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Chaos and the dynamics of information in dissipative electronic systems
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The dynamics of chaotic systems are, by definition, exponentially sensitive to the initial conditions and
may appear rather random. In this work, we establish rigorous relations between the chaotic dynamics of an
observable in a dissipative system and the dynamics of information (entropy) contained in this observable,
focussing on a disordered metal coupled to a dissipative, e.g., phononic, bath. The chaotic dynamics is
characterized by Lyapunov exponents λ, the rates of growth of out-of-time order correlators (OTOCs), quantities
of the form 〈[Â(t ), B̂(0)]2〉 ∝ exp(2λt ), where Â and B̂ are the operators of, e.g., the total current of electrons in
a metallic quantum dot. We demonstrate that the Lyapunov exponent λ matches, in appropriate units, the rate of
decay of information stored in the observable 〈Â(t )〉 after applying a small perturbation with a small classical
uncertainty. This relation suggests a way to measure Lyapunov exponents in experiment. We compute both the
Lyapunov exponent and the rate of decay of information microscopically in a disordered metal in the presence
of a bosonic bath, which may, in particular, represent interactions in the system. For a sufficiently short range of
the correlations in the bath, the exponent has the form λ = λ0 − 1/τ , where λ0 is the (temperature-independent)
Lyapunov exponent in the absence of the bath and 1/τ is the inelastic scattering rate of the electrons. Our results
demonstrate also the existence of a transition between chaotic and nonchaotic behavior at λ0 = 1/τ , which may
be triggered, e.g., by changing the temperature of the bath. Also, we provide arguments for the validity of the
established relation between chaos and the dynamics of information in a generic system.
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I. INTRODUCTION

Classical chaotic systems are systems whose dynamics
are exponentially sensitive to the initial conditions. Chaotic
dynamics is rather ubiquitous; it occurs in huge yet diverse
classes of systems, ranging from black holes [1] to disordered
metals [2] and nanoscale quantum dots [3]. Due to the extreme
sensitivity to the initial conditions, chaotic dynamics may
appear very random and their accurate description is, thus,
extremely challenging.

While chaotic behavior in classical systems may be defined
and quantified straightforwardly through exponential diver-
gence of close trajectories of the system, describing and even
defining chaotic dynamics in the case of a quantum system
is more delicate. A quantum system may be called chaotic
if it has a classical chaotic limit. However, a broad class
of quantum systems, such as spin systems or Hubbard-type
models, do not even have the classical limit, while exhibiting
evolution rather sensitive to external perturbations. Over sev-
eral decades, the Wigner-Dyson statistics (see, e.g., Ref. [4]
and references therein) of a system’s energy levels has been
used as a definition of quantum chaos. While this definition
is consistent with the existence of classical chaotic dynamics
in systems like disordered metals [2], the connection between
the level statistics and dynamics for an arbitrary system still
remains to be investigated thoroughly.
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Another characteristic of quantum chaotic behavior, which
has been in the focus of many studies of chaos since several
years ago, is an out-of-time-order correlator (OTOC) of the
form

F (t ) = −〈[Â(t ), B̂(0)]2〉, (1.1)

where Â and B̂ are operators acting on the system’s states, and
the averaging is carried out with respect to the equilibrium
state of the system. This characteristic was first proposed [2]
almost half a century ago in the context of noninteracting
particles scattered off randomly located impurities but has
come into focus of researchers’ attention several years ago,
causing an explosion of research activity on chaotic behav-
ior of both interacting and noninteracting quantum systems
(see, e.g., Refs. [1,5–15]). The correlator (1.1) describes the
sensitivity of the operator Â(t ) to a perturbation proportional
to B̂. For a disordered metal, for example, the OTOC of
momentum operators grows exponentially ∝e2λt , where the
exponent λ matches [16] that of the divergence of classical
trajectories [2], but, unlike the case of a classical case, the
growth persists only in a finite interval of time, τ0 � t � tE ,
where τ0 is the elastic scattering time and tE is known as the
Ehrenfest time, the characteristic time at which the crossover
between classical and quantum dynamics occurs [2,17].

Strictly speaking, OTOCs (1.1) are not experimentally
measurable quantities, unless the experiment involves ef-
fective time-reversal operations, such as spin-echo tech-
niques [18] or reversing the sign of the Hamiltonian [19,20]
or using the second copy of the system [20,21] or a control
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FIG. 1. Phase trajectories of a closed classical chaotic sys-
tem in the extended space of the observable A(t ) and phase
space. p1, . . . , pN and q1, . . . , qN are the generalized momenta and
coordinates.

qubit [22–25]. Measurements of OTOCs have been limited so
far to specific types of nonchaotic systems [19,26] of spins and
trapped ultracold particles, yet exponential growth of OTOCs
still remains to be observed experimentally.

The concept of quantum chaos is related closely to the con-
cept of quantum information scrambling, i.e., the process of
spreading of information in the system. Indeed, in the case of
local operators, correlators of the form (1.1) characterize the
spreading of operators in space. The exponential growth of an
OTOC (1.1) is believed to cease when the information, stored
initially in the perturbation Â(0), is dispersed homogeneously
around the system and can no longer be extracted by local
measurements. The phenomenology of chaotic dynamics ap-
plies ubiquitously to an enormous variety of chaotic systems,
ranging from black holes to mesoscopic structures and arrays
of spins, which allows one to study it, in particular, by means
of abstract toy models displaying chaotic dynamics, such as
Sachdev-Ye-Kitaev model [11].

In this paper, our purpose is to investigate the chaotic
dynamics in a quantum system and the dynamics of informa-
tion in it, as well as to establish connections between them.
We focus on the model of a disordered metal coupled to an
external bath, possibly in the presence of electron-electron
interactions. We study analytically the dynamics of both
OTOCs and the amount of information stored in the system’s
observables and analyze relations between them.

These relations are almost self-evident in the case of a
closed system which has a classical limit. Indeed, if the
OTOC (1.1) in that system grows exponentially ∝ exp(2λt ),
this growth comes from the exponential divergence between
close classical trajectories in the phase space of the system
with the Lyapunov exponent λ, as shown in Fig. 1. Strictly
speaking, the system may have multiple Lyapunov exponents,
but for sufficiently generic operators Â and B̂ the correlator
may be expected to grow with the maximum exponent or the
exponent having the biggest density in the spectrum of expo-
nents. Let us assume that the initial state of the system has a
small classical uncertainty, for example, due to an imperfect

preparation procedure, which leads also to a small uncertainty
δA(0) of the observable A(0) = 〈Â(0)〉. Then the (linear) size
of the uncertainty of the state of the system in phase space
will grow exponentially in time with the Lyapunov exponent
λ, and so will the uncertainty δA(t ) of the observable A(t ) =
〈Â(t )〉, so long as this observable is sufficiently generic.

We define the amount of information [measured in units
(1/ ln 2)th of a bit] contained in the quantity A(t ) as [27,28]

IA(t ) = const +
∫

dA ρ(A, t ) ln ρ(A, t ), (1.2)

where ρ(A, t ) is the probability density of the quantity A(t )
and const is an arbitrary constant. The amount of informa-
tion (1.2) is infinite when the quantity A is known exactly
and reaches minimum when A is distributed uniformly in the
interval of values it may take. The quantity −IA, with IA given
by Eq. (1.2), is known also, up to a constant, as the Shannon
entropy [27] of the quantity A(t ). The order of magnitude of
the probability density of A(t ) may be estimated as ρ(A, t ) ∼
1/δA(t ) ∝ e−λt in the interval of the width of order δA(t ) near
the mean value of A(t ). Using Eq. (1.2), this suggests that the
amount of information associated with variable A(t ) depends
on time as IA(t ) = const − λ′t , where the rate λ′ is on the
order of the Lyapunov exponent λ. Thus, the rate of change
information (1.2) may be expected to match, at least within
the order of magnitude, the (maximum) Lyapunov exponent.

The relations between chaotic dynamics, out-of-time-order
correlators and the dynamics of information may be more
complicated and require further investigation for open sys-
tems, i.e., coupled to a dissipative environment, and for
quantum systems, which may not have the classical limit.
This motivates us to study in this paper out-of-time-order
correlators and the dynamics of information in a system of
electrons in a disordered metal coupled to a bath of neutral
excitations, such as phonons or plasmons. In the absence of
the coupling and for sufficiently large impurities, that system
is known to be chaotic [2] (see also Ref. [16]) and have a
well-defined (chaotic) classical limit. Coupling to a dissipative
bath makes the dynamics quantum and, for sufficiently strong
coupling, may convert chaotic dynamics to nonchaotic.

This paper is organized as follows. In Sec. II we present
a summary of our results. Sec. III deals with chaos and the
dynamics of information of a single particle in a disordered
metal or a chaotic billiard. In Sec. IV we introduce the
microscopic model of a disordered model in the presence of
a phonon bath and/or interactions. In Sec. V we evaluate the
OTOC of the form (1.1) to determine the Lyapunov exponent
λ in this model. Subsequently, the concept of information as-
sociated with the system’s total momentum and its dynamics
are discussed in Sec. VI. We conclude in Sec. VII.

