t ) = −i
∑

�m′
cM, �m′ (t )e−it(EM

�m′−EM
�m )〈 �m|VB| �m′〉 (10)

where we have used that VB does not change the central
spin state M or the bath spin �P. The matrix elements can be
calculated straightforwardly:

〈 �m|VB| �m′〉 = −�⊥
2

N∑
i=1

(γPi,m′
i
δ �m−1i, �m′ + γPi,miδ �m+1i, �m′ ),

(11)

where

γPi,mi =
√

Pi(Pi + 1) − mi(mi + 1) (12)

and �m ± 1i in δ �m±1i, �m′ corresponds to the bath configuration �m
with the bath spin at the ith site changed by a unit.

For N � 1, the system of equations cannot be exactly
solved, but one can use a perturbative expansion:

cM, �m(t ) = c(0)
M, �m + �⊥c(1)

M, �m(t ) + �2
⊥c(2)

M, �m(t ) + . . . (13)

and solve Eq. (10) for different orders of �⊥. We have
calculated the solution up to second order in �⊥ to try to
reproduce the results from Fig. 2. To first order in �⊥, the
solution couples the states |M, P〉 and |M, P − 1〉. To second
order in �⊥, the state |M, P − 2〉 also weakly couples to
|M, P〉, but one also finds the next secular term in the solution

ic(0)
M, �m(t0)(t − t0)

(
�⊥
2

)2

f ( �m), (14)

where

f ( �m) =
N∑

i=1

(
γ 2

Pi,mi−1

EM
�m − EM

�m−1i

+ γ 2
Pi,mi

EM
�m − EM

�m+1i

)
. (15)

At this point, it is interesting to introduce the technique of dy-
namical renormalization group and the physical reason behind
the appearance of secular terms: Secular terms are common
in perturbative expansions. Mathematically, they produce a
cutoff beyond which the perturbative solution is not valid, and
in the present case this happens for times t − t0 � �−2

⊥ . They

1In what follows, we do not write explicitly the dependence on �P,
however it must be considered when calculating observables.
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are produced by resonant terms in the perturbative solutions,
and it can be seen that physically, the same principle applies:
resonant physical processes lead to secular terms in the
perturbative expansion.2 The main reason is that resonant
terms produce large corrections which are nonperturbative,
and when tried to be expressed in a perturbative way, they
restrict the validity of the expansion. Hence, secular terms
give important information about large corrections to pertur-
bative solutions, and lead to the emergence of new timescales.
Therefore it is important to find a way to deal with them and to
extract this information. This is what dRG does, by encoding
the secular terms in the boundary conditions.

In order to understand the basic idea, let us consider the
previous second order solution with a secular term [Eq. (14)].
The secular term dominates when t − t0 � �−2

⊥ , and it would
be interesting if one could keep t − t0 always small. This can
be done by assuming that t0 is dynamical, but the price to be
paid is that the boundary conditions also become dynamical
(because they are functions of t0). As the total solution cannot
depend on this arbitrary cutoff, one must impose the condition

∂τ cM, �m(t ) = 0. (16)

Where we have substituted t0 → τ , to indicate that t0 is
now a dynamical variable. This produces a flow equation
for the boundary condition, and by choosing τ = t , one can
eliminate the secular term, which is now encoded in the
time dependence of the boundary condition [16,17]. This
approach gives similar results to Multiple-scale analysis, also
well known in the literature. In that case, one just needs to
impose an ansatz with different timescales for the solutions
c(t ) → c(t, τ1, τ2, . . .), being τn = �n

⊥t[18,19].
When this formalism is applied to the present problem, one

finds that up to second order in �⊥, the boundary condition
changes as

∂τ c(0)
M, �m(τ ) 
 ic(0)

M, �m(τ )

(
�⊥
2

)2

f ( �m). (17)

Its solution is a shift in the frequency of the coherent os-
cillations, proportional to f ( �m), and a small damping of
oscillations due to the interference between different states,
but the solution does not capture the instantonlike transition.
The reason is that the instantonlike transition involves the
inversion of the all the bath spins, and therefore must include
states with �m = − �P. We show next that one can capture it
starting from a nonlinear set of equations of motion.

B. Mean-field solution

In order to capture the instantonlike solution, we go to
the Heisenberg picture and calculate the dynamics using the
equation of motion ∂t Ô = i[H, Ô] for the spin operators,
being Ô an arbitrary operator. For the central spin, one finds
(εαβδ is the Levi-Civita symbol and greek indices correspond

2Notice that here the resonance comes from the two step process
of flipping back and forth a bath spin, which leaves the energy
unchanged. This can be done for all bath spins, even in the disordered
case, which is why it can be an important correction.

to the three spatial axis)

∂t S
α =

∑
μ,θ=x,y,z

εμαθ

(
Bμ −

N∑
i=1

Aμ
i Iμ

i

)
Sθ , (18)

while for the bath spins one finds:

∂t I
α
i =

∑
μ,θ=x,y,z

εμαθ

(
�μ − SμAμ

i

)
Iθ
i . (19)

This set of coupled equations are general for a wide number
of Hamiltonians, but in this work we focus on the specific
case of Eq. (1), with �B = (B⊥, 0, Bz ), �� = (�⊥, 0,�z ) and
�Ai = (0, 0, Ai ). In order to illustrate the emergence of new
timescales, we first consider a mean-field decoupling of the
equations. This implies that correlations between spins are
neglected, and the product of spin operators is substituted
by the product of their individual average value 〈Iα

i Sβ〉 

〈Iα

i 〉〈Sβ〉 with respect to an initial density matrix ρ0 describing
the initial state of the system. The numerical solution is shown
in Fig. 2 (blue), and it shows that the mean-field solution
captures the instanton transition between spin up/down states,
but fails to reproduce the damping of coherent oscillations.

To understand the instanton transition in simple terms, we
perform a dRG analysis of the equations. For the present
case, where the bath spins are much slower than the central
spin, the natural small parameters are �⊥ and Ai. Hence we
attach a dimensionless parameter ε to all the terms in Eq. (19),
in order to organize the perturbative series around the static
bath solution. This implies that, to order ε0, the equations of
motion for the central spin reduce to

∂t 〈Sα〉0 =
∑

μ,θ=x,y,z

εμαθ

(
Bμ −

N∑
i=1

Aμ
i mμ

i

)〈
Sθ

0

〉
0, (20)

where the bath ∂t 〈Iα
i 〉0 = 0 → 〈Iα

i (t0)〉0 = mα
i is static at this

order, and 〈. . .〉0 indicates the average value of the unper-
turbed solution. Notice that due to the sum over all bath spins,
the term

∑N
i=1 Aim

z
i is not assumed to be small, and it is

present to lowest order in ε (this means that the Overhauser
field can be large and contribute to the fast dynamics of the
central spin). The solution to these equations corresponds to
the one found for the static bath case [Eq. (4)], which will be
the starting point of our analysis. The important difference is
that now the equations of motion are nonlinear, which allows
to take full advantage of the power of dRG.

