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Two-dimensional melting via sine-Gordon duality
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Motivated by the recently developed duality [Pretko and Radzihovsky, Phys. Rev. Lett. 120, 195301 (2018)]
between the elasticity of a crystal and a symmetric tensor gauge theory, we explore its classical analog, which
is a dual theory of the dislocation-mediated melting of a two-dimensional crystal, formulated in terms of a
higher derivative vector sine-Gordon model. It provides a transparent description of the continuous two-stage
melting in terms of the renormalization-group relevance of two cosine operators that control the sequential
unbinding of dislocations and disclinations, respectively, corresponding to the crystal-to-hexatic and hexatic-to-
isotropic fluid transitions. This renormalization-group analysis reproduces the seminal results of the Coulomb
gas description, such as the flows of the elastic couplings and of the dislocation and disclination fugacities, as
well as the temperature dependence of the associated correlation lengths.
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I. INTRODUCTION

A. Background and motivation

The theory of continuous two-dimensional (2D) melting,
developed by Kosterlitz and Thouless [1], Halperin and
Nelson [2], and Young [3] (KTHNY), building on the work
of Landau [4], Peierls [5], and Berezinskii [6,7], has become
one of the pillars of theoretical physics. Mathematically re-
lated to simpler normal-to-superfluid and planar paramagnet-
to-ferromagnet transitions in films, described by a 2D XY
model, it is a striking example of the increased importance
of thermal fluctuations in low-dimensional systems [8,9].
In contrast to their bulk three-dimensional analogs, where,
typically, fluctuations only lead to quantitative modifications
of mean-field predictions (e.g., values of critical exponents),
here the effects are qualitative and drastic. Located exactly at
the lower-critical dimension, where a local-order-parameter
distinction between the high- and low-temperature phases
is erased by fluctuations, two-dimensional melting can pro-
ceed via a subtle, two-stage, continuous transition, driven by
the unbinding of topological dislocations and disclinations
defects. This mechanism, made possible by strong thermal
fluctuations, thus provides an alternative route to direct first-
order melting, argued by Landau’s mean-field analysis [4] to
be the exclusive scenario.

As such, the continuous two-dimensional melting (and
related disordering of a 2D XY model) is the earliest example
of a thermodynamically sharp, topological phase transition
between two locally disordered phases, which thus does not
admit Landau’s local order-parameter description. It is con-
trolled by a fixed line, which lends itself to an asymptotically
exact analysis [1–3].

Although evidence for defects-driven phase transitions has
appeared in a number of experiments on liquid crystals [10]
and Langmuir-Blodgett films [11], finding simple model
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systems that exhibit these phenomena in experiments or sim-
ulations has proven to be more challenging. Most studied
systems appear to exhibit discontinuous first-order melting
that converts a crystal directly into a liquid. However, it
appears that two-stage continuous melting has been experi-
mentally observed by Murray [12] and Zahn [13] in beautiful
melting experiments on two-dimensional colloids confined
between smooth glass plates and superparamagnetic colloidal
systems, respectively. In these experiments, an orientationally
quasi-long-range ordered but translationally disordered hex-
atic phase [2] was indeed observed. As was first emphasized
by Halperin and Nelson [2], the hexatic liquid, intermediate
but thermodynamically distinct from the 2D crystal and the
isotropic liquid, is an important signature of the defect-driven
two-stage melting. In these two-dimensional colloids, parti-
cle positions and the associated topological defects can be
directly imaged via digital videomicroscopy, allowing precise
quantitative tests of the theory.

B. Duality of the two-stage melting transition

The disordering of the simpler 2D XY model (describing,
e.g., a superfluid-normal transition in a film) is well known to
admit two complementary descriptions, the 2D Coulomb gas
of vortices [14] and its dual sine-Gordon field theory [2,8,15–
18]. As with other dualities—a subject with a long history
and of much current interest [19]—the sine-Gordon duality
has been extensively utilized in a variety of physical contexts.
Given that elasticity of a crystal can be thought of as a space-
spin coupled vector generalization of an XY model (with
vector phonon Goldstone modes ux, uy replacing the scalar
phase angle), it is of interest also to develop an analogous
dual sine-Gordon formulation and to use it to study the 2D
continuous melting transition.

Indeed, recently, such a complementary description has
emerged as a classical limit of the elasticity-to-tensor gauge
theory duality [20,21], derived in the context of a new class of
topologically ordered fraction matter [22]. As we will detail
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in the body of the paper, the corresponding dual Hamiltonian
is given by

H̃ =
∫

d2r

[
1

2
C̃−1

i j,kl∂i∂ jφ∂k∂lφ

−gb

p∑
n=1

cos(bn · ẑ × ∇φ) − gs cos(spφ)

]
. (1)

Its key features, which characterize the continuous two-stage
melting, are the higher-order “Laplacian elasticity”, encoded
via elastic constants C̃−1

i j,kl , and two sine-Gordon types of oper-
ators with couplings gb, gs, respectively, capturing the impor-
tance (fugacities) of dislocation (elementary vector charges
bn) and disclination (elementary scalar charge sp) defects.