II. SUMMARY OF RESULTS

We characterize the chaotic dynamics of a disordered metal
coupled to a bath of neutral excitations by its Lyapunov
exponents, i.e., the rates λ of growth of out-of-time-order
correlators of the form (1.1). In principle, the growth rate
of an OTOC may depend on the choice of the operators Â
and B̂, and a generic system with quenched disorder should
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be expected to have a continuous spectrum of Lyapunov
exponents. However, an arbitrary pair of operators may be
projected onto the operators which lead to the growth with
the maximum exponent or an exponent having a very large
density in the spectrum of exponents, which is why broad
classes of similar operators Â and B̂ may be expected to lead
to the exponential growth with the same rate. A number of
studies (see, for example, Refs. [5,8,11,12,14]) of out-of-time-
order correlators dealt with the creation �̂† and annihilation
�̂ operators of particles, for the sake of simplicity of calcu-
lations. However, correlators of observables, such as densities
and currents, are even in creation and annihilation operators
and, strictly speaking, may correspond to different Lyapunov
exponents. In this paper, we consider the correlators of the
operators Â = B̂ = P̂z of the total momentum of electrons in a
disordered metal coupled to a bath. We expect, however, that
our results for the Lyapunov exponents apply for a broad class
of operators, such as currents or densities of electrons (or their
combinations). Furthermore, correlators of such operators as
currents and densities allow for measuring growth rates of
these correlators, as we demonstrate in this paper, unlike the
case of electron creation and annihilation operators.

The dissipative bath, to which the system of electrons
is coupled, is represented by neutral excitations, hereinafter
referred to as phonons. However, the role of of the bath may be
played by neutral excitations of other nature, e.g., magnons or
plasmons. Because these excitations may mediate interactions
between electrons, we expect our results to hold qualitatively
for systems of interacting electrons in the absence of a bath
in a many-body-delocalized phase [29–31], where the inter-
actions act as a bath.

A. Lyapunov exponent

By evaluating the OTOC (1.1) of the operators P̂z of the
total momentum, we find that for a sufficiently short range
of correlations in the phonon bath, the Lyapunov exponent is
given by

λ = λ0 − 1/τ, (2.1)

where λ0 is the “single-particle” Lyapunov exponent, i.e.,
the rate of exponential divergence between close classical
trajectories [2] in the absence of the bath, and τ is the time
of inelastic scattering of electrons by phonons (which also
gives the order of magnitude of the dephasing time in the
system). The existence of the exponential growth of the OTOC
requires that the impurities in the metal be sufficiently big,
with the characteristic size a exceeding (λF vF τ0)

1
2 , where λF

and vF are the Fermi wavelength and velocity and τ0 is the
elastic scattering time. The same condition ensures the exis-
tence of chaotic behavior for the single-particle problem [32].
This condition also allows us to consider electron dynamics
quasiclassically.

Equation (2.1) suggests the existence of a transition be-
tween the regime of chaotic dynamics (λ > 0), with the ex-
ponential growth of the OTOC, and the regime of nonchaotic
dynamics (λ < 0), where the OTOC decays exponentially.
The transition may be triggered by changing the amount of

disorder in the system or, e.g., the temperature, which affects
the rate 1/τ of inelastic scattering.

B. Characteristic timescales

The chaotic behavior, described by the exponent (2.1),
persists in a finite interval of time tph � t � tE , where

tph = λ−1
0 ln(ξph/λF ), (2.2)

with ξph being the correlations length of the phonon bath, and

tE = λ−1
0 ln(a/λF ) (2.3)

is the Ehrenfest time [2,17], which characterizes the crossover
between classical and quantum dynamics of electrons in the
noninteracting problem, i.e., in the absence of coupling to
the bath. At very short times, τ0 � t � tph, the OTOC also
exhibits exponential growth, but with a different Lyapunov
exponent. In this paper, however, we focus on the time interval
tph � t � tE , associated with the Lyapunov exponent (2.1).

At times t shorter than tE , the propagation of wave packets
is similar that of classical particles, and the single-particle
interference effects [32–34], such as weak localization, may
be neglected. For longer times, t � tE , the diffraction on im-
purities and other single-particle interference effects become
important.

In this paper, we consider sufficiently large systems, where
the inverse splitting between quasiparticle energies in the
absence of interactions (also known as the Heisenberg time)
is the largest timescale in the problem and exceeds all the
other timescales. The effects of spatial quantization of the
quasiparticle states, thus, play no role in our consideration.
The dynamics of OTOCs in the opposite case of a small
dissipative quantum dot, where the spatial quantization is
large, has been considered in detail in Ref. [35].

C. Information dynamics

We study also the relation of the chaotic dynamics, charac-
terized by the exponent (2.1), to the dynamics of information
associated with the observable Â which enters the out-of-
time-order correlator. As a specific example, we focus on
the operator Â = P̂z of the total momentum of electrons, but
expect that our results hold as well for a broad class of generic
operators such as electron densities, total spins, currents, or
their combinations.

We assume that at time t = 0 the distribution of the system
is perturbed slightly, and that the perturbation has a small
(classical) uncertainty and a short correlation range in phase
space. This uncertainty makes the quantum-mechanical av-
erage 〈Â(t )〉 of the observable Â a random function. The
amount of information associated with the quantity A(t ) =
〈Â(t )〉 changes with time. We demonstrate that in the case of
short-range interactions the information changes with the rate

d

dt
IA(t ) = −λ (2.4)

given by the Lyapunov exponent Eq. (2.1). Thus, the exter-
nally induced fluctuations of an observable contain informa-
tion about the system’s chaotic dynamics.
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When λ0 > 1/τ , the system is chaotic, according to the
definition of chaos by means of OTOCs, and the uncertainty of
the variable A(t ) grows. When λ0 < 1/τ , the strong coupling
between the electrons and the bath leads to a fast relaxation
of the system’s state to equilibrium, which makes the ob-
servable A(t ) more certain, and the amount of information
thus increases. The established relation between OTOCs and
the dynamics of information may be used, in principle, as
a way of measuring Lyapunov exponents by monitoring the
fluctuations of observables as a function of time. Several
possible measurement schemes will be discussed in Sec. VII.

III. INFORMATION DYNAMICS FOR A SINGLE
PARTICLE IN A BILLIARD

Before describing chaotic dynamics in a many-body sys-
tem in the presence of a random potential and a dissipa-
tive bath, we use a single-particle example to illustrate the
connection between chaotic behavior and the dynamics of
information contained in macroscopic observables. In what
immediately follows, we consider the dynamics of a classical
particle scattered elastically off randomly located impurities
or, equivalently, the walls of a chaotic billiard.

We assume that the initial momentum of the particle is not
known exactly, but has a small uncertainty δP0 relative to a
certain vector P0. This (classical) uncertainty of the momen-
tum may come, for example, from an imperfect procedure
of preparing the state of the particle leading to (classical)
randomness in the initial parameters of the system. The vector
δP0 of the uncertainty of the particle’s momentum is perpen-
dicular to the vector P0 and has zero average, 〈δP0〉prep = 0,
where 〈·〉prep is our convention for averaging over the proce-
dure of preparing the initial state. For simplicity, we assume
also that the initial position R0 of the particle is known exactly,
however, the analysis below may be generalized to the case
where the initial position also has some uncertainty.

If the position and the momentum of the particle were
known exactly at time t = 0, the particle would move along
a classical trajectory, hereinafter referred to as the “master
trajectory,” determined by the classical equations of motion
and the initial conditions (R, P)t=0 = (R0, P0). In this case,
the momentum and position of the particle (P, R)t are de-
terministic functions. However, if the initial momentum is
uncertain, possible trajectories of the particle deviate from the
master trajectory, and the uncertainty of the momentum P(t )
at later times t > 0 grows as shown in Fig. 2. Because of this
growth of the uncertainty, the amount of information stored in
the momentum of the particle decreases with time.

Introducing small deviations δP(t ) and ζ(t ) of momentum
and position from the master trajectory at time t , the evolution
of the uncertainties of momentum and coordinate is described
by the equations

d

dt
〈δP2(t )〉prep = 4p2λ3

0

v2
〈ζ 2(t )〉prep, (3.1a)

d

dt
〈ζ 2(t )〉prep = 2v

p
〈ζ · δP(t )〉prep, (3.1b)

d

dt
〈ζ · δP(t )〉prep = v

p
〈δP2(t )〉prep, (3.1c)

FIG. 2. Two classical trajectories of electrons scattered off a
chain of impurities. The initially small momentum difference δP
and spatial separation ζ grow exponentially because of the chaotic
dynamics until the time of evolution reaches the Ehrenfest time tE , at
which one of the trajectories misses the next consecutive impurity of
the chain.

where λ0 is the Lyapunov exponent for the system under con-
sideration and v and p are the absolute values of, respectively,
the velocity and momentum of the particle, which remain
constant during elastic collisions with the impurities or the
walls of the billiard.