To first order in ε the bath becomes dynamical:

∂t
〈
Iα
i

〉
1 = ε

∑
μ,θ=x,y,z

εμαθ

(
�μ − 〈Sμ〉0Aμ

i

)
mθ

i (21)

and the solution displays secular terms, which need to be
renormalized. For example, the longitudinal bath magnetiza-
tion is given by〈

Iz
i (t )

〉 = mz
i − ε(t − t0)�⊥my

i + O(ε2). (22)

As previously mentioned, the appearance of secular terms is
identified with a breakdown of the perturbative solution for
times ∼1/ε, or in this case ∼1/ε�⊥. This means that one can
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interpret the difference t − t0 in Eq. (22) as the distance to a
physical cutoff t0. However, one can extend this solution to
larger times by making the cutoff dynamical t0 → τ , in such
a way that the difference t − τ � 1. Finally, in order to ensure
that the solution does not depend on the arbitrary cutoff, one
must impose

∂τ

〈
Iz
i (t )

〉 = 0 (23)

which leads to the next flow equation, to first order in ε, for
the boundary condition mz

i (τ ):

0 = ∂τ mz
i (τ ) + ε�⊥my

i (τ ). (24)

One can derive the flow equations for the other boundary
conditions in a similar way, and this yields

∂τ mx
i (τ ) = −εRi(τ )my

i (τ ), (25)

∂τ my
i (τ ) = εRi(τ )mx

i (τ ) + ε�⊥mz
i (τ ), (26)

∂τ mz
i (τ ) = −ε�⊥my

i (τ ), (27)

where

Ri(τ ) = Ai
B⊥Mx(τ ) + ωz(τ )Mz(τ )

�2
�m

ωz(τ ) − �z (28)

and ωz = Bz − ∑
i Aim

z
i . It is important to notice that

if mz
i (τ ) is dynamical, the central spin frequency � �m =√

B2
⊥ + (Bz − ∑

i Aim
z
i (τ ))2 will change over time, which is

what makes the central spin and the bath to become resonant
at long times, and produces the instantonlike transition.

As the previous flow equations couple to the boundary
conditions for the central spin Mα (τ ), one must obtain their
flow equation as well. To first order in ε, the equation of
motion for the central spin is

∂t 〈Sα〉1 =
∑
μ,θ

εμαθ

(
Bμ −

N∑
i=1

Aμ
i mμ

i

)
〈Sθ 〉1

−
∑
μ,θ

εμαθ 〈Sθ 〉0

N∑
i=1

Aμ
i

〈
Iμ
i

〉
1 (29)

and its analytical solution also displays secular terms. These
are due to a resonance with the bath spins, whose longitudinal
magnetization has a fast oscillating component due to the
coupling with the central spin. Once again, assuming that
the boundary conditions are dynamical and the solution is
independent of the arbitrary cutoff τ , the flow equations result
in

∂τ ln(B⊥Mx + ωzMz ) = ε�⊥
αyωz

�2
�m

, (30)

∂τ My = 0, (31)

∂τ ln(B⊥Mz − ωzMx ) = ε�⊥
αyωz

�2
�m

, (32)

where we have defined αy = ∑
i Aim

y
i . Notice that the flow

of the boundary conditions implies that, even if they initially
vanish, they might become finite over time. The solution

FIG. 3. Numerical solution of the mean-field equations (black)
and the solution for the slow component Mz(τ ) (red) using the flow
equation. Parameters are Bz = �z = 0, �⊥/B⊥ = 0.03, A/B⊥ =
0.05, and N = 100, with central spin initially up and a fully po-
larized bath. The slow component perfectly describes the instanton
transition.

from the flow equations perfectly captures the slow time
evolution that describes the instantonlike transition, as it is
shown in Fig. 3. This shows that dRG can be used to separate
the dynamics according to their timescales, and study each
of them independently. Furthermore, the flow equations for
the central spin [Eq. (30)], demonstrate that the instanton
transition is exponentially fast, with exponent proportional
to �⊥.

C. Correlation effects

The mean-field equations neglect correlations between the
central spin and the bath spins. That is why they fail to capture
the suppression of coherent oscillations in Fig. 2. To show
this, we go one step further and calculate the equation of
motion for the bath-system correlators:

∂t I
β
i Sα =

⎡
⎣εxαθB⊥ + εzαθ

⎛
⎝Bz −

∑
j 
=i

A jI
z
j

⎞
⎠

⎤
⎦Iβ

i Sθ

+ (εxβθ�⊥ + εzβθ�z )Iθ
i Sα

− Ai

4

(
δz,βεzαθ Sθ + δα,zεzβθ Iθ

i

)
. (33)

As expected, this equation couples to three-point correlators
and requires a decoupling scheme to find a solution. We
have considered three different decoupling schemes, which
are discussed in the Appendix. The one based on a hierarchy
of correlations is the one that gives the best results, at least
for this model. This decoupling scheme has been previously
discussed [20], and it is based on the decomposition 〈Iβ

i Sα〉 =
〈Iβ

i 〉〈Sα〉 + 〈Iβ
i Sα〉c, where 〈. . .〉c indicates the correlated part,

which is defined as the difference between the mean-field and
the exact value. The reason why this decomposition works
better than the other ones considered is because it organizes
the nonlinear corrections in a way that they tend to be always
small, compared with the mean-field value.
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FIG. 4. Comparison between the mean-field solution (red), the
solution including spin-bath correlations (black) and the exact simu-
lation (green) for the same parameters as Fig. 2.

The separation into correlated and uncorrelated parts leads
to the next final equation of motion for the correlated parts:

∂t
〈
Iβ
i Sα

〉c 
 εzαμ

⎛
⎝Bz −

N∑
j 
=i

A j
〈
Iz

j

〉⎞⎠〈
Iβ
i Sμ

〉c

+ εxαμB⊥
〈
Iβ
i Sμ

〉c − εzαμAi〈Sμ〉
(

δz,β

4
− 〈

Iβ
i

〉〈
Iz
i

〉)

− εzβνAi
〈
Iν
i

〉(δz,α

4
− 〈Sα〉〈Sz〉

)
. (34)

In order to obtain Eq. (34), we have assumed that correlated
parts are small (at least for short time), neglected bath-bath
correlators and terms proportional to ��. These terms can be
neglected because they produce slower dynamics, however,
finding the solution in their presence is not difficult (detailed
derivation in Appendixes). This equation must be numerically
solved simultaneously with the equations for the bath and
central spin:

∂t 〈Sα〉 

∑
μ,θ

εμαθ

(
Bμ −

N∑
i=1

Aμ
i

〈
Iμ
i

〉)〈Sθ 〉

−
∑
μ,θ

εμαθ

N∑
i=1

Aμ
i

〈
Iμ
i Sθ

〉c
, (35)

∂t
〈
Iα
i

〉 

∑
μ,θ

εμαθ

(
�μ − Aμ

i 〈Sμ〉)〈Iθ
i

〉
, (36)

where we have also neglected the slow terms in the equation
of motion for the bath spin, which are proportional to the
correlated part. The numerical solution of the equations of
motion, including spin-bath correlators is shown in Fig. 4.
It shows that the addition of lowest-order corrections, due to
system-bath correlations, allows to capture the suppression of
coherent oscillations. At longer timescales, other processes in-
volving many-body correlations take over, but the qualitative
behavior of the magnetization is correctly captured. This can
be fixed by including extra terms in the equation of motion for
the system-bath correlations.

As we know that Eq. (34) correctly captures the main
features of the dynamics, we now analyze the equations

using dRG, to unravel the role of correlations between spins.
Importantly, this time it will lead to flow equations for the
quantum correlations between the spins, and demonstrate
which contributions are crucial as time evolves, even for initial
product states where correlations vanish.