To flesh out the essence of this dual description, neglecting
inessential details, the above Hamiltonian is schematically
described by

H̃ ∼
∫

r

[
1

2
C̃(∂2φ)2 − gb cos(∂φ) − gs cos(φ)

]
, (2)

where
∫

r ≡ ∫
d2r. Because of the second-order Laplacian

elasticity, standard analysis around the Gaussian fixed line
gb = gs = 0 shows that the mean-squared fluctuations of
Airy-stress potential φ diverge quadratically with system size.
This leads to an exponentially (as opposed to power-law in
a conventional sine-Gordon model) vanishing Debye-Waller
factor, and in turn to a strongly irrelevant disclination cosine,
gs, that can therefore be neglected whenever gb is small, i.e.,
near the Gaussian fixed line.

The schematic Hamiltonian then reduces to

H̃cr ∼
∫

r

[
1

2
C̃(∂χ )2 − gb cos(χ )

]
, (3)

with χ = ∂φ. It thus obeys the standard sine-Gordon phe-
nomenology, exhibiting a KT-like “roughening” transition
in χ with the relevance of gb, controlled by the stiffness
C̃ [2,8,15–17]. At small C̃ < C̃c, gb is irrelevant describing the
gapless crystal phase with confined dislocations and discli-
nations. The melting of the crystal is then captured by the
relevance of gb for C̃ > C̃c, corresponding to a transition
into a plasma of unbound dislocations characteristic of a
hexatic fluid. Since in this phase gb is relevant, at suffi-
ciently long scales the dislocation cosine in Eq. (2) reduces
to a harmonic potential for χ , −gb cos(∂φ) ∼ 1

2 gb(∂φ)2. The
effective Hamiltonian is then given by

H̃hex ∼
∫

r

[
1

2
gb(∂φ)2 − gs cos(φ)

]
, (4)

where we have neglected the C̃ “curvature” elasticity relative
to the gradient one encoded in gb, and restored the disclination
cosine operator gs cos(φ). The resulting conventional sine-
Gordon model in φ can then exhibit the second KT-like
“roughening” transition, capturing the hexatic-to-isotropic
fluid transition associated with the unbinding of disclinations.
The corresponding RG flow of the dual vector sine-Gordon
model is schematically illustrated in Fig. 1. We leave the
detailed analysis of this two-stage melting transition to the
main body of the paper and the Appendix.

FIG. 1. A schematic illustration of RG flows in the dual vec-
tor sine-Gordon model. It describes the two-stage continuous 2D
melting, crystal-to-hexatic and hexatic-to-isotropic liquid transitions,
associated with consequent relevance of dislocation (gb) and discli-
nation (gs) fugacities, as a function of the elastic modulus K̄−1 =

2μ+λ

4a2μ(μ+λ)
, expressed in terms of the Lamé elastic constants, μ, λ

(defined in the main text), and the lattice constant, a.

C. Outline

The rest of this paper is organized as follows. In Sec. II, af-
ter briefly reviewing the elasticity theory of two-dimensional
crystal and its topological defects, we give two detailed com-
plementary derivations of the duality transformation to the
vector sine-Gordon model. Utilizing the latter, we straightfor-
wardly reproduce known results for the crystal-hexatic phase
transition in Sec. III by focusing on the dislocation fugacity
cosine operator and neglecting the irrelevant disclinations. In-
side the hexatic phase, we derive a scalar sine-Gordon model
for the Airy stress potential that captures the subsequent
hexatic-isotropic liquid transition. We conclude in Sec. IV
with a summary of our results and a discussion of potential
applications of this dual approach.

II. DUALITY OF 2D MELTING

A. Two-dimensional elasticity

At low temperatures, the deformations of a crystal do
not vary substantially over the atom size, allowing it to
be described with a continuum field theory of its phonon
Goldstone modes, u(r), with a short-distance cutoff set by
the lattice spacing a. The underlying translational symmetry
(spontaneously broken by the crystal) requires that the elastic
energy is an analytic expansion in the strain field ∂iu j . Due
to the underlying rotational symmetry in the target space (i.e.,
no substrates and/or external fields), the elastic Hamiltonian
is further constrained (in harmonic order) to be independent
of the antisymmetric part of ∂iu j , i.e., of the local bond
angle θ (r) = 1

2εi j∂iu j = 1
2 ẑ · ∇ × u. The elastic Hamiltonian

density to harmonic order is thus given by

H = 1
2Ci j,kl ui jukl , (5)

where ui j = 1
2 (∂ir · ∂ jr − δi j ) is the symmetric nonlinear

strain tensor (fully rotationally invariant in the target space),
which in the harmonic approximation takes the linear
symmetrized form

ui j ≈ 1
2 (∂iu j + ∂ jui ). (6)
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FIG. 2. Topological defects in a 2D hexagonal lattice. (a) A
disclination. (b) A dislocation; a dipole of two, opposite charge
disclinations. (Figure adapted from Ref. [20].)