The system of equations (3.1a)–(3.1c) describes also the
evolution of the divergence between trajectories in momentum
and coordinate spaces for a particle scattered elastically off
randomly located impurities [2,16]. The derivations of the
respective equations in Refs. [2,16] relied on the procedure
of disorder averaging, i.e. averaging over the locations of
impurities. We emphasize, however, that we consider here a
particular realization of disorder (or of the walls of a chaotic
billiard) and assume that the evolution of the separation be-
tween trajectories may be considered self-averaged. Namely,
we assume that the evolution of the uncertainty 〈δP2(t )〉prep of
the particle’s momentum matches the evolution of a beam of
particles with the same width (in momentum and coordinate
spaces) averaged over disorder:

〈δP2(t )〉prep = 〈δP2(t )〉dis. (3.2)

This assumption is justified if a considerable change of the
deviation δP(t ) of momentum requires multiple scattering
events.

Solving Eqs. (3.1a)–(3.1c) gives exponential growth,
〈δP2(t )〉prep ∝ e2λ0t , of the variance of the particle’s momen-
tum with the Lyapunov exponent λ0. So long as a significant
change of the variance requires a large number of collisions
with impurities or with the walls of the system, the distribution
of the projection of momentum on the z axis may be assumed
Gaussian,

ρ(Pz; t ) = [
2π

〈
δP2

z (t )
〉
prep

]−1/2
exp

{
[Pz − 〈Pz(t )〉prep]2

2
〈
δP2

z (t )
〉
prep

}
,

(3.3)

according to the central limit theorem. The distribution of
momentum is also Gaussian in a more generic case of an
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arbitrary number of collisions on time t , provided the initial
distribution at t = 0 is Gaussian. The variance 〈δP2

z (t )〉prep

of the projection of momentum Pz on a particular axis z in
Eq. (3.3) is proportional to the variance 〈δP2(t )〉prep of the
total momentum and thus also grows exponentially with the
exponent 2λ0.

Using the definition (1.2) of the amount of information
encoded in the projection Pz of momentum and the time
dependence 〈δP2

z (t )〉prep ∝ e2λt0 of the projection, we obtain,
thus, that the information

IPz (t ) = const − λ0t (3.4)

changes with the rate given by the Lyapunov exponent λ0.
In what follows, we generalize this connection between the
rate of change of information, encoded in the system’s ob-
servables, and the Lyapunov exponents to a disordered metal
coupled to a dissipative bath with short-range correlations.

IV. MODEL FOR A MANY-BODY CHAOTIC SYSTEM

In what follows, we derive the main result of this paper
for the connection between out-of-time-order correlators and
information dynamics for a system of electrons in a disordered
medium interacting with neutral excitations, which we label
as “phonons.” In principle, these bosons may be represented
by excitations of a different nature, e.g., magnons, or may
mediate electron-electron interactions (assuming the system is
in a many-body-delocalized phase [29–31]), in which case the
bosons correspond effectively to plasmons. Thus, we expect
the results to hold for a system of interacting particles, as well
as for electrons coupled to a bosonic bath. The Hamilton of
the systems is given by

Ĥ = Ĥel + Ĥel−ph + Ĥph, (4.1)

where

Ĥel =
∫

r
ψ†(r)[εk̂ + Uimp(r)]ψ (r); (4.2)

ψ (r) and ψ†(r) are the creation and annihilation operators for
an electron at coordinate r; k̂ = −i ∂

∂r is the momentum op-
erator; εk̂ is the operator of the electron dispersion (measured
from the chemical potential)

Ĥel−ph = g
∫

r
φ(r)ψ†(r)ψ (r) (4.3)

is the Hamiltonian of the electron-phonon coupling; Hph is
the Hamiltonian of the phonon bath with g being a small
constant of electron-phonon coupling. We do not consider the
spin degree of freedom as it does not affect the results for
the Lyapunov exponents and the rates of information change
in the system; φ(x) = φ†(x) is the phonon field operator
corresponding to a real-valued displacement field.

The Hamiltonian Ĥph in Eq. (4.1) governs the dynamics
of the phonon bath. The exact microscopic details of the
Hamiltonian of phonons are not important for the results of
this paper. The phonons are assumed to be correlated on a
length ξph significantly shorter than the characteristic size a
of the impurities or, in the absence of impurities, the size
of the chaotic billiard. We assume also that the distribution

function of the phonons is affected weakly by the coupling to
the electrons.

Quenched disorder is represented by the potential
Uimp(r) = ∑

i U (r − Ri ) of randomly located impurities, with
U (r − Ri ) being the potential of the ith impurity. The poten-
tial of one impurity is assumed to be short-ranged compared
to the mean-free path of the electrons.

V. OUT-OF-TIME-ORDER CORRELATOR

A frequently used definition of chaotic behavior in a sys-
tem, which we also employ here, is the exponential growth of
an OTOC (1.1) of two operators. In this paper, we focus on
the OTOC

F (t ) = −〈[P̂z(t ), P̂z(0)]2〉, (5.1)

of the operators

P̂z(t ) =
∫

r
ψ†(r, t ) p̂zψ (r, t ) (5.2)

of the projection of the total momentum of the electrons
in the system, where 〈·〉 = Z−1tr[e−Ĥ/T · · · ]; p̂z = −i∇z is
the single-particle momentum operator and z is one of the
coordinates of r. OTOCs are often computed by means of
a diagrammatic technique on a four-branch Keldysh contour
(see, e.g., Refs. [5,8,10–12,14]). Here, however, we use a
different approach, based on deriving the kinetic equation for
OTOCs, similarly to the derivation in Ref. [8]. As discussed
in the previous section, we consider a particular realization of
disorder to determine the time evolution of the OTOC.

A. Kinetic equation for OTOC

For deriving the kinetic equation, it is convenient to intro-
duce the correlation function

K (Rrτ, R′r′τ ′, t )

=
〈[

ψ†

(
R− r

2
, t − τ

2

)
ψ

(
R+ r

2
, t + τ

2

)
, P̂z(0)

]
(5.3)

×
[
ψ†

(
R′− r′

2
, t − τ ′

2

)
ψ

(
R′+ r′

2
, t + τ ′

2

)
, P̂z(0)

]〉
,

where 〈·〉 = Z−1tr[e−Ĥ/T · · · ] represents averaging with re-
spect to the equilibrium state with the temperature T ; R(′)
and t (′) are the so-called “center-of-mass” coordinates and
times [36,37] of the respective pairs of the fermionic op-
erators; r(′) and τ (′) are the respective differences of the
coordinates and times. The operators in the correlator (5.3)
are out-of-time ordered, i.e., cannot be ordered on the Keldysh
contour [37].

Any OTOC of the form 〈[Â(t ), P̂z(0)]2〉 may be expressed
conveniently as a linear combination of correlators (5.3) or
their Wigner transforms

K (Rp, R′p′, t )

=
∫

rωτ

∫
r′ω′τ ′

ei(ωτ−rp)+i(ω′τ ′−r′p′ )K (Rrτ, R′r′τ ′, t ), (5.4)
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where
∫

rωτ
· · · = ∫

drdτ dω
2π

· · · . For example, the
OTOC (5.1) of the operators of momentum projections
is given by

F (t ) =
∫

pR

∫
p′R′

pz pz′K (Rp, R′p′, t ), (5.5)

where our convention for momentum integration is
∫

p · · · =∫ dp
(2π )3 · · · .
The function K (Rp, R′p′, t ) evolves similarly to the joint

distribution of two systems of qausiparticles or the product
f (p1, R1) f (p2, R2) of quasiparticle distribution functions.
For noninteracting particles in the absence of the phonon bath,
the evolution of these two objects is governed by exactly
the same kinetic equation. This reflects the mapping between
the evolution of an out-of-time-order correlator and the joint
distribution of two copies of the system, as discussed in
Ref. [35].

When the system is weakly coupled to a phonon bath, the
evolution of the correlator (5.4) is slightly modified by the
phonons and is governed by the equation (see the Appendix
for the details of the derivation)

(∂t + iL̂R,p + iL̂R′,p′ )K (Rp, R′p′, t ) = Iph[K], (5.6)

where the left-hand side with the Liouville operator

iL̂R,p = vp ·∇R − ∇RUimp(R)·∇p (5.7)

describes “free” propagation of quasiparticles in the potential
Uimp created by impurities, and the “collision integral” integral
Iph[K] accounts for the effects of coupling to the phonon bath;
vp ≡ ∇pε(p) ≈ vF p/|p| is the velocity of the quasiparticles.

Equation (5.6) describes the dynamics of the correlator
K (Rp, R′p′, t ) in the quasiclassical regime, i.e., when the
impurity sizes and the characteristic length scale of the cor-
relator K (Rp, R′p′, t ) exceed considerably the wavelength
λF of the quasiparticles at the Fermi surface. Under these
conditions, the correlator K (Rp, R′p′, t ) is a smooth function
of its arguments.

Initially, i.e., at time t = 0, the correlator is sharply peaked
as a function of |R − R′| and |p − p′|, with the characteristic
length on the order of λF [16]. During the evolution, the
distance between the trajectories of quasiparticles in phase
space increases and the characteristic length and momentum
scales of the correlator K (Rp, R′p′, t ) grow.