For the perturbative solution, we expand again, in powers
of ε, the equations of motion [Eqs. (34)–(36)]. For simplicity,
we also assume that correlated parts are small and attach a
factor ε to them in Eqs. (35) and (36). This will indeed be
the case at short time, if the system initially is uncorrelated
with the bath. However, it neglects an important backreaction
between fluctuations and mean field values that will affect
the frequency of the oscillations. Because correlated parts are
proportional to ε, to lowest order the equations of motion
still are the mean-field equations previously solved, with
the addition of the lowest-order equation of motion for the
correlated part:

∂t
〈
Iβ
i Sα

〉c
0 
 (εzαμωz + εxαμB⊥)

〈
Iβ
i Sμ

〉c
0. (37)

This equation is analogous to the one for the central spin
[Eq. (20)], with just different boundary condition. To first
order in ε the bath equation of motion is still unchanged with
respect to the mean-field case, as correlation terms are of order
ε2. This is not the case for the central spin, where correlated
and uncorrelated parts couple in the equation of motion:

∂t 〈Sα〉1 =
∑
μ,θ

εμαθ

(
Bμ −

N∑
i=1

Aμ
i mμ

i

)
〈Sθ 〉1

−
∑
μ,θ

εμαθ 〈Sθ 〉0

N∑
i=1

Aμ
i

〈
Iμ
i

〉
1

− ε
∑
μ,θ

εμαθ

N∑
i=1

Aμ
i

〈
Iμ
i Sθ

〉c
0, (38)

where the last line corresponds to the lowest-order solution
for the correlated part. The solution displays once again
secular terms, however, the addition of correlations produces
corrections to the flow equations obtained in the mean-field
case [Eq. (30)]. They are now given by

∂τ ln (B⊥Mx + Mzωz ) = ε�⊥ωz
ηy

�2
�m
,

∂τ (B⊥Mz − ωzMx ) = εωz�⊥ηy
B⊥Mz − ωzMx

�2
�m

+ εωzazy,

∂τ My = εωz
azxωz − B⊥azz

�2
�m

, (39)

where aαβ = ∑
i Aic

αβ
i , and cαβ

i (t0) is the initial condition
for the correlated part 〈Iα

i Sβ〉c. The most important change
with respect to the mean-field case [Eq. (30)] is that now My

can flow, and that the boundary condition for the correlated
part also affects the longitudinal and transverse magnetization.
Furthermore, assuming that correlations do not develop over
time (aαβ (τ ) = 0 ∀ τ ), one recovers the mean-field flow
equations.

As previously mentioned, the addition of correlated parts
implies that now their boundary conditions cαβ

i will be renor-
malized over time, if the solution to the equation of motion to

094308-6



SPIN BATH DYNAMICS AND DYNAMICAL … PHYSICAL REVIEW B 100, 094308 (2019)

FIG. 5. Comparison between the exact dynamics (dashed, green)
and the lowest-order solution using dRG (blue) for the same parame-
ters as Fig. 2. The red dot-dashed line shows Mz(τ ), which plays the
role of the envelope function for the faster oscillations. The lowest-
order solution correctly captures the suppression of oscillations, but
the frequency is shifted because backreaction between the mean-field
solution and the correlations has been neglected at this order of dRG.

first order in ε has secular terms:

∂t
〈
Iβ
i Sα

〉c
1 
 (εzαμωz + εxαμB⊥)

〈
Iβ
i Sμ

〉c
1

− εzαμ

〈
Iβ
i Sμ

〉c
0

N∑
j 
=i

A j
〈
Iz

j

〉
1

− εzαμεAi〈Sμ〉0

(
δz,β

4
− mβ

i mz
i

)

− εzβνεAim
ν
i

(
δz,α

4
− 〈Sα〉0〈Sz〉0

)
. (40)

This is the case, and the flow equations for the initial correla-
tions are given by

∂τ ln(B⊥azx + azzωz ) = ε�⊥ωz
ηy

�2
�m
, (41)

∂τ (B⊥azz − azxωz ) = ε�⊥ωz
ηy

�2
�m

(B⊥azz − azxωz )

+ εMyωzξz, (42)

∂τ azy = −ε
ξzωz

�2
(B⊥Mz − ωzMx ), (43)

where we have defined ξz = ∑N
i=1 A2

i ( 1
4 − (mz

i )2). The sup-
pression of oscillations is obtained due to the ξz function,
which captures the precession of the bath magnetization away
from the longitudinal axis. Also, even for vanishing initial
correlations, azy(τ ) becomes non-negligible over time, as it
is proportional to ξz and to the central spin magnetization.
Figure 5 shows a comparison between the exact dynamics,
the one numerically obtained by the hierarchy of correla-
tions decoupling and its lowest-order approximation obtained
from dRG. It can be seen that the first-order approximation
provides good agreement for the amplitude renormalization,
however there is a frequency shift with respect to the exact
solution. The reason for this discrepancy is that the backreac-
tion between uncorrelated and correlated parts was neglected

to lowest order, which only holds for short times [in Fig. 4,
this is included and one can see that the frequency of the
exact solution and that of the numerical solution of Eq. (34)
coincide].

V. CONCLUSIONS

We have shown that it is possible to obtain good approx-
imations for the dynamics of strongly correlated systems,
such as the central spin model, by numerical and analytical
methods.

In the first part, we have discussed the differences between
an external magnetic field and a static spin bath by calculating
the exact solution of the model. Then, we have demonstrated
that when the environment is in an excited state, destructive
interference between different quantum states results in a sup-
pression of the coherent oscillations, which can be character-
ized by a Gaussian spectral function. This is not a decoherence
process however, as entanglement between the two systems is
not created, and it can be reversed with spin echo. Importantly,
it is interesting that the suppression is highly dependent on the
Zeeman splitting of the central spin. This property can be used
to characterize some of the properties of the environment.

In the second part, we have included a transverse field
acting on the bath spins, to switch-on their dynamics. It is
shown that nonperturbative effects can be important after a
short time. We have numerically solved the model finding
that, a separation of the equations of motion into mean-field
and quantum fluctuations, provides good agreement with the
exact dynamics, once the lowest-order fluctuations are added.
The main features of this model are: Amplitude modulation,
and the suppression of coherent oscillations due to entangle-
ment with the environment. On the one hand, the amplitude
modulation, which produces an instantonlike transition, is
well captured at the mean-field level. On the other hand,
the suppression of coherent oscillations requires the quantum
fluctuations to be included. Importantly, the suppression of
oscillations in the case of a dynamical bath is linked with the
formation of entanglement with the spin bath, unlike in the
case of a static bath, and cannot generally be removed by spin
echo techniques (the spin bath is precessing under a different
magnetic field ��).

Finally, we have shown that the equations of motion for
the model can be analyzed using dynamical renormaliza-
tion group techniques. The advantages of this technique are
several: (i) it provides an analytical approach to the highly
complex numerical solutions, (ii) provides nonperturbative
results, and (iii) it can eliminate secular terms, even when they
are present in the full numerical solution. It is also interesting
that when quantum fluctuations are included, one finds non-
perturbative expressions for the entanglement between system
and environment, which can be useful for state preparation in
experiments with many particles.

Our results can be easily applied to study the dynamics of
other models of qubits interacting with surrounding localized
modes, which is important for the design of quantum comput-
ers, as these are expected to dominate T2 at low temperatures
[10,21–23]. Furthermore, we expect this approach to be able
to characterize the decoherence rates in cases where simple
Markovian solutions can fail.
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APPENDIX A: EXACT SOLUTION FOR A STATIC BATH

The dynamics for a central spin, longitudinally coupled
to a static bath of spins can be exactly solved. Starting
from the Hamiltonian in Eq. (1), one can make use of the
basis of eigenstates for the case with B⊥ = �⊥ = 0, given
by |S, M; �P, �m〉, where S indicates the spin value of the
central spin, M ∈ [−S, S] its projection onto the z axis, �P =
(P1, P2, . . . , PN ) is the spin value of the different bath spins,
and �m = (m1, m2, . . . , mN ) their projection mi ∈ [−Pi, Pi].
The Hamiltonian in this basis is given by

H0 =
∑
S, �P

∑
M, �m

(
−BzM − �z

∑
i

mi + M
∑

i

Aimi

)
X M,M

�m, �m ,

(A1)

VS = −B⊥
2

(S+ + S−)

= −B⊥
2

∑
S, �P

∑
M, �m

γS,M
(
X M+1,M

�m, �m + X M,M+1
�m, �m

)
, (A2)

VB = −�⊥
2

∑
i

(I+
i + I−

i )

= −�⊥
2

∑
i

∑
S, �P

∑
M, �m

γPi,mi

(
X M,M

�m+1i, �m + X M,M
�m, �m+1i

)
, (A3)

where X M,M ′

�m, �m′ = |S, M; �P, �m〉〈S′, M ′; �P′, �m′| are the Hubbard
operators, γPi,mi = √

Pi(Pi + 1) − mi(mi + 1) and �m ± 1i in-
dicates that for the spin configuration �m, the spin projec-
tion mi → mi ± 1, leaving all the other mj , for all j 
= i,
unchanged.