Ci j,kl is the elastic constant tensor, whose number of indepen-
dent components is restricted by the symmetry of the crystal.
For simplicity, we focus on the isotropic hexagonal lattice,
where Ci j,kl takes the form

Ci j,kl = λδi jδkl + 2μδikδ jl (7)

and is characterized by two independent elastic constants,
namely the Lamé coefficients λ and μ. As we discuss in
Appendix B, an external stress σ e

i j (r) is included through
an additional term −σ e

i jui j , here focusing on the case of a
vanishing external stress.

B. Topological defects

In addition to the single-valued elastic phonon fields, the
crystal also exhibits topological defects—disclinations and
dislocations—captured by including a non-single-valued part
of the phonon distortion field.

Disclinations are topological defects associated with ori-
entational order. A disclination at a point r0, illustrated in
Fig. 2(a), is defined by a nonzero closed line-integral of the
gradient of the bond angle around r0:∮

r0

dθ = 2π

p
s (8)

or equivalently in a differential form:

ẑ · ∇ × ∇θ = 2π

p
sδ2(r − r0) ≡ 2π

p
s(r), (9)

measuring the deficit/surplus bond angle, (2π/p)s, with s the
integer disclination charge in a Cp symmetric crystal. In the
case of a hexagonal lattice, p = 6. In the above equation, s(r)
is the disclination charge density.

Dislocations are vector topological defects associated with
translational order. A dislocation at r0 with a Burgers vector-
charge bn (that is an elementary lattice vector), as illustrated
in Fig. 2(b), is defined by a closed line-integral∮

r0

du = bn, (10)

or equivalently in the differential form,

ẑ · ∇ × ∇ui = bi,nδ
2(r − r0) ≡ bi(r), (11)

where b(r) is the Burgers charge density. As illustrated in
Fig. 2(b), a dislocation is a disclination dipole, and it is
therefore energetically less costly than a bare disclination
charge.

C. Vector Coulomb gas formulation

In the presence of topological defects, the distortion field
u(r) is not single-valued. Along with the associated strain
tensor, the distortion field can be decomposed into the single-
valued elastic phonon and the singular parts,

ui = ũi + us
i , (12)

ui j = ũi j + us
i j . (13)

To include these topological and phonon degrees of freedom,
we focus on the partition function (taking kBT = 1, i.e.,
measuring coupling constants in units of thermal energy),

Z =
∫

[du]e− ∫
r H[u] =

∫
[dũ][dus]

∫
[dσi j (r)]e− ∫

r H[u,σi j ],

(14)
where the trace over u(r) implicitly includes both phonons
and topological defects by allowing non-single-valued dis-
tortions. In the second form above, we decoupled the elastic
energy by introducing a Hubbard-Stratonovich tensor field—
the symmetric stress tensor σi j (r) [17], with the resulting
Hamiltonian density given by

H[u, σi j] = 1
2C−1

i j,klσi jσkl + iσi jui j

= 1
2C−1

i j,klσi jσkl + iσi j
(
∂iũ j + us

i j

)
. (15)

Above, for a 2D hexagonal lattice,

C−1
i j,kl = − λ

4μ(μ + λ)
δi jδkl + 1

2μ
δikδ jl . (16)

Tracing over the single-valued phonons ũ enforces the
divergenceless stress constraint [via the δ-function identity

1
2π

∫∞
−∞ du eiu f = δ( f )]

∂iσi j = 0, (17)

solved with a scalar Airy stress potential, φ(r),

σi j = εikε jl∂k∂lφ. (18)
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Expressing the Hamiltonian density in terms of φ(r), and
integrating by parts in the second linear term, we utilize the
defects conditions, Eqs. (9) and (11),

εikε jl∂l∂kus
i j = εikε jl∂l∂k

(
∂iu

s
j − εi jθ

s
)
, (19a)

= εki∂kbi(r) + εki∂k∂iθ (r), (19b)

= ẑ · ∇ × b + 2π

6
s(r), (19c)

to obtain

H[φ] = 1

2
C̃−1

i j,kl∂i∂ jφ∂k∂lφ + iφ

(
2π

6
s + ẑ · ∇ × b

)
. (20)