In most of this paper, we focus on short-range interactions
or short-range-correlated phonon bath, whose length scale ξph

is exceeded considerably by the characteristic length scale a
of the system. This latter scale may be given, for example,
by the impurity size in a disordered metal or by the size of the
system, in the case of a classically chaotic billiard. The regime
of evolution, for which the characteristic length scale of the
correlator K (Rp, R′p′, t ) is larger than ξph but smaller than a
corresponds to a parametrically large interval of times, tph �
t � tE , shown in Fig. 3, and the time tph given by Eq. (2.2).
As we demonstrate below, the phonons affect the dynamics at
this interval, but do not cause significant correlations between
different phase trajectories contributing to the OTOC.

Therefore, the collision integral in the kinetic equa-
tion (5.6) in the interval tph � t � tE is given by (see the

FIG. 3. Characteristic timescales of the evolution of the system.
At short times, t � tph, the characteristic correlation length ξph of
the phonon bath exceeds the distances between the phase trajectories
of quasiparticles; in this regime, phonons lead to strong correlations
between the trajectories. At longer times, tph � t � tE , phonons af-
fect the quasiparticle motion but do not cause significant correlations
between different phase trajectories which contribute to the OTOC.

Appendix)

Iph[K] = −K (Rp, R′p′, t )
∫

k
(�p→k + �p′→k )

+
∫

k
�k→pK (Rk, R′p′, t )

+
∫

k
�k→p′K (Rp, R′k, t ), (5.8)

where we have introduced the phonon-assisted scattering rate

�p→k = ig2{D<(p − k, εp − εk ) f0(εk )

+ D>(p − k, εp − εk )[1 − f0(εk )]}, (5.9)

where g is the electron-phonon coupling constant, defined by
Eq. (4.3); D< and D> are the “lesser” and “greater” [36,37]
phonon propagators [see Appendix, Eq. (A6) for the defini-
tions]; f0 is the Fermi distribution function.

Initial conditions

The kinetic equation (5.6) with the collision integral (5.8)
describes the evolution of OTOCs at times tph � t � tE ,
when the characteristic distances of the trajectories contribut-
ing to the chaotic behavior exceed, on the one hand, the
correlation length ξph of the phonon bath and are significantly
smaller, on the other hand, than the characteristic length scale
of the ballistic billiard. To provide a full description of the
evolution on this time interval, the kinetic equation (5.6) has
to be complemented by the initial condition for the correlator
K (Rp, R′p′, t ) at t = tph.

It has been demonstrated in Ref. [16] that at time t = 0 the
correlator for a metal in equilibrium is given by

K (Rp, R′p′, 0)

= (4π )3δ(p − p′)∂Z∂ ′
Z

∫
q

e2iq(R−R′ ) f0(εp−q)[1− f0(εp+q)],

(5.10)

and, so long as distances |R − R′| exceeding the Fermi wave-
length λF are concerned, may be approximated as derivatives
of a δ function with respect to the z components of R and R′:

K (Rp, R′p′, 0) ≈ (2π )6 f0(εp)[1 − f0(εp)]

× δ(p − p′)∂Z∂Z ′δ(R − R′). (5.11)

In the case of short-range correlations of the bath, on which
we focus in most of this paper, the initial period tph of
the evolution of the correlator (cf. Fig. 3) is short and the
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correlator may be assumed to have the form (5.11) at t = tph,
which may then be used as the initial condition for the kinetic
equation (5.6). For insufficiently short-range correlations of
the phonons, however, the initial conditions will be different.
The exact form of the initial condition for the correlator
K (Rp, R′p′, 0) does not affect our results for the Lyapunov
exponents and the rates of information dynamics, so long as
the correlator remains sharply peaked at short times t � tph.

B. Dynamics of the OTOCs

1. Conservation laws

From the kinetic equation (5.6) with the collision inte-
gral (5.8) it follow that the correlator K has the conservation
law ∫

R,R′,p,p′
K (Rp, R′p′, t ) ≡ NK = const. (5.12)

This conservation law is analogous to the conservation of
the number of particles N = ∫

R,p f (R, p, t ) in an electronic
system which obeys the conventional kinetic equation for the
distribution function f [38]. For the initial condition (5.11) the
constant NK in the conservation law (5.12) is zero, NK = 0.

2. Smooth and peaked parts of the correlator

To describe further the evolution of the correlator
K (Rp, R′p′, t ), obeying the kinetic equation (5.6), it is con-
venient to decompose it into the “peaked” (p) and “smooth”
(s) parts,

K = K (s) + K (p), (5.13)

where the peaked part K (p) has characteristic length |R − R′|
and momentum |p − p′| scales considerably shorter than,
respectively,

ach = a2

�
(5.14a)

and

pch = a

�
pF , (5.14b)

while the smooth part K (s) does not vary significantly on these
scales, where � = vF τ0 is the mean-free path, i.e., the distance
that a quasiparticle travels between collisions with impurities
or the walls of the billiard in the absence of the phonon bath,
and pF is the Fermi momentum.

Initially, the correlator K (Rp, R′p′, t ), shown in Fig. 4(a),
is sharply peaked at origin as a function of p − p′ and R − R′,
according to Eq. (5.11). At later times, it acquires a “smooth”
part as well, due to the scattering by long-wavelength phonons
and the concomitant deflections of the classical electron tra-
jectories, as shown in Fig. 5.

Smooth K (s) and peaked K (p) correlators evolve qualita-
tively differently under impurity scattering. When electrons
are scattered off impurities (or the walls of the billiard), the
peaked part remains peaked on sufficiently short times, but
its width grows exponentially with time ∝eλ0t , as shown in
Fig. 4(b). The smooth part also remains smooth and on times
t � τ0 has the characteristic momentum scale |p − p′| on the
order of the Fermi momentum pF .

(a) (b)

FIG. 4. The correlator K (Rp, R′p′, t ) as a function of momen-
tum difference p − p′ for close locations R and R′. (a) The correlator
at t = 0. It is a sharply peaked function with the characteristic
momentum scale λ−1

F . (b) The correlator at later times. It consists of
two parts, a sharply peaked part K (p) with an exponentially growing
width and correlated on length and momentum scales significantly
shorter, respectively, than (5.14a) and (5.14b), and a smooth part K (s)

which does not vary significantly on these scales.

Indeed, classical electron trajectories corresponding to the
same momenta and a small length separation ζ � ach remain
close to each other over several collisions and hit the same
chain of impurities, as shown in Fig. 2. If they scatter off
an impurity of size a, then after the collision their momenta
are still close and confined to a small angle φ ∼ ζ/a � a/�.
If, after that, these trajectories collide with another impurity,
distance � away from the first collision, the spatial separation
between the trajectories is on the order of φ� � a and is still
significantly smaller than the impurity size a. Similarly, close
electron trajectories with momenta differences smaller than
the scale pch, given by Eq. (5.14b), remain closer than the
impurity size after one or several collisions. The divergence
between the respective trajectories is described by the system
of equations (3.1a)–(3.1c) in the absence of the phonon bath.
It leads to the exponential growth of the separation between
classical trajectories, which leads to the exponential growth
of the width of the correlator K (p), shown in Fig. 4(b), in

FIG. 5. Electron trajectories in the presence of both impurity
and phonon scattering. Under impurity scattering, two quasiparticles
with close initial momenta and locations propagate along close
trajectories, with an exponentially growing separation ∝eλ0t between
them. If one of the quasiparticles is scattered by a phonon, its motions
deviates significantly from the initial trajectory, the motion of the
quasiparticles becomes effectively uncorrelated, and the separation
between them grows diffusively (∝t

1
2 ).
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the absence of the phonon bath. As we demonstrate below,
this exponential growth persists in the presence of collisions
with phonons; electron-phonon interaction reduce, however,
the height of the peak.

If, on the other hand, the spatial or momentum separa-
tion between two quasiparticles exceeds the scales (5.14a)
or (5.14b), then these quasiparticles start to move far away
from each other after one collision with an impurity; even
if these quasiparticles hit the same impurity, the separation
between their trajectories will exceed the impurity size a
before the next elastic collision. Such quasiparticles move
diffusively relative to each other, and the spatial separation
between them depends on time as ∝t

1
2 for t � τ0.

While peaked and smooth correlators remain, respectively,
peaked and smooth under collisions with impurities, short-
range-correlated phonons change quasiparticle momenta by
values exceeding the scale (5.14b) and thus may convert the
peaked and the smooth correlators to each other.

3. Contribution of the smooth part to the OTOC

Initially, the correlator K (Rp, R′p′, t ) is sharply peaked,
K = K (p). The scattering of momenta p and p′ by phonons
may lead to large momentum differences |p − p′| and, thus,
result in the emergence of the smooth part K (s) of the cor-
relator. If correlations in the phonon bath are sufficiently
short-range, i.e., if the phonon momenta are sufficiently long,
the momenta p and p′ of the smooth part of the smooth
correlator K (s)(Rp, R′p′, t ) are distributed uniformly on the
Fermi sphere, and this part does not contribute to the OTOC,

F (s) =
∫

R,R′,p,p′
pz p′

zK
(s)(Rp, R′p′, t ) = 0. (5.15)

For a more generic phonon bath, which is correlated on
momentum scales shorter than the Fermi momentum pF

but longer than the scale (5.14b), the contribution F (s) of
the smooth part K (s) of the correlator K is still strongly
suppressed, because it comes from the projections of two
momenta pz and p′

z for different quasiparticle trajectories,
separated by a large distance in a disordered system, which
have little correlation between each other. Therefore, the main
contribution to the OTOC (5.1) comes from the peaked part
K (p) of the correlator K .