For the present case with S = 1/2, we can easily di-
agonalize H0 + VS , because the Hilbert space factorizes in
different bath configurations �m. The equations of motion for
the different projection operators X ±,±

�m, �m are obtained in the
Heisenberg picture using the Heisenberg equation of motion
∂t Ô = i[H, Ô]:

∂t X
+,+
�m, �m′ = i(ω+

�m − ω+
�m′ )X

+,+
�m, �m′ − i

B⊥
2

(X −,+
�m, �m′ − X +,−

�m, �m′ ), (A4)

∂t X
−,−
�m, �m′ = i(ω−

�m − ω−
�m′ )X

−,−
�m, �m′ − i

B⊥
2

(X +,−
�m, �m′ − X −,+

�m, �m′ ), (A5)

∂t X
+,−
�m, �m′ = i(ω+

�m − ω−
�m′ )X

+,−
�m, �m′ − i

B⊥
2

(X −,−
�m, �m′ − X +,+

�m, �m′ ), (A6)

∂t X
−,+
�m, �m′ = i(ω−

�m − ω+
�m′ )X

−,+
�m, �m′ − i

B⊥
2

(X +,+
�m, �m′ − X −,−

�m, �m′ ) (A7)

with ωM
�m = −M(Bz − �A · �m) − �z

∑
i mi. The solutions can

be directly obtained; however as we are interested in the

central spin dynamics, the solution for the time evolution of
the different central spin operators is even simpler (because
they are diagonal in the bath indices):

Sx
�m(t ) = Sx

�m
B2

⊥ + (Bz − �A · �m)2 cos(� �mt )

�2
�m

+ Sy
�m

Bz − �A · �m
� �m

sin(� �mt )

+ Sz
�m

B⊥(Bz − �A · �m)

�2
�m

[1 − cos(� �mt )], (A8)

Sy
�m(t ) = Sy

�m cos(� �mt ) + Sz
�mB⊥ − Sx

�m(Bz − �A · �m)

� �m
sin(� �mt ),

(A9)

Sz
�m(t ) = Sz

�m
(Bz − �A · �m)2 + B2

⊥ cos(� �mt )

�2
�m

− Sy
�mB⊥

sin(� �mt )

� �m

+ Sx
�mB⊥(Bz − �A · �m)

1 − cos(� �mt )

�2
�m

, (A10)

where we have just rewritten the equations of motion in the
basis of spin operators for a given bath configuration:

Sx
�m(t ) = 1

2
(X +,−

�m, �m (t ) + X −,+
�m, �m (t )),

Sy
�m(t ) = − i

2
(X +,−

�m, �m (t ) − X −,+
�m, �m (t )),

Sz
�m(t ) = 1

2
(X +,+

�m, �m (t ) − X −,−
�m, �m (t )).

In the previous expressions, we have defined the frequency

for a given bath configuration � �m =
√

B2
⊥ + (Bz − �A · �m)

2
.

The total time evolution for the magnetization is given by
�S(t ) = ∑

�P, �m �S �m(t ), which requires to sum over all spin bath
configurations. In the next Appendix, it is shown how one can
easily do this.

APPENDIX B: SUM OVER POLARIZATION GROUPS

The exact expression for the magnetization of the central
spin requires to sum over all spin bath configurations, and
depending on the initial state, the results can be quite different.
First of all, it is useful to consider a situation where the initial
state for the total system is a product state, as typically an
experiment can control the central spin/qubit, but not the
environmental degrees of freedom:

ρ(t0) = ρS ⊗ ρB. (B1)

This is only useful for our discussion, but not required for the
derivation. Now it is important to realize that two opposite
situations can happen: The environment it is either in its
ground state (i.e., the temperature is low enough that just the
lowest energy states are occupied), or its in a high-temperature
state (i.e., thermal activation equally occupies all the bath
modes). In the first case, the sum over bath configurations
is dominated by a single term and the sum does not need
to be calculated. This implies that the central spin dynamics
will only contain a single frequency and the dynamics can
be easily understood. In the second case, the sum has a
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huge number of frequencies, and the total summation can
be cumbersome. In this case, some approximate method to
simplify the sum would be desirable. In this case, it is useful
to consider a density of states (DOS) J (α) such that

�S(t ) =
∑
�P, �m

�S �m(t ) =
∫ ∞

−∞
dα �S(t, α)J (α), (B2)

J (α) ≡
∑

�m
g �mδ(α − Bz + �A · �m), (B3)

where g �m accounts for the degeneracy of each polarization
group configuration. Using a Fourier transform, one can
rewrite the DOS as

J (α) =
∫ ∞

−∞

dε

2π

∑
�m

g �meiε(α−Bz+ �A· �m)

=
∫ ∞

−∞

dε

2π
eiε(α−Bz )

N∏
i=1

Pi∑
mi=−Pi

gmi e
iεAimi , (B4)

where gmi = Pi − |mi| + 1. At this point, depending on the
spin value Pi, one can approximate the sum as an integral if
Pi � 1/2. If this is not the case, one can directly calculate the
sum, but we will consider the case Pi � 1, because it leads to
more compact expressions and is valid in many cases. Finally,
one can calculate the large product

∏N
i=1 using a stationary

phase approximation, which leads to the final expression for
the normalized DOS:

J (α) = e− (α−Bz )2

2σ2

√
2πσ 2

, σ ≡
√

1

6

∑
i

A2
i P2

i

Pi + 4

Pi + 2
. (B5)

This indicates that for the case of broadening larger than
the hyperfine splitting, the effect of the bath is similar to an
statistical average over a bias field with Gaussian fluctuations.
Furthermore, the Gaussian broadens as N1/2 with the number
of bath spins N , and also linearly with Ai and Pi. This implies
that the final expression for the central spin magnetization, is
given by

�S(t ) =
∫ +∞

−∞
�Sα (t )J (α)dα (B6)

with �α =
√

B2
⊥ + α2 . The expressions for the time evolution

of the different components of the central spin magnetization
become

Sx
α (t ) = Sx B2

x + α2 cos(�αt )

�2
α

+ Sy α

�α

sin(�αt )

+ Sz B⊥α

�2
α

[1 − cos (�αt )], (B7)

Sy
α (t ) = Sy cos (�αt ) + SzBx − Sxα

�α

sin (�αt ), (B8)

Sz
α (t ) = Sz α

2 + B2
⊥ cos(�αt )

�2
α

− B⊥Sy sin(�αt )

�α

+ B⊥αSx 1 − cos(�αt )

�2
α

. (B9)

For intermediate temperature regimes, one can consider a
thermal distribution for the occupation of the different hyper-

fine levels, but at high enough T , its value is equal for all of
them. These expressions are valid up to some long recurrence
time τP ∼ A−1

i for Ai small, but the integral with the Gaussian
function produces a behavior that emulates decoherence, as it
is shown in Fig. 1. Furthermore, the recurrence time will not
be typically captured in experiments, because at long times,
one expects that phonons and other delocalized modes will
take over. Hence this result should be a very good approxima-
tion to describe the short time dynamics under the influence
of an almost static spin bath.

Interestingly, when the standard deviation σ is of the order
of the central spin splitting σ/Bz ∼ 1, coherent oscillations
are only weakly damped, indicating that this could be a good
regime to operate with the qubit. It also would allow to exper-
imentally access to information about the bath, by sweeping
over Bz and monitoring the dynamics (to estimate the number
of modes, their spin or the coupling strength). Finally, the
assumption of high temperature in the bath is not strictly
necessary, and this result is valid for any case where the bath
state is a large superposition of different configurations, even
at T = 0. Notice that the resulting suppression of the coherent
oscillations is not due to a disorder bias average (it also
happens for the case Ai = A), but it is a consequence of the
bath being a quantum system which can be in a superposition
state, and the different phases of the different configurations
interfere destructively. This indicates that the spin bath cannot
be simply thought as a classical magnetic field.