In the above, C̃−1
i j,kl = εiaε jbεkcεldC−1

ab,cd .
Focusing on dislocations and neglecting the high-energy

disclination defects, we can straightforwardly integrate out
φ(r) in the partition function, obtaining a dislocations vector
Coulomb gas Hamiltonian

Hb = 1

2

∫
d2q

(2π )2
bi(q)K̃i j (q)b j (−q), (21)

where the tensor Coulomb interaction in Fourier and coordi-
nate spaces is given by

K̃i j (q) = K

q2

(
δi j − qiq j

q2

)
, (22)

Ki j (r) = − K

4π

(
δi j ln(r/a) − rir j

r2

)
, (23)

with K = 4μ(μ+λ)
2μ+λ

.
Thus, the dislocations vector Coulomb gas Hamiltonian in

real space reduces to

Hb = − K

8π

∫
r1,r2

[
b(r1) · b(r2) ln

|r1 − r2|
a

−b(r1) · (r1 − r2)(r1 − r2) · b(r2)

|r1 − r2|2
]
, (24)

which, in the discrete form and supplemented with core
energies (see below), is exactly the vector Coulomb gas model

used by Nelson and Halperin [2] and by Young [3] in the
theory of 2D continuous two-stage melting.

D. Dual vector sine-Gordon model

Motivated by the sine-Gordon description of the XY
model, we dualize the elasticity by transforming the above
vector Coulomb gas into a vector sine-Gordon model, and
reexamine the two-stage continuous 2D melting transition
from this complementary approach.

Dislocation and disclination densities on a hexagonal lat-
tice are given as a sum of their discrete charges,

b(r) =
∑

rn

brnδ
2(r − rn), (25)

s(r) =
∑

rn

srnδ
2(r − rn), (26)

where rn = a(n1ê1 + n2ê2) (n1, n2 ∈ Z) are triangular lattice
vectors spanned by unit vectors ê1 = x̂ and ê2 = 1

2 x̂ +
√

3
2 ŷ,

and brn = a(n1ê1 + n2ê2) and srn ∈ Z are dislocation and
disclination charges, respectively.

In terms of these discrete topological defect charges, the
Hamiltonian is given by

H = 1

2

∫
r

C̃−1
i j,kl∂i∂ jφ∂k∂lφ +

∑
rn

[
Ẽbb2

rn
+ Ess

2
rn

]

+
∑

rn

[
i
2π

6
φ(rn)srn − iẑ × ∇φ(rn) · brn

]
, (27)

where we have added dislocation and disclination core ener-
gies Eb = a2Ẽb and Es to account for the defects’ energet-
ics at the scales of the lattice constant, not accounted for
by the elasticity theory [2]. The partition function involves
an integration over potential φ(rn) and summation over the
dislocation and disclination charges. Following a standard
analysis [1,2,14,15,17],

Z =
∫

[dφ]
∑
{srn }

∑
{brn }

∏
rn

e−H [φ,brn ,srn ] =
∫

[dφ]e− 1
2

∫
r C̃−1

i j,kl ∂i∂ jφ∂k∂l φ
∑
{srn }

∑
{brn }

∏
rn

[
e−i 2π

6 φ(rn )srn −Ess2
rn eiẑ×∇φ(rn )·brn −Ẽbb2

rn
]

=
∫

[dφ]e− 1
2

∫
r C̃−1

i j,kl∂i∂ jφ∂k∂l φ

[
1 + e−2Es

∫
d2r1

a2

d2r2

a2
e−i 2π

6 φ(r1 )ei 2π
6 φ(r2 ) + · · ·

]

×
[

1 + e−2Eb

3∑
n=1

∫
d2r1

a2

d2r2

a2
e−iẑ×∇φ(r1 )·bn eiẑ×∇φ(r2 )·bn + · · ·

]
,

=
∫

[dφ]e− 1
2

∫
r C̃−1

i j,kl∂i∂ jφ∂k∂l φ

[
1 + e−Es

∫
d2r1

a2

(
ei 2π

6 φ(r1 ) + e−i 2π
6 φ(r1 ))

+ 1

2!
e−2Es

∫
d2r1

a2

d2r2

a2

(
ei 2π

6 φ(r1 ) + e−i 2π
6 φ(r1 )

)(
ei 2π

6 φ(r2 ) + e−i 2π
6 φ(r2 )

)+ · · ·
]

×
∏

n=1,2,3

[
1 + e−Eb

∫
d2r1

a2
(eiẑ×∇φ(r1 )·bn + e−iẑ×∇φ(r1 )·bn )
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+ 1

2!
e−2Eb

∫
d2r1

a2

d2r2

a2
(eiẑ×∇φ(r1 )·bn + e−iẑ×∇φ(r1 )·bn )(eiẑ×∇φ(r2 )·bn + e−iẑ×∇φ(r2 )·bn ) + · · ·