4. Contribution of the peaked part to the OTOC

In this paper, we focus on a phonon bath with sufficiently
short-range spatial correlations, which lead to the charac-
teristic momenta of the phonons exceeding the scale pch

given by (5.14b). This phonon bath, when interacting with
the quasiparticles, converts the sharply peaked part K (p) of
the correlator K to the smooth part K (s). From the kinetic
equation (5.6) with the collision integral (5.8) it follows that at
sufficiently short times, when the smooth part of the correlator
is small, the evolution of the peaked part is described by the
equation(

∂t + iL̂R,p + iL̂R′,p′ − 2

τ

)
K (p)(Rp, R′p′, t ) = 0, (5.16)

where the rate 1/τ is given by

τ−1 =
∫

k
�p→k||p|=pF = −2g2

∫
k

ImDR
p−k(εp − εq)

× [nB(εp − εk ) + 1 − f0(εk )]||p|=pF (5.17)

and matches the rate of scattering of electrons by phonons in
a metal [39], where f0(ω) = [exp(ω/T ) + 1]−1 and nB(ω) =
[exp(ω/T ) − 1]−1 are, respectively, the equilibrium Fermi
and Bose distribution functions, and we have taken into ac-
count that the momenta p and p′ are close to the Fermi surface.

The retarded phonon propagator DR(r − r′) =
−iθ (t − t ′)〈φ(r, t )φ(r′, t ′)〉, where 〈·〉 = Z−1

ph tr[e−Ĥph/T · · · ],
in Eq. (5.17) is renormalized by phonon-phonon interactions
and, thus, has in general a smooth imaginary part as a function
of both momentum and energy. We emphasize that the term
“phonon” is used loosely in this paper as a convention for a
generic bosonic excitation. The respective bosonic bath may
be represented by magnons, plasmons, spinons, etc. In the
case of instantaneous interactions, e.g., Coulomb interactions
between the quasiparticles, the unperturbed propagator DR

q
is real but acquires a finite imaginary part as a result of
renormalization (screening).

According to Eq. (5.16), the evolution of the peaked corre-
lator K (p) at sufficiently short times is given by

K (p)(Rp, R′p′, t ) = e−2t/τ K (p)
0 (Rp, R′p′, t ), (5.18)

where K (p)
0 is the correlator (5.4) for the same system in

the absence of the phonon bath. The evolution of the latter
correlator is governed by the equation

(∂t + iL̂R,p + iL̂R′,p′ )K (p)
0 (Rp, R′p′, t ) = 0, (5.19)

which matches the kinetic equation (5.6) in the absence of the
electron-phonon collision integral (5.8).

5. Evolution of the OTOC under the influence of the phonon bath

We have demonstrated that the influence of the phonon
bath on the evolution of the correlator K (Rp, R′p′, t ) is re-
duced to the exponentially decaying ∝e− 2t

τ prefactor, where
1/τ is the electron-phonon scattering rate, and to the emer-
gence of the smooth part of the correlator, which does not
contribute to the OTOC (5.1).

Therefore, the time evolution of the OTOC for a system of
electrons coupled to a short-range-correlated phonon bath is
described by the equation

F (t ) = e−2t/τ F0(t ), (5.20)

where

F0(t ) =
∫

RpR′p′
pz p′

zK
(p)
0 (Rp, R′p′, t ) (5.21)

is the OTOC in the absence of the coupling to the bath, studied
in detail in Ref. [16]. The Lyapunov exponent for an electronic
system coupled to a short-range-correlated phonon bath is
thus given by

λ = λ0 − 1/τ. (5.22)

The evolution of the out-of-time-order correlator, de-
scribed in this section, has a simple qualitative interpretation.
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The growth of the OTOC comes from correlations between
close classical trajectories of quasiparticles. If an electron gets
scattered by a phonon, its trajectory deviates strongly from
the classical trajectories of the other electrons and becomes
uncorrelated with them and, thus, ceases to contribute to the
growth of the OTOC. The probability that an electron avoids
scattering by phonons on time t is given by e− t

τ . The growth
of the OTOC, which is determined by correlations between
pairs of such trajectories, gets multiplied by the factor e− 2t

τ ,
compared to the phonon-free evolution. As a result, the time
dependence of the OTOC is given by ∝e2λ0t− 2t

τ

When the coupling to the phonon bath is weak, the OTOC
is almost unaffected by the phonon bath, in accordance with
Eq. (5.22), and grows with the exponent λ0. When the cou-
pling to the phonons is strong, all correlations are suppressed,
and the OTOC decays exponentially. At λ0 = 1/τ , a transition
between chaotic and nonchaotic behavior takes place, analo-
gous to the interaction-driven transition predicted in Ref. [16].
This transition may be triggered, for example, by chang-
ing temperature, which affects the electron-phonon scattering
rate 1/τ .

VI. THE DYNAMICS OF INFORMATION

In what follows, we discuss the relation between chaotic
dynamics, characterized by the Lyapunov exponent λ in a
disordered metal coupled to a bosonic bath and the dynamics
of information associated with a physical observable in this
system. For the observable, we choose the same operator
Â = B̂ = P̂z which enters the OTOC (5.1) growing with the
exponent λ.

A. Measurement of the information in the observable

We assume that at t = 0 the systems is exposed to a
perturbation, which modifies slightly the electron distribution
function f (R, p). This perturbation has a small classical un-
certainty, e.g., due to an imperfect procedure of perturbing
the system or due to the initial perturbation not being known
exactly. After time t , the expectation value of the projection
of the total momentum of the electrons,

Pz(t ) ≡ 〈P̂z(t )〉, (6.1)

is measured, where 〈·〉 is averaging with respect to the initial
(uncertain) state of the system. As the initial state is random,
so is the expectation value of the projection of the total
momentum. The uncertainty of the averaged momentum may
be characterized by the variance

〈δPz(t )2〉prep = 〈Pz(t )2〉prep − 〈Pz(t )〉2
prep. (6.2)

In what follows, we examine the amount of information
associated with the uncertainty of the measured observable.

The perturbation, created in the system, is described by the
deviation

g(R, p, t ) = f (R, p, t ) − f0(εp) (6.3)

of the electron distribution function f from the equilibrium
distribution function f0. As the system has a zero momentum
in equilibrium, the momentum at time t may be expressed

FIG. 6. Propagation of a short-range correlated perturbation of
the distribution function in a disordered metal. The perturbation may
be decomposed into multiple independent local perturbations, which
we call “beams” and which are shown in blue (dark gray) color. Each
of the beams gives an exponential contribution to the uncertainty of
the projection of the total momentum.

through the perturbation g as

Pz(t ) =
∫

pR
pzg(R, p, t ). (6.4)

Clearly, if the perturbation is very smooth as a function
of p and R, it will spread in the system diffusively at short
times t < tE and will bear little or no signatures of chaotic
behavior. Therefore, we assume that the perturbation is short-
range-correlated in phase space at the initial time t = 0:∫

pR
g(R, p, 0)g(R − �R, p − �p, 0) = F

( |�R|
lex

,
|�p|
qex

)
,

(6.5)

where F (x, y) is a rapidly decaying function for the values
of its arguments exceeding unity and the scales lex and qex,
the characteristic ranges of correlations of the perturbation in
spatial and momentum spaces, are rather short.

We assume that the correlation radii lex and qex in coordi-
nate and momentum spaces are exceeded significantly by the
scales ach and pch given by Eqs. (5.14a) and (5.14b). Under
these conditions, the initial perturbation may be considered
as a superposition of perturbations, which are local in phase
space and have sizes smaller than the scales ach and pch. Each
such local perturbation, which we call “a beam”, propagates
in the system independently of the other local perturbations,
as shown in Fig. 6.

Because the beams are narrow in both momentum and co-
ordinate spaces, their propagation resembles that of individual
quasiparticles. So long as the width of a beam remains shorter
than the scales ach and pch, its propagation is chaotic. As
we show below, each beam gives an exponential contribution
to the uncertainty of the expectation 〈P̂z(t )〉 of momentum,
which determines the amount of information encoded by the
probability distribution of this expectation. Hence, to compute
the rate of change of information in the observable 〈P̂z(t )〉 it
is sufficient to consider only one beam, i.e., a perturbation

094304-9



MARKUS J. KLUG AND SERGEY V. SYZRANOV PHYSICAL REVIEW B 100, 094304 (2019)

which is sharply peaked initially in momentum and coordinate
spaces.

B. Evolution of the deviation of the distribution
from equilibrium

Initially, the deviation g(R, p, t ) of the distribution func-
tion is a sharply peaked function around a certain momen-
tum and location. As the system evolves, this function gets
broadened due to the collisions of electrons with impurities
and phonons. Similarly to the out-of-time-order correlators
in Sec. V, it is convenient to split it into “smooth” (s) and
“peaked” (p) parts,

g = g(s) + g(p), (6.6)

whose widths in momentum and coordinates spaces are, re-
spectively, significantly larger and significantly smaller than
the scales ach and pch given by Eqs. (5.14a) and (5.14b).