APPENDIX C: PERTURBATIVE DYNAMICS

When the transverse field acting on the bath is turned on,
different spin configurations couple, and for large systems, the
exact calculation becomes cumbersome. To estimate the effect
of the transverse field acting on the bath spins, it is useful
to transform to the basis of eigenstates for HS = H0 + VS . As
the Hamiltonian is diagonal in the bath configurations �m, the
diagonalization is simple and leads to

HS =
∑
�P, �m

HS ( �m), (C1)

HS ( �m)

=
(

−�z
∑

i mi − Bz

2 + �A
2 · �m −B⊥

2

−B⊥
2 −�z

∑
i mi + Bz

2 − �A
2 · �m

)

(C2)

with eigenvalues

EM
�m = −�z

∑
i

mi + M
√

B2
⊥ + (Bz − �A · �m)2. (C3)

In this basis, the full Hamiltonian becomes

H =
∑
�P, �m,M

[
EM

�m X M,M
�m, �m − �⊥

2

∑
i

γPi,mi

(
X M,M

�m+1i, �m + X M,M
�m, �m+1i

)]

(C4)

where now the index M = ±1/2 refers to the eigenstates and
eigenvalues of the matrix in Eq. (C2). The dynamics, once
the transverse bath operator is present, is obtained from the
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time-dependent Schrödinger equation:

i∂t |	(t )〉 = (H0 + VB)|	(t )〉. (C5)

Using a decomposition for a general state |	(t )〉 in terms of
the unperturbed eigenstates H0|M, �m〉 = EM

�m |M, �m〉, leads to
(we are ignoring the indices �P and S because they do not play
an important role. However, they must be added at the end of
the calculation:

|	(t )〉 =
∑
M, �m

cM, �m(t )e−itEM
�m |M, �m〉. (C6)

We can now rewrite the time-dependent Schrödinger equation,
by multiplying by 〈M ′, �m′| from the left, as follows:

ċM, �m(t ) = −i
∑

�m′
cM, �m′ (t )eit(EM

�m −EM
�m′ )〈 �m|VB| �m′〉 (C7)

where we have used that the matrix elements of VB only
couple different bath configurations. As in this equation all the
different bath configurations couple, when the bath is large, it
must be truncated. For this, we consider a powers expansion:

cM, �m(t ) = c(0)
M, �m + �⊥c(1)

M, �m(t ) + �2
⊥c(2)

M, �m(t ) + . . . (C8)

Similarly, the calculation of the matrix elements yields

〈M, �m|VB|M ′, �m′〉

= −�⊥
2

N∑
i=1

(
γPi,m′

i
δ �m′+1i, �m + γPi,miδ �m+1i, �m′

)
. (C9)

Then inserting this result in the calculation of the c(n+1)
M, �m (t ),

we get the next expression for the different orders of the
expansion:

ċ(n+1)
M, �m (t ) = i

2

N∑
i=1

γPi,mi−1c(n)
M, �m−1i

(t )e−it (EM
�m−1i

−EM
�m )

+ i

2

N∑
i=1

γPi,mi c
(n)
M, �m+1i

(t )e−it (EM
�m+1i

−EM
�m )

. (C10)

To first order in �⊥, the solution adds small amplitude correc-
tions of order �⊥ to the unperturbed solution, by coupling the
initial state to all bath configurations where one bath spin has
changed by a unit. To second order in �⊥ the solution is more
involved, as it contains small amplitude corrections of order
�2

⊥, plus a secular term:

i(t − t0)c(0)
M, �m(t0)

(
�⊥
2

)2

×
N∑

i=1

(
γ 2

Pi,mi−1

EM
�m − EM

�m−1i

+ γ 2
Pi,mi

EM
�m − EM

�m+1i

)
. (C11)

As it is discussed in the main text, secular terms can be
renormalized and give rise to nonperturbative corrections.
The main idea is to assume that the boundary conditions are
time-dependent, and that their series expansion produces the
secular terms previously found. This leads to the next flow

equation for the boundary condition:

∂τ c(0)
M, �m(τ ) 
 ic(0)

M, �m(τ )

(
�⊥
2

)2

×
N∑

i=1

(
γ 2

Pi,mi−1

EM
�m − EM

�m−1i

+ γ 2
Pi,mi

EM
�m − EM

�m+1i

)
(C12)

with solution

c(0)
M, �m(t ) = c(0)

M, �m(t0)
N∏

i=1

e
i(t−t0 )( �⊥

2 )2(
γ 2

Pi ,mi−1

EM
�m−1i

−EM
�m

+ γ 2
Pi ,mi

EM
�m+1i

−EM
�m

)
. (C13)

This solution implies that the renormalized solution will os-
cillate with a shifted frequency due to the dynamical bath,
but it does not affect the amplitude. Importantly, one must
notice that the shift in frequency could not be obtained per-
turbatively; however, the instanton transition is not captured.

APPENDIX D: DYNAMICAL RG ANALYSIS OF
MEAN-FIELD EQUATIONS

The general equations of motion for the system are
given by

∂t S
α =

∑
μ

εμαθ

(
Bμ −

N∑
i=1

Aμ
i Iμ

i

)
Sθ , (D1)

∂t I
α
i =

∑
μ

εμαθ

(
�μ − SμAμ

i

)
Iθ
i . (D2)

Making use of the mean-field decoupling for the statistical
averages, they reduce to

∂t 〈Sα〉 =
∑

μ

εμαθ

(
Bμ −

N∑
i=1

Aμ
i

〈
Iμ
i

〉)〈Sθ 〉, (D3)

∂t
〈
Iα
i

〉 = ε
∑

μ

εμαθ

(
�μ − 〈Sμ〉Aμ

i

)〈
Iθ
i

〉
, (D4)

where we have introduced the parameter ε to organize the
different powers of perturbations (do not confuse with the
Levi-Civita symbol εμαθ ). To lowest order in ε, the equations
of motion yield

∂t 〈Sα〉0 =
∑

μ

εμαθ

(
Bμ −

N∑
i=1

Aμ
i mμ

i

)
〈Sθ 〉0, (D5)

∂t
〈
Iα
i

〉
0 = 0 → 〈

Iα
i (t0)

〉
0 = mα

i , (D6)

where mα
i are the initial conditions for the magnetization of

each bath spin. The solutions are easily obtained by direct
integration, and the ones for the central spin can be used to
calculate the first-order corrections to the bath spin dynamics:

∂t
〈
Iα
i

〉
1 = ε

∑
μ

εμαθ

(
�μ − 〈Sμ〉0Aμ

i

)
mθ

i . (D7)

They solutions display fast oscillations with frequency � �m =√∑
μ (Bμ − ∑N

i=1 Aμ
i mμ

i )
2
, and the next secular terms:

〈
Iα
i

〉
1 = . . . − t

∑
ν,ρ

εανρmν
i

(
Aρ

i ωρ

�2
�m

∑
μ

Mμωμ − �ρ

)
, (D8)
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where ωμ = Bμ − ∑N
i=1 Aμ

i mμ
i and Mμ is the initial condition

for the central spin magnetization along the μ axis. The
lowest-order solution for the central spin describes a spin
precessing in an effective magnetic field, combination of the
external one �B and the Overhauser field produced by the static
bath

∑
i Aμ

i mμ
i . In order to eliminate the secular terms for the

bath equations of motion to first order [Eq. (D8)], one must
consider the boundary conditions time-dependent, in such a
way that they become the generators of the secular terms to
first order. This leads to

∂τ mα
i (τ )

= −
∑
ν,ρ

εανρmν
i (τ )

(
Aρ

i ωρ (τ )

� �m(τ )2

∑
μ

Mμ(τ )ωμ(τ ) − �ρ

)
,

(D9)

where the τ dependence due to the boundary conditions has
been explicitly added for clarity. Notice that this is a highly
nonlinear differential equation. As the flow equations for
the boundary conditions mμ

i (τ ) are coupled to the boundary
conditions for the central spin Mμ(τ ), one must solve the
equations of motion for the central spin to first order in ε. The
equations of motion for the central spin, to first order in ε, are

∂t 〈Sα〉1 =
∑

μ

εμαθωμ〈Sθ 〉1 −
∑

μ

εμαθ

N∑
i=1

Aμ
i

〈
Iμ
i

〉
1〈Sθ 〉0.