]

≡
∫

[dφ]e−H̃ , (28)

where non-neutral charge configurations vanish automatically
after integration over φ(r). In the last step above, we have
summed over only the positive/negative single charges of
dislocation and disclination, and we obtain the dual vector
sine-Gordon Hamiltonian,

H̃ =
∫

r

[
1

2
C̃−1

i j,kl∂i∂ jφ∂k∂lφ − gb

3∑
n=1

cos(bn · ẑ × ∇φ)

− gs cos

(
2π

6
φ

)]
. (29)

In the above equation, the couplings gb = 2
a2 e−Eb, gs =

2
a2 e−Es are proportional to dislocation and disclination fugac-
ities, and the three elementary dislocation Burgers vectors
are given by b1 = ax̂, b2 = − a

2 x̂ + a
√

3
2 ŷ, b3 = −b1 − b2 =

− a
2 x̂ − a

√
3

2 ŷ.

E. Vector sine-Gordon duality redux

The above derivation of the dual vector sine-Gordon model
departed from the conventional phonon-only elastic model
of a 2D crystal, Eq. (5). As discussed in Sec. II B, target
space rotational invariance of the crystal is incorporated by
building the theory based on the symmetric tensor part ui j ,
Eq. (6), of the full strain tensor, ∂iu j , i.e., forbidding an
explicit dependence on the local bond angle θ = 1

2εi j∂iu j ,
which corresponds to an angle of rotation of the crystal.

Alternatively, the rotational invariance of a crystal can be
formulated as a gaugelike (minimal) coupling between the full
strain tensor ∂iu j and the bond angle θ (r), encoded in the
Hamiltonian density

H = 1
2Ci j,kl (∂iu j − θεi j )(∂kul − θεkl ) + 1

2 K (∂iθ )2. (30)

It can be straightforwardly verified that an integration over the
bond-angle field θ “Higgses out” [17,18] the antisymmetric
component of the strain tensor at long wavelengths recovering
the conventional elastic Hamiltonian in (5).

We now decouple the strain and bond elastic terms by
introducing two Hubbard-Stratonovich fields—the stress field
σi j and the torque “current” ji,

H[u, θ ; σi j, ji] = 1
2C−1

i j,klσi jσkl + iσi j (∂iu j − θεi j )

+ 1
2 K−1 j2

i + i ji∂iθ. (31)

We note that because ∂iu j is not symmetrized, the stress tensor
σi j is not symmetric here. In the presence of topological
defects, we again decompose the distortion field u and the
bond angle θ into the smooth elastic and non-single-valued
components,

ui = ũi + us
i , θ = θ̃ + θ s, (32)

which allow for dislocation and disclination defects, respec-
tively.

Integrating out the single-valued parts ũ and θ̃ enforces two
constraints,

∂iσi j = 0, (33a)

∂i ji + εi jσi j = 0. (33b)

The first one is solved via a vector gauge field A with

σi j = εik∂kA j, (34)

which transforms the second constraint into

∂i( ji + Ai ) = 0. (35)

It is then solved by introducing another scalar potential φ via
ji = εik∂kφ − Ai. Expressing the Hamiltonian (31) in terms
of gauge potentials, A(r) and φ(r), integrating by parts, and
using the definitions of dislocation b(r) and disclination s(r)
densities, the Hamiltonian density takes the form

H = 1

2
C−1

i j,klεimεkn∂mAj∂nAl + 1

2
K−1(εik∂kφ − Ai )

2

+ iAibi + iφ
2π

p
s. (36)

This model is evidently gauge-covariant under a local trans-
formation,

A(r) → A(r) + ẑ × ∇α(r), (37a)

φ(r) → φ(r) + α(r). (37b)

Integrating over the vector potential A(r) in the partition
function to lowest order yields

Ai = εik∂kφ (38)

(an effective Higgs mechanism [17,18]) and allows us to
eliminate A(r) in favor of φ(r) and to give the effective
Hamiltonian density

H[φ] = 1

2
C̃−1

i j,kl∂i∂ jφ∂k∂lφ + iφ

(
2π

p
s + ẑ · ∇ × b

)
, (39)

which is identical to that found in (20), which, when sup-
plemented by dislocation and disclination core energies and
summed over the defects, gives the dual vector sine-Gordon
model, Eq. (29).