In the course of evolution, long-wavelength phonons
change electron momenta significantly and, thus, shift the
weight of the peaked part g(p) to the smooth part g(s). By
analogy with the kinetic equation (5.16) for the peaked part of
the out-of-time-order correlator K (Rp, R′p′, t ), the evolution
of the peaked part of the distribution function is described by
the kinetic equation(

∂t + iL̂R,p − 1

τ

)
g(p)(R, p, t ) = 0 (6.7)

with the Liouville operator iL̂R,p given by Eq. (5.7) and 1/τ

being the inelastic scattering rate of electrons due to electron-
phonon interactions.

We emphasize that in both kinetic equations (5.16)
and (6.7) for the four-point and two-point correlators the effect
of the bath is reduced to a relaxation term with the relaxation
rate independent of the collisions of the electrons with im-
purities or the walls of the system. This separation between
elastic and inelastic scattering rates takes place in systems
with short-range character of the interactions (known as the
“ballistic Altshuler-Aronov” regime [40,41]) or correlations
in the bath, considered here, relative to the elastic mean-free
path. In a generic systems with long-range interactions or a
short elastic scattering time, the effective inelastic scattering
rate receives significant renormalizations from collisions with
impurities [10,14,40–42].

Equation (6.7) gives the time evolution of the peaked part
of the perturbation in the form

g(p)(R, p, t ) = e−t/τ g(p)
0 (R, p, t ), (6.8)

where g(p)
0 (R, p, t ) describes the deviation of the distribution

function from equilibrium in the absence of the phonon bath.
The function g(p)

0 (R, p, t ) obeys the kinetic equation

(∂t + iL̂R,p)g(p)
0 (R, p, t ) = 0. (6.9)

Similarly to the case of out-of-time-order correlators, the
perturbation of the distribution functions factorizes into that in
the absence of the bath and an exponentially decaying factor
which accounts for the influence of the bath.

The smooth part g(s) of the perturbation is uniform on the
Fermi surface if the characteristic phonon wavelength is on

the order of or larger than the Fermi momentum pF [43].
In the case of a bath with shorter-wavelength phonons, with
momenta between the scale pch and pF , the smooth part of
the distribution relaxes to a uniform distribution in momentum
space on timescales exceeding the transport scattering time.

Under these assumptions, the contribution of the smooth
part to the total momentum and to the variance (6.2) may
be neglected. Therefore, similarly to the case of correlators
considered in Sec. V, it is sufficient to consider only the
momentum of the peaked part of the perturbation of the
distribution function.

The beams, considered here, are narrow in both coordinate
and momentum spaces and remain so on sufficiently short
times t � λ−1

0 ln [min ( ach
lex

,
pch

qex
)], while the width of the peaked

part grows exponentially with the exponent λ0. The average
momentum and coordinate in the absence of the bath obey
the classical equations of motion. Therefore, the uncertainty
of the momentum of a beam decoupled from the bath is
described by Eqs. (3.1a)–(3.1c) and grows exponentially in
time, 〈δPz(t )2〉prep ∝ e2λ0t . In the presence of the bath, the
weight of the peaked part of the distribution gets shifted ex-
ponentially to the smooth part, which results in the additional
suppression ∝e− t

τ of the momentum, with the time variance
of the uncertainty given by

〈δPz(t )2〉prep ∝ e2λ0t− 2t
τ . (6.10)

If the distribution of Pz is Gaussian and given by Eq. (3.3),
either due to a large number of collisions on the time interval
considered or due to a large number of beams or due to the
initial uncertainty being small and Gaussian, as described in
Sec. III, the amount of information stored in the momentum
projection is given by

IP(t ) = const − 1

2

∫
dPzρ(Pz, t ) ln

(
2π δP2

z

)
= const − λt (6.11)

[the three constants in Eq. (1.2) and in the two lines of (6.11)
are implied to be different].

In this section, we have demonstrated that the amount
of information associated with the projection of momentum
changes with the rate given by the Lyapunov exponent, i.e.,
the rate of change of the OTOC of this projection in a generic
disordered electronic system coupled to a bosonic bath. Since
the bosons constituting the bath may mediate interactions,
we expect our result for the relation between the Lyapunov
exponent and the rate of change of information to hold in a
generic interacting system as well, assuming the system is in
a many-body-delocalized phase.

VII. DISCUSSION AND OUTLOOK

In this work, we studied chaotic behavior in a disor-
dered metal coupled to a bath of neutral excitations, such
as phonons, magnons, or plasmons, with short-range spatial
correlations. We characterized the chaotic behavior or the lack
thereof by the out-of-time-order correlators (OTOCs) of the
system’s momentum, although we expect our results to hold
for rather generic operators, such as the density of electrons,
currents, or magnetization in a particular volume.
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We have computed the OTOC analytically and demon-
strated that it exhibits exponential decay (nonchaotic behav-
ior) or exponential growth (chaotic behavior) depending on
whether or not the inelastic scattering rate 1/τ of electrons ex-
ceeds the single-particle Lyapunov exponent λ0 in the system
decoupled from the bath. Our result for the Lyapunov expo-
nent is given by Eq. (2.1). The transition between chaotic and
nonchaotic behavior is analogous to a similar transition pre-
dicted for a system of electrons with short-range interactions
in Ref. [16]. This transition may be triggered by changing the
strength of the bath, e.g., by tuning the temperature of the
system.

Furthermore, we have established a relation between the
rate of change of information and the Lyapunov exponent.
If the initial state of the system has a small classical uncer-
tainty, it leads to an uncertainty of the average values of the
observables of the system, which grows exponentially during
the chaotic evolution of the system, as we have demonstrated
in this paper. A measure of the uncertainty of an observable
A(t ) is the amount of information given by Eq. (1.2). We
have demonstrated that the rate of change of the amount of
information, associated with a sufficiently generic observable
and measured in units (1/ ln 2)th of a bit, matches, with the
opposite sign, the Lyapunov exponent.

The transition between chaotic and nonchaotic behavior,
discussed here, reflects, therefore, in the information stored
in the system’s observables. This phenomenon has a simple
qualitative interpretation. If dissipation is strong, an observ-
able relaxes to its equilibrium value and thus becomes more
certain; the amount of information encoded by this observable
grows. In the opposite limit of a weak bath, the chaotic evo-
lution of the observable appears random, and its uncertainty
grows.

A. Measurement

Our predictions for the Lyapunov exponents for a system
of particles in a chaotic billiard coupled to a dissipative
bath and/or in the presence of interactions may be observed
straightforwardly, for example, using trapped ultracold parti-
cles whose momenta are excited by a short laser pulse in a
small region of space and then measuring the distribution of
the total momentum, e.g., in a time-of-flight experiment.

The Lyapunov exponents and their relation to the growth
of uncertainty of observables may be measured in solid-state
systems as well, for example, in chaotic quantum dots, as
shown in Fig. 7. The projection Pz of the total momentum,
whose correlations we considered here, is proportional, for
example, to the magnetic field Bz generated away from the dot
by the current of the electrons in the dot. This may in principle
be used for measuring the correlations of this projections by
observing the magnetic noise when current is injected into
the dot through a narrow lead (see Fig. 7). The Lyapunov
exponent λ = λ0 − 1/τ , computed in this paper, may then
be observed as a half of the decay rate of the correlator
〈[Bz(t + �t ) − Bz(t )]2〉 where 〈·〉 is the averaging over the
quantum state of the system and the interval �t � tE may
be large, but is chosen in such a way that the fields Bz(0)
and Bz(�t ) are close to each other. Under this condition, the
fields Bz(t ) and Bz(t + �t ) are equivalent to those occurring

FIG. 7. A beam of electrons in a chaotic quantum dot. In general,
the walls of the dot may be partially transparent for the electrons,
e.g., in a graphene quantum dot [44,45]. The escape of the particles
through the walls with the rate 1/τ is equivalent, for the behavior of
OTOCs, to the effect of a bath with the inelastic scattering rate 1/τ .

from beams of electrons corresponding to slightly different
initial conditions. We note that the dissipative environment
may in principle be replaced by partially transparent walls of
the billiard, for example, in graphene quantum dots created
by electrostatic gating in graphene sheets [44,45], where
electrons cannot be confined and have a finite probability
of tunneling through an arbitrarily high confining potential
due to Klein tunneling [46,47]. The processes of escape of
electrons through the walls of the billiard have the same effect
on the correlators of observables in the dot as a dissipative
bath, which reduces the number of particles contributing to
the OTOC, as discussed in Secs. V and VI. Furthermore, the
initial width of the beam and the average transparency of the
walls of the dot may be tuned electrostatically by applying
gate voltages in graphene quantum dots.

We note that single-particle chaotic behavior of electrons
has also been predicted to manifest itself in the shot noise in
quantum dots [33], as well as in all single-particle interference
phenomena [32,34]; these phenomena are expected to display
a crossover between two qualitatively different regimes of be-
havior at frequency on the order of the inverse single-particle
Ehrenfest time. While observing this behavior does not allow
one to measure the Lyapunov exponents directly, it gives
access to the single-particle characteristics of chaos which
affect also the exponents in interacting and/or dissipative
systems considered in this paper. While our arguments here
outline generically ways of observing chaos and the dynamic
of information in electronic systems, we leave further detailed
analysis of specific electronic devices for future work.