(D10)

At this point, it is useful to define ημ = ∑
i Az

i m
μ
i = ∑

i Aim
μ
i .

The analytical solutions display secular terms, and for clarity,
we derive in detail one of the flow equations for the central
spin. For example, the solution for the 〈Sx〉 component is
given by

〈Sx(t )〉1 = εB⊥�⊥ηy
B⊥My[cos (� �mt ) − 1] + Mz� �m sin (� �mt )

�4
�m

− εtB⊥�⊥ηy
ωz(B⊥Mx + Mzωz ) + B⊥(B⊥Mz − Mxωz ) cos (� �mt ) − B⊥My� �m sin (� �mt )

�4
�m

+ εt2�⊥ηyω
2
z

My� �m cos (� �mt ) + (B⊥Mz − Mxωz ) sin (� �mt )

2�3
�m

. (D11)

Noticing that the unperturbed solution is given by

〈Sx(t )〉0 = B⊥(B⊥Mx + Mzωz ) − ωz(B⊥Mz − Mxωz ) cos (� �mt ) + My� �mωz sin (� �mt )

�2
�m

. (D12)

One can derive three different flow equations: One for the
cosine term, another for the sine term, and a third one corre-
sponding to the constant term. Let us derive the constant term
flow equation, although the other ones are derived in exactly
the same manner. Our aim is that the boundary condition for
the constant term in 〈Sx(t )〉0 encodes, to first order in ε, the
secular term obtained in 〈Sx(t )〉1. This imposes that

B⊥∂τ

B⊥Mx(τ ) + Mz(τ )ωz(τ )

� �m(τ )2

= −εB⊥�⊥ηy(τ )ωz(τ )
B⊥Mx(τ ) + Mz(τ )ωz(τ )

� �m(τ )4 . (D13)

Notice that the secular terms with harmonic time dependence
cannot enter this flow equation, as it must be fulfilled for
arbitrary time. Now one just needs to derive the left-hand side
of Eq. (D13) using

∂τ

1

� �m(τ )2 = − 2ωz(τ )

� �m(τ )4 ∂τωz(τ ) = −2ε�⊥
ωz(τ )ηy(τ )

� �m(τ )4 ,

(D14)

where we have applied

∂τωz(τ ) = −
∑

i

Ai∂τ mz
i (τ )

= ε�⊥
∑

i

Aim
y
i (τ ) = ε�⊥ηy(τ ) (D15)

and in the last line also Eq. (D9) for ∂τ mz
i (τ ). The flow

equation finally becomes

∂τ (B⊥Mx + Mzωz ) = ε�⊥ωzηy
B⊥Mx + Mzωz

�2
�m

. (D16)

Finally, reorganizing terms one can write

∂τ ln (B⊥Mx + Mzωz ) = ε�⊥
ηyωz

�2
�m

, (D17)

which indicates that the running of the initial condition is
triggered by the bath dynamics, as it is proportional to �⊥.
The other equations are derived in a similar fashion, with the
peculiarity that quadratic secular terms ∝εt2 in Eq. (D11) are
also present for the sine and cosine terms. Their appearance
is easy to understand, as they are a consequence of the
time-dependent frequency � �m(τ ). Thus, calculating their flow
equation, one finds

∂τ ln (B⊥Mz − Mxωz ) = ε�⊥
ηyωz

�2
�m

(D18)

and

∂τ My = 0. (D19)

The numerical solution of the flow equations captures the
instantonlike dynamics, with the resonant transition happen-
ing when the bath depolarizes (Fig. 6). The comparison with
the exact diagonalization result shows that the moment where
the instanton transitions happen is well captured, however a
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FIG. 6. Comparison between the central spin dynamics between
the dRG result to first order (blue) and the exact diagonalization one
(yellow). The red dashed line shows the function Mz(t ), which modu-
lates the fast coherent oscillations of the central spin. Parameters are
�⊥/B⊥ = 0.03, A/B⊥ = 0.05, and N = 100 for the initial condition
〈Sz(0)〉 = 1

2 and 〈Pz(0)〉 = N/2.

slow decay takes over at very long timescales. On the other
hand, the suppression of coherent oscillations at short times
is missed by this solution. This will be captured by adding
correlations in the next section.

APPENDIX E: CORRELATIONS: COMPARISON FOR
DIFFERENT DECOUPLING METHODS

When correlations between the system and the bath spins
are included, one needs to calculate the next equation of
motion:

∂t I
β
n Sα = i

[
H, Iβ

n Sα
]

= εzαμBzI
β
n Sμ + εxαμB⊥Iβ

n Sμ + εzβν�zI
ν
n Sα

+ εxβν�⊥Iν
n Sα− εzβνAnIν

n SzSα− εzαμ

N∑
i=1

AiI
β
n Iz

i Sμ.

(E1)

It is important to now separate the terms i = n and i 
= n
due their different effects. This leads to the next equation of
motion

∂t I
β
n Sα =

⎡
⎣εxαμB⊥ + εzαμ

⎛
⎝Bz −

N∑
i 
=n

AiI
z
i

⎞
⎠

⎤
⎦Iβ

n Sμ

+ (εzβν�z + εxβν�⊥)Iν
n Sα − εzβνAnIν

n

×
(

δz,α

4
+ iεzαμSμ

)
− εzαμAnIβ

n Iz
nSμ. (E2)

Furthermore, if one considers that the bath spins are spin 1/2,
the expression simplifies to

∂t I
β
n Sα =

⎡
⎣εxαμB⊥ + εzαμ

⎛
⎝Bz −

N∑
i 
=n

AiI
z
i

⎞
⎠

⎤
⎦Iβ

n Sμ

+(εzβν�z + εxβν�⊥)Iν
n Sα

− An

4

(
εzβνδz,αIν

n + εzαμδz,βSμ
)
. (E3)

FIG. 7. Comparison between different decoupling schemes.

We now describe three different decoupling schemes that
have been used to study their accuracy for the simulation
of dynamics (Fig. 7). The first one consists in neglecting all
correlations in Eq. (E3), which leads to

∂t
〈
Iβ
n Sα

〉 

⎡
⎣εxαμB⊥ + εzαμ

⎛
⎝Bz −

N∑
i 
=n

Ai
〈
Iz
i

〉⎞⎠
⎤
⎦〈

Iβ
n

〉〈Sμ〉

+ (εzβν�z + εxβν�⊥)
〈
Iν
n

〉〈Sα〉

− An

4

(
εzβνδz,α

〈
Iν
n

〉 + εzαμδz,β〈Sμ〉). (E4)

Solving these equations, simultaneously with the ones for the
central spin, results in the solutions labeled as MF + C1 in
Fig. 7. Unfortunately they are in disagreement with the exact
result and produce an even worse approximation than the MF
solution: The instanton transitions are absent, and the suppres-
sion of coherent oscillations not captured. The reason is that
we have kept certain correlated parts, but eliminated others
without a physical criteria, introducing unphysical nonlinear
terms. It is important to understand that small changes in the
nonlinear terms, due to how the equations are truncated, will
produce small differences at short time, but in general they
can be dominant at long time. This is one of the reasons why
simulating dynamics can be quite complicated.