F. Energetics of defects

Inside the crystal state, the background defect density
vanishes. In terms of the dual defects model, (20) and (39), we
can simply set the defect charges to zero, s = b = 0. In terms
of the generalized sine-Gordon model, (29), this corresponds
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to the irrelevance of both cosines, i.e., vanishing couplings,
gs = gb = 0,

Hcr = 1

2

∫
r
C̃−1

i j,kl∂i∂ jφ∂k∂lφ, (40a)

= 1

2
K−1

∫
r
(∇2φ)2, (40b)

where C̃−1
i j,kl = εiaε jbεkcεldC−1

ab,cd , and we have specialized it
to that of a hexagonal lattice, obtaining (40b) with K−1 =

2μ+λ

4μ(μ+λ) .
The energy of a single disclination can be obtained by

taking s(r) = 2πδ2(r). Solving the corresponding Euler-
Lagrange equation for φ gives

φcr
s (k) = i2πK

k4
, (41)

which for the energy of a single disclination in a crystal state
gives a well-known result,

E cr
s = 1

2
K−1

∫
d2r(∇2φs)2, (42a)

= 1

2
K
∫

L−1
d2k

1

k4
∼ KL2, (42b)

where L is the linear extent of the crystal.
Similarly, for a single dislocation, such as b(r) =

b1δ
2(r) = ax̂δ2(r), the corresponding Euler-Lagrange equa-

tion for φ gives

φcr
b (k) = aKky

k4
= aK sin θ

k3
, (43)

where θ is the angle between the direction of k and the x̂ axis.
Therefore, the energy of a single dislocation in the crystal
state is

E cr
b = 1

2
K−1

∫
d2r

(∇2φcr
c

)2
, (44a)

= 1

2
Ka2

∫ a−1

L−1

d2k

(2π )2

sin2 θ

k2
, (44b)

= 1

8
Ka2 ln

L

a
∼ K ln L. (44c)

The C3 rotational symmetry guarantees that the energies
for the other single dislocations, b(r) = b2δ

2(r) and b(r) =
b3δ

2(r), are identical.

III. RENORMALIZATION-GROUP ANALYSIS OF THE
MELTING TRANSITION

As discussed in the Introduction, and calculated above,
within the crystal state with a vanishing background defect
density the energy of a single dislocation scales as Eb ∼ ln L,
while the energy of a single disclination scales as Es ∼ L2,
where L is the linear extent of the crystal. Thus, as discov-
ered by Nelson and Halperin [2], above the critical melting
temperature Tm the dislocations will unbind first while the
disclinations remain confined, leading to the orientationally
ordered hexatic liquid, which is stable in a finite-temperature
range Tm < T < Thex.

More formally, within the dual sine-Gordon model, this is
reflected by the irrelevance of the disclination cosine operator
at the Gaussian fixed line. Computing its average in a system
of size L, we indeed find〈∫

d2r cos

(
2π

6
φ

)〉
=
∫

d2re− π2

18 〈φ2(r)〉 (45a)

=
∫

d2re− π
72 KL2

(45b)

∼ L2e−L2 → 0. (45c)

This analysis [that can be more formally elevated to a
renormalization-group (RG) computation] demonstrates that
the disclination cosine operator, gs, is strongly irrelevant
around the Gaussian fixed line, i.e., when the dislocation
cosine, gb, is small, corresponding to the absence of screening
of disclinations by dislocations.

A. Crystal-hexatic melting transition

Thus, within the crystal and near the crystal-to-hexatic
transition, we can neglect the disclination cosine, setting gs =
0, reducing the effective Hamiltonian to

H̃cr =
∫

r

[
1

2
C̃−1

i j,kl∂i∂ jφ∂k∂lφ − gb

3∑
n=1

cos(bn · ẑ × ∇φ)

]
.

(46)

The RG analysis of this model is more convenient in an
equivalent description in terms of a divergenceless vector field
A = ẑ × ∇φ,

H̃cr =
∫

r

[
1

2
C−1

i j,klεimεkn∂mAj∂nAl + α

2
(∇ · A)2

− gb

3∑
n=1

cos(bn · A)

]
, (47)

with the constraint ∇ · A = 0 imposed energetically via a
“mass” term α

2 (∇ · A)2 added to the Hamiltonian, with α →
∞ taken at the end of the calculation. Interestingly, our model
is mathematically closely related to that for the roughening
transition of a crystal pinned by a commensurate substrate,
studied by Ohta [23] and by Levin and Dawson [24].

Specializing C−1
i j,kl to a hexagonal lattice, Eq. (16), the

Hamiltonian reduces to

H̃cr =
∫

r

[
K−1

2
(∂iA j )

2 + B

2
∂iA j∂ jAi + α

2
(∇ · A)2

− gb

3∑
n=1

cos(bn · A)

]
, (48)

where the couplings are

K−1 = 2μ + λ

4μ(μ + λ)
, (49a)

B = λ

4μ(μ + λ)
. (49b)
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In the physical limit α → ∞, the dislocation-free, Gaus-
sian propagator is given by

〈Ai(q)Aj (q′)〉0 = K

q2
PT

i j (q)(2π )2δ2(q + q′), (50)

a purely transverse form, with the transverse projection op-
erator, PT

i j (q) = δi j − qiq j

q2 , consistent with (23), encoding the
target-space rotational invariance of the crystal [2,3].