B. Relation to the level statistics

Another aspect of the chaotic phenomena discussed in this
paper, which ought to be investigated further, is the relation
of Lyapunov exponents and the (non)existence of chaotic
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behavior to the statistics of the energy levels of the quasi-
particles. The equivalence of the classical chaotic behavior
to the Wigner-Dyson statistics of the energy levels has been
confirmed by vast numerical studies (see, e.g., Refs. [4,48,49]
for a review) in single-particle systems, such as disordered
metals and chaotic billiards. The many-body levels statistics
is also used sometimes to detect phase transitions or quantum
chaotic behavior, defined by means of OTOCs. However,
the many-body level statistics is not directly accessible in
experiment. It still remains to be investigated whether the
chaotic behavior discussed here and the associated Lyapunov
exponents are related to the correlations of the quasiparti-
cle density of states ρ(E ) = − 1

πV

∫
ImGR(r, r, E ) dr, where

GR(r, r, E ) is the retarded Green’s function in an interacting
and/or dissipative system under investigation.
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APPENDIX: DERIVATION OF THE KINETIC EQUATION

In this Appendix, we provide a detailed derivation of
the kinetic equation (5.6) for the four-point correlator
K (Rp, R′p′, t ), given by Eqs. (5.3). The calculation be-
low is similar to the derivation of conventional kinetic
equations for two-point correlation functions (see, e.g.,
Refs. [36,37,39,50]), which describe, e.g., the evolution of
single-particle distribution functions. Here we extended it
to four-point correlators, such as K (Rp, R′p′, t ). Similarly
to the case of two point correlators, the kinetic equation
describes the quasiclassical dynamics of the electrons and,
thus, is accurate in the limit EF τ0 � 1, where EF and τ0 are,
respectively, the Fermi energy and the elastic scattering rate
in the system.

The “ballistic” part of the kinetic equation, i.e., the left-
hand side of Eq. (5.6), describes the evolution of the correlator
in the presence of the potential Uimp, created by the impurities,
and in the absence of the phonon bath. The collision integral,
i.e., the right-hand side of Eq. (5.6), accounts for the effect of
the phonon bath on the dynamics.

The operators entering the correlation function
K (Rp, R′p′, t ), defined by Eq. (5.6), cannot be ordered
on the conventional Keldysh contour with two time
branches [36,37]. Its evolution may be studied, however,
using Keldysh formalism on the “augmented” four-branch
Keldysh contour [7], depicted in Fig. 8. To this end, we
introduce the averages

M (α,β ),γ
(a,b),c (1, 2; 1′, 2′)

= −〈
P̂c

z (0)ψ†b(2′)ψa(1′)P̂γ
z (0)ψ†β (2)ψα (1)

〉
K (A1)

FIG. 8. Two-loop Keldysh contour used to compute out-of-time-
order correlators. Branches marked with +i and −i mimic propaga-
tion forwards and backwards in time on each loop (i = 1 and i = 2)
of the Keldysh contour.

of the particle operators ordered on the four-branch Keldysh
contour, where i = (ri, ti ). In the calculation below, we use
Greek letters α, β, γ ∈ {+1,−1} for operators on the up-
per branch (i = 1) of the Keldysh contour and Latin letters
a, b, c ∈ {+2,−2} for operators on the lower branch i = 2
(see Fig. 8). “+i” and “−i” mimic, respectively, propagation
forwards and backwards in time on each loop i [5,7,8,14].
The averages of the form (A1) may be evaluated as path inte-
grals 〈·〉K = ∫

D(ψ†, ψ, φ) · · · eiSK on the two-loop Keldysh
contour, where ψ (†) are the Grassmann fields representing
the electronic degrees of freedom and φ are real-valued
fields representing the bosons (phonons) degrees of freedom
[7,8,37].

Similarly to the case of correlators on the conventional
Keldysh contour [36,37], it is possible to introduce various
correlators of pairs of operators on the two-loop contour in
Fig. 8 with distinct causal properties. To distinguish between
different ways to order a pair of fermionic fields ψ† and ψ

on each loop i in the correlator (A1), it is convenient also to
introduce indices T ≡ (+i,+i ) (time-ordered), T̃ ≡ (−i,−i )
(anti-time-ordered), > ≡ (−i,+i ) (greater) and < ≡ (+i,−i )
(lesser) which we use interchangeably with the labels “(α, β )”
and “(a, b)” in correlators of the form (A1). For example,
the correlator (5.3), which reflects the essential properties of
the OTOC (5.1) of the operators of momentum projections, is
given by

K (Rrτ, R′r′τ ′, t )

= −
∑

c,γ=±
cγ M<,c

<,γ

(
R + r

2
t + τ

2
, R − r

2
t − τ

2
; R′ + r′

2
t

+ τ ′

2
, R′ − r′

2
t − τ ′

2

)
, (A2)

where R(′) and r(′) are, respectively, the center-of-mass and
relative coordinates.

The time evolution of correlators of the form (A1) may be
found using the perturbation theory on the two-loop Keldysh
contour similarly to the perturbation theory for conventional
two-point correlation functions [36,37,39,50]. Here we use the
electron-phonon coupling constant g as a small parameter. The
interaction-dressed correlator Eq. (A1) is obtained within a
Dyson equation which is given, to leading order in the small
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coupling constant, by

M (α,β ),γ
(a,b),c (1, 2; 1′, 2′)

= M (α,β ),γ
(a,b),c;0(1, 2; 1′, 2′) + g2

[∑
δ

∫
3
�(α,δ)(1, 3)M (δ,β ),γ

(a,b),c (3, 2; 1′, 2′)

+ i
∑
δε

δε

∫
34

G(α,δ)(1, 3)D(δ,ε)(3, 4)G(ε,β )(4, 2)M (δ,ε),γ
(a,b),c (3, 4; 1′, 2′)

+
∑

d

∫
3
�(a,d )(1′, 3′)M (α,β ),γ

(d,b),c (1, 2; 3′, 2′) + i
∑
de

de
∫

34
G(a,d )(1, 3)D(d,e)(3, 4)G(e,b)(4, 2)M (α,β ),γ

(d,e),c (1, 2; 3, 4)

+ i
∑
γ c

dδ

∫
33′

D(δ,d )(3, 3′)G(a,d )(1′, 3′)G(α,δ)(1, 3)M (δ,β ),γ
(d,b),c (3, 2; 3′, 2′)

]
, (A3)

where

�(α,β )(1, 2) =
∑

γ

∫
3
γ βG(α,γ )(1, 3)�(γ ,β )(3, 2) (A4)

and

�(γ ,β )(1, 2) = iG(γ ,β )(1, 2)D(γ ,β )(1, 2) = (A5)

is the electron self-energy with straight and wiggly lines representing, respectively, the fermionic and phononic propagators; the
prefactors γ and β before the Green’s functions in Eq. (A4) take vales +1 and −1 for the Green’s function indices “+i” and “−i”
on the upper and lower branches of the Keldysh contour on each loop i. In Eqs. (A3)–(A5) we have also introduced two-point
correlation functions

G(a,b)(1, 2) = −i〈ψa(1)ψ†b(2)〉K0 , (A6a)

D(a,b)(1, 2) = −i〈φa(1)φb(2)〉K0 , (A6b)

where the indices a, b ∈ {+1,−1,+2,−2} may label any of the four branches of the two-loop contour.
Relabeling the indices in Eq. (A3) gives

M (α,β ),γ
(a,b),c (1, 2; 1′, 2′)

= M (α,β ),γ
(a,b),c;0(1, 2; 1′, 2′) + g2

[∑
δ

∫
3
�(α,δ)(3, 2)M (δ,β ),γ

(a,b),c (1, 3; 1′, 2′)

+ i
∑
δε

δε

∫
34

G(α,δ)(1, 3)D(δ,ε)(3, 4)G(ε,β )(4, 2)M (δ,ε),γ
(a,b),c (3, 4; 1′, 2′)

+
∑

d

∫
3
�(a,d )(3′, 2′)M (α,β ),γ

(d,b),c (1, 2; 1′, 3′) + i
∑
de

de
∫

34
G(a,d )(1, 3)D(d,e)(3, 4)G(e,b)(4, 2)M (α,β ),γ

(d,e),c (1, 2; 3, 4)

+ i
∑
γ c

dδ

∫
33′

D′(δ,d )(3, 3′)G(d,b)(3′, 2′)G(δ,β )(3, 2)M (α,δ),γ
(a,d ),c (1, 3; 1′, 3′)

]
. (A7)

The bosonic propagators may be both interloop or in-
traloop, i.e., with indices on different loops, e.g. (a, b) =
(+1,−2), or with indices on the same loop, e.g., (a, b) =
(+1,−1). We note that there are only two distinct types of
interloop bosonic propagators: D(α,+2 ) = D(α,−2 ) = D(α,a) ≡
D<

I and D(a,α) ≡ D>
I . The second and third lines of Eqs. (A3)

and (A7) represent, respectively, electron-boson scattering

processes acting within one Keldysh loop, whereas the fourth
lines denote scattering processes between the two Keldysh
loops. Below we introduce the Wigner transforms of the four-
point correlators with the center-of-mass coordinates t (′) =
t (′)
1 +t (′)

2
2 and R(′) = r(′)

1 +r(′)
2

2 and coordinate differences τ (′) =
t (′)
1 − t (′)

2 and r(′) = r(′)
1 − r(′)

2 . In this representation, intraloop
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FIG. 9. Leading-order processes which contribute to the self-
energy of the four-point correlators of the form (A1). These cor-
relators account for the correlations between electrons with close
momenta and with close locations. The first two diagrams describe
the conventional self-energies of electrons at each location R and
R′, respectively. The last diagram describes correlations between
electrons at these locations.

and the interloop processes on the two-loop contour in Fig. 8
correspond, respectively, to local processes, i.e., processes
close to the locations R or R′, and to the processes which
induce correlations between electrons at locations R and R′,
as shown in Fig. 9.