If we consider a more complex decoupling, where two-
spin correlations are maintained, we can just separate the
three-spin correlators as 〈Iz

i Iβ
n Sμ〉 
 〈Iz

i 〉〈Iβ
n Sμ〉, which mostly

assumes that when fluctuations are small around 〈Iz
i 〉, the so-

lution should be accurate. The next equation is then obtained
for the two-spin function:

∂t
〈
Iβ
n Sα

〉 

⎡
⎣εxαμB⊥ + εzαμ

⎛
⎝Bz −

N∑
i 
=n

Ai
〈
Iz
i

〉⎞⎠
⎤
⎦〈

Iβ
n Sμ

〉

+ (εzβν�z + εxβν�⊥)
〈
Iν
n Sα

〉
− An

4

(
εzβνδz,α

〈
Iν
n

〉 + εzαμδz,β〈Sμ〉). (E5)

This gives the numerical results labeled as MF + C2 in the
main text. The number of coupled equations is now larger,
and there is back-reaction included between the different
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two-point correlators. Nevertheless the numerical solution is
still at large disagreement with the exact solution.

Finally, an alternative decoupling is obtained by separating
the n-point functions into correlated and uncorrelated parts.
Here, one must determine the equation of motion for the
correlated part ∂t 〈Iβ

n Sα〉c = ∂t 〈Iβ
n Sα〉 − ∂t 〈Iβ

n 〉〈Sα〉:
∂t

〈
Iβ
n Sα

〉c = εzαμBz
〈
Iβ
n Sμ

〉c + εxαμB⊥
〈
Iβ
n Sμ

〉c
+ εzβν�z

〈
Iν
n Sα

〉c + εxβν�⊥
〈
Iν
n Sα

〉c
− εzαμ

N∑
i 
=n

Ai
(〈Sμ〉〈Iβ

n Iz
i

〉c + 〈
Iz
i

〉〈
Iβ
n Sμ

〉c

+ 〈
Iβ
n Iz

i Sμ
〉c) − εzβνAn

〈
Iν
n

〉(δz,α

4
− 〈Sα〉〈Sz〉

)

− εzαμAn

(
δz,β

4
− 〈

Iβ
n

〉〈
Iz
n

〉)〈Sμ〉

+ An
(
εzβν〈Sα〉〈Iν

n Sz
〉c + εzαμ

〈
Iβ
n

〉〈
Iz
nSμ

〉c)
. (E6)

The previous equation is exact but couples to higher spin cor-
relators. Now we assume that three-point correlation functions
are subdominant, and they can be neglected (at least at short
time). This results in

∂t
〈
Iβ
n Sα

〉c 
 εzαμBz
〈
Iβ
n Sμ

〉c + εxαμB⊥
〈
Iβ
n Sμ

〉c
+ εzβν�z

〈
Iν
n Sα

〉c + εxβν�⊥
〈
Iν
n Sα

〉c
− εzαμ

N∑
i 
=n

Ai
(〈Sμ〉〈Iβ

n Iz
i

〉c + 〈
Iz
i

〉〈
Iβ
n Sμ

〉c)

− εzβνAn
〈
Iν
n

〉(δz,α

4
− 〈Sα〉〈Sz〉

)

− εzαμAn

(
δz,β

4
− 〈

Iβ
n

〉〈
Iz
n

〉)〈Sμ〉

+ An
(
εzβν〈Sα〉〈Iν

n Sz
〉c + εzαμ

〈
Iβ
n

〉〈
Iz
nSμ

〉c)
. (E7)

These set of equations can be solved numerically and they
give quite accurate results. However, to capture the suppres-
sion of the oscillations observed from exact diagonalization, it
is enough to consider a simpler approximation of the previous
equation, by neglecting the slow terms given by the bath-bath
correlators 〈Iβ

n Iz
i 〉c 
 0, the terms proportional to ��, and the

two terms in the last line. This approximation will fail at long
times, but reduces the number of equations considerably. This
gives the numerical results labeled as hierarchy in the main
text (Fig. 4) and in Fig. 7.

One important aspect introduced by the correlated parts
is the appearance of quadratic terms 〈Iz

n〉2 in the equation of
motion, which even for large disorder, where the bath would
be unpolarized on average, are nonvanishing.

It is important to notice that the correlators entering the
equation of motion for the central spin magnetization are
summed over all bath spins (i.e., they are proportional to∑

i Ai〈Iz
i Sθ 〉c. This means that when numerically solving

the equations for the correlated parts, one must solve for∑
n An〈Iβ

n Sα〉c and not 〈Iβ
n Sα〉c. Therefore the quadratic terms

〈Iβ
n 〉〈Iz

n〉 require the addition of their equation of motion, as
they characterize the variance of the bath, which is different

to the square of its average value. However, its derivation is
simple, as it can be directly linked with the previous equations
of motion. For example, neglecting all correlations, they yield:

∂t
〈
Iα
n

〉〈
Iβ
n

〉 
 �⊥
(
εxβθ

〈
Iα
n

〉 + εxαθ

〈
Iβ
n

〉)〈
Iθ
n

〉
− An〈Sz〉(εzβθ

〈
Iα
n

〉 + εzαθ

〈
Iβ
n

〉)〈
Iθ
n

〉
, (E8)

where in the last line we have factorized the system-bath
operators. This is how the equations have been numerically
solved in this work.

APPENDIX F: FLOW EQUATIONS FOR THE HIERARCHY
OF CORRELATIONS

To obtain the flow equations that encode the effect of
amplitude renormalization using dRG we consider Eq. (E7)
with the assumption | ��|, Ai � |�B|, as previously discussed.
Then the equation has the next leading terms:

∂t
〈
Iβ
n Sα

〉c 
 εxαμB⊥
〈
Iβ
n Sμ

〉c + εzαμ

⎛
⎝Bz −

N∑
i 
=n

Ai
〈
Iz
i

〉⎞⎠〈
Iβ
n Sμ

〉c

− εzαμAn〈Sμ〉
(

δz,β

4
− 〈

Iβ
n

〉〈
Iz
n

〉)

− εzβνAn
〈
Iν
n

〉(δz,α

4
− 〈Sα〉〈Sz〉

)
, (F1)

where we have neglected bath-bath correlators (which are
proportional to | ��| and therefore subdominant) as well as
the precession of the spins in their internal field ��. The first
line in Eq. (F1) corresponds to the fastest timescale, coming
from the central spin dynamics precession, while the second
line is proportional to An and suppresses the amplitude of the
oscillations as the spins precess away from the longitudinal
axis. For the three relevant components, one has

∂t
〈
Iz
nSx

〉c =
⎛
⎝Bz −

N∑
i 
=n

Ai
〈
Iz
i

〉⎞⎠〈
Iz
nSy

〉c − An〈Sy〉
(

1

4
− 〈

Iz
n

〉2)
,

(F2)

∂t
〈
Iz
nSy

〉c = B⊥
〈
Iz
nSz

〉c −
⎛
⎝Bz −

N∑
i 
=n

Ai
〈
Iz
i

〉⎞⎠〈
Iz
nSx

〉c

+ An〈Sx〉
(

1

4
− 〈

Iz
n

〉2)
, (F3)

∂t
〈
Iz
nSz

〉c = −B⊥
〈
Iz
nSy

〉c
. (F4)

Notice that if we insert the dimensionless parameter ε, to keep
track of the slow bath dynamics, the previous equations are
equivalent to an expansion up to linear order in ε. At short
times the first line dominates they reduce to

∂t
〈
Iz
nSx

〉c
0 = ωz

〈
Iz
nSy

〉c
0, (F5)

∂t
〈
Iz
nSy

〉c
0 = B⊥

〈
Iz
nSz

〉c
0 − ωz

〈
Iz
nSx

〉c
0, (F6)

∂t
〈
Iz
nSz

〉c
0 = −B⊥

〈
Iz
nSy

〉c
0. (F7)
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The solution is similar to the one for the central spin, but
with different boundary conditions, which describe the initial
correlations between system and bath. Furthermore, as one
only needs its sum over all bath spins multiplied by An, we
can solve the next equation of motion instead:

∂t 〈PzSx〉c
0 = ωz〈PzSy〉c

0, (F8)