To describe the melting transition, we need to include
dislocations encoded in the gb cosine operator. Although at
low temperature (corresponding to large elastic constants and
small K−1) a perturbative expansion in gb is convergent (i.e.,
the fixed line gb = gs = 0 is stable), it breaks down for K
below a critical value, indicating an entropic proliferation of
large dislocation pairs for T > Tm.

To treat this high-temperature nonperturbative regime re-
quires an RG analysis. Relegating the details to Appendix A,
here we present the highlights of the analysis and its results.
To control the divergent perturbation theory, we employ the
momentum-shell coarse-graining RG by decomposing the
vector field A(r) into its short-scale and long-scale modes,
Ai(r) = A<

i (r) + A>
i (r), with

A<
i (r) =

∫
0<q<�/b

d2q

(2π )2
eiq·rAi(q), (51a)

A>
i (r) =

∫
�/b<q<�

d2q

(2π )2
eiq·rAi(q), (51b)

where the ultraviolet cutoff � = 2π/a, and the rescaling
factor b > 1 defines the width of the momentum shell, �/b <

q < �. Following a standard analysis, we integrate short-scale
modes A>

i (r) out of the partition function, obtaining a coarse-
grained Hamiltonian for the long-scale modes, A<

i (r), with the
renormalized coupling K−1

R (b), BR(b), and gbR (b) satisfying

K−1
R (b) = K−1 + J2g2

b, (52a)

BR (b) = B + J3g2
b, (52b)

gbR (b) = gbe− 1
2 G>

nn(0) + J1g2
b, (52c)

valid to second-order in gb. The Green’s function appearing
above is given by

G>
nm(r1 − r2) ≡ bn

i bm
j 〈A>

i (r1)A>
j (r2)〉>0 , (53)

and Ji factors are defined as

J1 = πa2

[
e

K
16π I0

(
K

8π

)
+
(

K

16π
− 1

)]
ln b, (54a)

J2 = πa6

4

{
e

K
8π

[
3

2
I0

(
K

8π

)
− 3

4
I1

(
K

8π

)]

+ 3

2

(
K

16π
− 1

)}
ln b, (54b)

J3 = 3πa6

16
e

K
8π I1

(
K

8π

)
ln b, (54c)

where I0(x) and I1(x) are modified Bessel functions.

It is convenient to examine an infinitesimal form of
these RG equations by taking b = eδl with δl  1. Near the
melting critical point K−1

R (l → ∞) ≡ K−1
R∗ = a2

16π
, gbR (l →

∞) ≡ g∗
b = 0, this then gives RG differential flow equations

for the dimensionless coupling constants K
−1

(l ) = K−1/a2,
B(l ) = B/a2, and gb(l ) = gba2,

dK
−1

(l )

dl
= 3π

8

[
e2

(
I0(2) − 1

2
I1(2)

)]
g2

b(l ), (55a)

dB(l )

dl
= 3π

16
e2I1(2)g2

b(l ), (55b)

dgb(l )

dl
=
(

2 − K

8π

)
gb + πeI0(2)g2

b(l ). (55c)

Using the definitions in terms of the dimensionless Lamé
elastic constants μ = μa2, λ = λa2, and the fugacity y,

K
−1 = 1

4

(
1

μ
+ 1

μ + λ

)
, (56a)

B = 1

4

(
1

μ
− 1

μ + λ

)
, (56b)

ḡb = 2e−Eb = 2y, (56c)

our equations reduce exactly to the seminal RG flows for
the inverse shear modulus, μ−1(l ), the inverse bulk modulus
[μ(l ) + λ(l )]−1, and the effective fugacity y(l ), respectively,

dμ−1

dl
= 3πe2I0(2)y2, (57a)

d (μ + λ)−1

dl
= 3πe2[I0(2) − I1(2)]y2, (57b)

dy

dl
=
(

2 − K

8π

)
y + 2πeI0(2)y2, (57c)

first derived by Nelson and Halperin [2] and Young [3].
Following a standard analysis [1,2], the characteristic cor-

relation length ξxtal-hex near the critical point at T → T −
m can

be extracted from the above RG flows, and it is given by

ξxtal-hex(T ) ∼ ae−c/|T −Tm|ν , (58)

with the hexagonal lattice exponent given by

ν = 0.3696 . . . , (59)

and c is a nonuniversal constant [2].