In what follows, we derive a kinetic equation for the
four-point correlator K similarly to the derivation of the
conventional kinetic equation for the distribution function f
(see, e.g., Ref. [39]). To this end, we act with the operator
i∂t − εk̂ − Uimp(r), representing single-particle evolution, on
the Dyson’s equations (A3) and (A7), respectively, and use the
definition of the single-particle Green’s function [i∂t1 − εk̂1

−
Uimp(r1) − �a,b(1, 2)]G(a,b)(1, 2) = b δ(1 − 2)δa,b to sim-
plify the result. By subtracting the obtained expressions
and using that MR

< = MT
< − M<

< and M<
R = M<

T − M<
< while

introducing the Wigner representation of the correlator
M (and, similarly, K) at coinciding center-of-mass times
t = t ′,

M (α,β ),γ
(a,b),c (Rpω, R′p′ω, t )

=
∫

r,τ

∫
r′,τ ′

eiωτ−ipr+iω′τ ′−ip′r′
M (α,β ),γ

(a,b),c (Rrτ, R′r′τ ′, t ),

(A8)

we obtain the the renormalized retarded components of the
correlators in the form

MR,γ
<,c (Rpω, R′p′ω, t ) = Aγ

<,c(R′p′ω′t )

ω − εp − �R(p, ω)
, (A9a)

M<,γ
R,c (Rpω, R′p′ω, t ) = A<,γ

c (Rpωt )

ω′ − εp′ − �R(p′, ω′)
, (A9b)

where Aγ

(a,b),c(1, 2) = −〈P̂c
z (0)ψ†b(2)ψa(1)P̂γ

z (0)〉K0 and

A(α,β ),γ
c (1, 2) = −〈P̂c

z (0)P̂γ
z (0)ψ†β (2)ψα (1)〉K0 , and have a

form similar to that of the retarded two-point propagators. On
the other hand, by adding the two expressions, we obtain the
quantum kinetic equation

iZ−1(∂t + iL̂R,p + iL̂R′,p′ )M<,γ
<,c (Rpω, R′p′ω, t ) = I[M],

(A10)

where iL̂R,p = vp ·∇R − ∇RUimp(R)·∇p is the the Liouville
operator introduced in Eq. (5.7) and with the renormalized ve-
locity vp = Z∇p[εp + �R(p, ω)]; Z = [1 − ∂ω�R(p, ω)]−1 is
the quasiparticle weight; I[M] is the collision integral, which
accounts for the relaxation of the correlator due to electron-
phonon scattering. In the weak coupling limit, the renormal-
ization of the qusiparticle parameters by phonons is weak;
hence, vp ≈ vF

p
|p| and Z ≈ 1. When deriving Eqs. (A9)

and (A10) we kept only the leading terms in the gradients of
the center-of-mass coordinates of the correlators.

Within the collision integral, we distinguish between three
types of scattering processes,

I[M] = I1[M] + I2[M] + I3[M], (A11)

where the first two terms represent local inelastic processes,
i.e., occurring at the location R or R′, and the third term
leads to correlations between quasiparticles at the location R
and those at the location R′. I1[M] involves correlators with
external momenta p and p′ and represents the processes of
electron scattering from these momentum states to the states
with other momenta:

I1[M] = − g2
{
�<(p, ω)

(
MR,γ

<,c − MA,γ
<,c

)
(Rpω, R′p′ω, t ) + �<(p′, ω)

(
M<,γ

R,c − M<,γ
A,c

)
(Rpω, R′p′ω, t )

− [(�> − �<)(p, ω) + (�> − �<)(p′, ω′)]M<,γ
<,c (Rpω, R′p′ω, t )

}
. (A12)

Conversely, I2[M] contains correlators with internal momenta q = p (and identically q′ = p′). It describes, therefore, processes
where electrons scatter into the reference state and is given by

I2[M] = ig2
∫

qν

[
D>(p − q, ω − ν)G<(Rpωt )

(
M<,γ

<,c + MR,γ
<,c − MA,γ

<,c

)
(Rqν, R′p′ω′, t )

− G>(Rpωt )D<(p − q, ω − ν)M<,γ
<,c (Rqν, R′p′ω′, t )

]
+ ig2

∫
qν

[
D>(p′ − q, ω′ − ν)G<(R′p′ω′t )

(
M<,γ

<,c + M<,γ

R,c − M<,γ

A,c

)
(Rpν, R′qω′, t )

− G>(R′p′ω′t )D<(p′ − q, ω′ − ν)M<,γ
<,c (Rpν, qR′ω′, t )

]
. (A13)

In contrast to these contributions, accounting for the local processes around R or R′, the contribution I3[M] represents processes
of quasiparticle scattering between locations R and R′ and vice versa. It is given by

I3[M] = ig2
∫

qν

eiq(R−R′ )
[
G>

(
R′p′ − q

2
ω′ − ν

2
t
)

D<
I (q, ν)M<,γ

<,c

(
Rp − q

2
ω − ν

2
, R′p′ + q

2
ω′ + ν

2
, t

)
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− G<
(

R′p′ − q
2
ω′ − ν

2
t
)

D<
I (q, ν)

(
M<,γ

<,c + MR,γ
<,c − MA,γ

<,c

)(
Rp − q

2
ω − ν

2
, R′p′ + q

2
ω′ + ν

2
, t

)]

+ ig2
∫

qν

eiq(R′−R)
[
G>

(
Rp − q

2
ω − ν

2
t
)

D>
I (q, ν)M<,γ

<,c

(
Rp + q

2
ω + ν

2
, R′p′ − q

2
ω′ − ν

2
, t

)

− G<
(

Rp − q
2
ω − ν

2
t
)

D>
I (q, ν)

(
M<,γ

<,c + M<,γ

R,c − M<,γ

A,c

)(
Rp + q

2
ω + ν

2
, R′p′ − q

2
ω′ − ν

2
, t

)]
. (A14)

We note that the respective matrix element comes with a
phase factor which oscillates rapidly as a function of the
separation R − R′. At times t � tph, where phonon scattering
is effectively short-ranged (|R − R′| � ξph), the contribution
I3 to the collision integral I[M] is strongly suppressed and,
thus, may be neglected.

In this paper we consider electron dynamics in the regime
known as the “quasiparticle regime” [51], where the spectral
function (GR − GA), as well as (MR,γ

<,c − MA,γ
<,c ) and (M<,γ

R,c −
M<,γ

A,c ) [cf. Eqs. (A9)] are sharply peaked at ω ≈ εp and con-
tain a negligible incoherent background [51]. It is, therefore,
convenient to describe the propagation of quasiparticles by the
distribution function f (Rpt ) = −i

∫
ω

G<(Rpωt ). Similarly,
four-point out-of-time-order correlators are characterized con-
veniently by the function

K (Rp, R′p′, t ) = −
∑

c,γ=±
cγ

∫
ωω′

M<,c
<,γ (Rpωt, R′p′ω′t )

(A15)
introduced in Eq. (5.4).

Making these assumptions in Eq. (A10), we obtain the
kinetic equation for the correlator K , which contains also
the quasiparticle distribution functions f whose dynamics

are governed by the conventional kinetic equation [36–38]
describing charge transport in the system. For practical ap-
plications, we expand all terms in the kinetic equation to
the leading order in the deviation of the distribution func-
tion from equilibrium and in the gradients of all functions.
We write f (Rpt ) = f0(εp) + g(Rpt ) with the Fermi distri-
bution f0(ω) = [exp(ω/T ) + 1]−1 taking into account that
K (Rp, R′p′, t ) vanishes in equilibrium. This gives the kinetic
equation

(∂t + iL̂R,p + iL̂R′,p′ )K (Rp, R′p′, t )

= −
∫

q
(�p→q + �p′→q)K (Rp, R′p′, t ) (A16)

+
∫

q
�q→pK (Rq, R′p′, t ) +

∫
q
�q→p′K (Rp, R′q, t ),

where the scattering rates are given by

�p→q = ig2{D<(p − q) f0(εq) + D>(p − q)[1 − f0(εq)]},
(A17)

with the greater and lesser boson propagators D<,>(p − q) =
D<,>(p − q, εp − εq).
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