∂t 〈PzSy〉c
0 = B⊥〈PzSz〉c

0 − ωz〈PzSx〉c
0, (F9)

∂t 〈PzSz〉c
0 = −B⊥〈PzSy〉c

0, (F10)

where Pz = ∑
n AnIz

n , and the solutions are now independent
of the specific bath spin. As we assume that correlated parts
are small corrections to mean field, at least for short time,
and we attach to them an ε factor in the equations of motion
for the central spin and bath spins. Therefore the lowest-order
solutions for the central spin and the bath are unchanged, as all
the differences due to correlations will happen to linear order
in ε. To first order in ε, the equations of motion for the bath
spins are

∂t
〈
Ix
i

〉
1 = ε(�z − Ai〈Sz〉0)my

i , (F11)

∂t
〈
Iy
i

〉
1 = ε�⊥mz

i − ε(�z − Ai〈Sz〉0)mx
i , (F12)

∂t
〈
Iz
i

〉
1 = −ε�⊥my

i , (F13)

where we have neglected the correlated terms because they are
of order ε2. For the central spin, to first order in ε, one finds

∂t 〈Sx〉1 = ωz〈Sy〉1 − 〈Sy〉0

∑
i

Ai
〈
Iz
i

〉
1 − ε

∑
i

Ai
〈
Iz
i Sy

〉c
0,

(F14)

∂t 〈Sy〉1 = B⊥〈Sz〉1 − ωz〈Sx〉1 + 〈Sx〉0

∑
i

Ai
〈
Iz
i

〉
1

+ ε
∑

i

Ai
〈
Iz
i Sx

〉c
0, (F15)

∂t 〈Sz〉1 = −B⊥〈Sy〉1 (F16)

and for the correlations,

∂t
〈
Iz
nSx

〉c
1 = ωz

〈
Iz
nSy

〉c
1 − 〈

Iz
nSy

〉c
0

N∑
i 
=n

Ai
〈
Iz
i

〉
1

− εAn〈Sy〉0

(
1

4
− (

mz
n

)2
)

, (F17)

∂t
〈
Iz
nSy

〉c
1 = B⊥

〈
Iz
nSz

〉c
1 − ωz

〈
Iz
nSx

〉c
1 + 〈

Iz
nSx

〉c
0

N∑
i 
=n

Ai
〈
Iz
i

〉
1

+ εAn〈Sx〉0

(
1

4
− (

mz
n

)2
)

, (F18)

∂t
〈
Iz
nSz

〉c
1 = −B⊥

〈
Iz
nSy

〉c
1. (F19)

The appearance of new secular terms in the different solutions
is what gives rise to the modified flow equations for the
system. For the bath, the flow equations are identical to

the mean-field case, because we have neglected the role of
correlations on it:

∂τ mx
i = my

i

(
�z − Aiωz

B⊥Mx + Mzωz

�2
�m

)
, (F20)

∂τ my
i = mz

i �⊥ − mx
i

(
�z − Aiωz

B⊥Mx + Mzωz

�2
�m

)
, (F21)

∂τ mz
i = −my

i �⊥. (F22)

The solutions for the bath to first order will now be used
in the calculation for the central spin, which requires to
multiply by Ai and sum over all bath spins

∑
i Ai〈Iz

i 〉1 =
−ε(t − t0)�⊥

∑
i Aim

y
i = −ε(t − t0)�⊥ηy. The same needs

to be done for the lowest-order solutions of the correlated
parts, which is why we have defined aαβ = ∑

i Aic
αβ
i , and

cαβ
i is defined as the initial condition for the correlated part

〈Iα
i Sβ〉c. The equations of motion for the central spin, to first

order in ε, become

∂t 〈Sx〉1 = ωz〈Sy〉1 + ε(t − t0)�⊥ηy〈Sy〉0 − ε〈PzSy〉c
0, (F23)

∂t 〈Sy〉1 = B⊥〈Sz〉1 − ωz〈Sx〉1 − ε(t − t0)�⊥ηy〈Sx〉0

+ ε〈PzSx〉c
0, (F24)

∂t 〈Sz〉1 = −B⊥〈Sy〉1, (F25)

and their flow equation yields

∂τ ln (B⊥Mx + Mzωz ) = ε�⊥ωz
ηy

�2
�m
, (F26)

∂τ (B⊥Mz − ωzMx ) = ε�⊥ωzηy
B⊥Mz − ωzMx

�2
�m

+ εωzazy,

(F27)

∂τ My = εωz
azxωz − B⊥azz

�2
�m

. (F28)

In absence of correlated parts (aαβ = 0), one recovers the
mean-field flow equations, and correlations modify the longi-
tudinal and transverse magnetizations by coupling them with
My, which can now flow. Finally, for the boundary conditions
of the correlated parts, we solve the next equation of motion:

∂t 〈PzSx〉c
1 = ωz〈PzSy〉c

1 + ε(t − t0)�⊥ηy〈PzSy〉c
0 − ε〈Sy〉0ξz,

(F29)

∂t 〈PzSy〉c
1 = B⊥〈PzSz〉c

1− ωz〈PzSx〉c
1 − ε(t − t0)�⊥ηy〈PzSx〉c

0

+ ε〈Sx〉0ξz, (F30)

∂t 〈PzSz〉c
1 = −B⊥〈PzSy〉c

1, (F31)

where we have defined ξz = ∑N
n=1 A2

n( 1
4 − (mz

n)2). The solu-
tion leads to the next flow equations:

∂τ ln (B⊥azx + azzωz ) = ε�⊥ωz
ηy

�2
�m
, (F32)

∂τ (B⊥azz − azxωz ) = ε�⊥ωz
ηy

�2
�m

(B⊥azz−azxωz ) + εωzMyξz,

(F33)

∂τ azy = −ε
ξzωz

�2
(B⊥Mz − ωzMx ). (F34)
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FIG. 8. Comparison between the exact Hierarchy of correlations
(black), its lowest-order approximation using dRG (red) and the
exact dynamics for the central spin (green), at long times. Parame-
ters: �/B = 0.03, J/B = 0.05 and N = 100 for the initial condition
〈Sz(0)〉 = 1

2 and 〈Pz(0)〉 = N/2.

Then one just needs to define the disorder correlators for the
disordered case, or directly solve for the ordered case. Notice
that in the ordered case ξz = A2 N

4 − A2 ∑
n (mz

n)2, where now
mz

n(τ ) needs to be determined. However, it is easy to find its
equation of motion from Eq. (F22).

Figure 8 shows a comparison between the exact numerical
simulation and approximation using the hierarchy of corre-
lations decoupling at long times. It is clear that although
the slow decay is not captured, because it corresponds to a
higher-order correction in the flow equations, the agreement
is much better than the MF solution and than all the other
approximations previously tried.

Finally, Fig. 9 shows the solutions from the flow equations
for the cross-correlator between central spin and bath, and the

FIG. 9. Numerical solution of the flow equations for the running
of the different initial conditions. (Red, solid line) Mz(t ) still displays
instantonlike behavior, but the profile is modified due to correlations
with respect to the uncorrelated case (see Fig. 6, red-dashed line).
(Blue, dashed line) Mx (t ) also shows large corrections but it is always
negative, which is expected due to the positive value chosen for
the interaction parameter. (Green, dot-dashed line) azy(t ) displays
complicated oscillations, correlated with the bath and the central spin
magnetization, but importantly, acquires large values that can largely
modify the mean-field dynamics.

magnetization components Mx,z(t ). It is interesting to see that
the periodicity of the flow equations happens at quite long
time (of the order of t ∼ 220 in units of B−1

⊥ ) and that the
cross-correlator initial condition azy(t ) has large corrections,
even when the system starts in an uncorrelated state (cor-
rections of the order of ∼B⊥ rather than Ai or �⊥, which
is what one would find in absence of renormalization). This
means that central spin and bath become highly correlated and
these correlations are needed for a correct description of the
dynamics at late time.
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