B. Hexatic-isotropic liquid transition

Dislocation-unbinding above the melting temperature Tm

destroys the crystal order, restoring continuous translational
symmetry. The plasma of unbound dislocations drives the
shear modulus to zero, but it retains the quasi-long-ranged
orientational order and the associated bond orientational stiff-
ness. Inside this orientationally ordered hexatic fluid (Tm <

T < Thex), gb is driven to strong coupling, suppressing A
fluctuations, and allowing us to approximate the dislocation
cosine by its harmonic form. With disclinations reinstated,
the resulting effective Hamiltonian takes the standard scalar

094105-7



ZHENGZHENG ZHAI AND LEO RADZIHOVSKY PHYSICAL REVIEW B 100, 094105 (2019)

sine-Gordon form:

H̃hex ≈
∫

r

[
1

2
gb

3∑
n=1

εikε jl b
n
i bn

j∂kφ∂lφ − gs cos

(
2π

6
φ

)]

=
∫

r

[
1

2
J (∇φ)2 − gs cos

(
2π

6
φ

)]
, (60)

where J ≡ 3
2 a2gb.

Alternatively, we can get to this dual hexatic Hamiltonian
by noting that above the critical melting temperature, Tm,
dislocations (disclination dipoles) unbind, leading to an ori-
entationally ordered (a hexatic) fluid. Since the dislocations
then appear at finite density, their Burgers charge b(r) can be
treated as a continuous (rather than a discrete) vector field.
Going back to (27), carrying out a Gaussian integral over a
continuous field br, and summing over discrete disclination
charges, srn , we again obtain the hexatic Hamiltonian pre-
sented above.

Utilizing H̃hex, we observe that within the hexatic phase,
the energy of a disclination, screened by the plasma of
proliferated dislocations, is reduced significantly from that
of the crystal (where it diverges as L2) to Ehex

s ∼ JR ln L/a.
Thus, the hexatic-isotropic fluids transition is of the con-
ventional Kosterlitz-Thouless type [1,2,17], taking place at
Thex = (72/π )JR(Thex). Above Thex, the fluid is isotropic,
characterized by short-ranged translational and orientational
correlations.

IV. SUMMARY AND CONCLUSION

In this paper, starting with a description of a crystal in
terms of its elasticity and topological defects, we derive a
corresponding dual vector sine-Gordon model. In the latter,
the disclinations and dislocations are captured by cosine
operators of the Airy stress potential and its gradient. The
relevance of the latter dislocation cosine signals the con-
tinuous Kosterlitz-Thouless-Halperin-Nelson-Young melting
transition of a crystal into a hexatic fluid [1–3]. The sub-
sequent relevance of the former disclination cosine captures
the hexatic-to-isotropic fluid Kosterlitz-Thouless transition, as
outlined in Sec. I B and illustrated in Fig. 1. Our complemen-
tary analysis reproduces straightforwardly the results of Nel-
son and Halperin [2] and Young [3], including the correlation
functions, defect energetics, renormalization-group flows, and
the correlation length exponent ν.

We expect that the simplified vector sine-Gordon formula-
tion presented here will be useful in further detailed studies
of, e.g., the external stress, the defect dynamics, the substrate,
and the dynamics of the melting transition [25].
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APPENDIX A: DERIVATION OF RG EQUATIONS

In this Appendix, we present the details of the
renormalization-group analysis of the vector sine-Gordon
model for the dislocation unbinding transition,

H̃ =
∫

r

[
1

2
[K−1(∂iA j )

2 + B∂iA j∂ jAi] + α

2
(∇ · A)2

− gb

3∑
n=1

cos(bn · A)

]
, (A1)

where the coupling constants are K−1 = 2μ+λ

4μ(μ+λ) and B =
λ

4μ(μ+λ) . The transversality constraint ∇ · A = 0 is imposed
energetically by taking α → ∞ at the end of the calculation.

In the physical limit α → ∞, the dislocation-free,
Gaussian propagator is given by

〈Ai(q)Aj (q′)〉0 = K

q2
PT

i j (q)(2π )2δ2(q + q′), (A2)

with the transverse projection operator PT
i j (q) = δi j − qiq j

q2 .
To carry out the momentum-shell RG analysis, we decom-

pose vector field A(r) into its short- and long-scale modes,
Ai(r) = A<

i (r) + A>
i (r), with

A<
i (r) =

∫
0<q<�/b

d2q

(2π )2
eiq·rAi(q), (A3a)

A>
i (r) =

∫
�/b<q<�

d2q

(2π )2
eiq·rAi(q), (A3b)

where the ultraviolet cutoff � = 2π/a, and the rescaling
factor b > 1 defines the width of the momentum shell, �/b <

q < �.
Integrating out the short-scale modes, A>

i (r), the partition
function reduces to integration over the long-scale modes,
A<

i (r), with an effective Hamiltonian,

Z =
∫

[dA]e−H [A>+A<]

=
∫

[dA<][dA>]e−H0[A<]−H0[A>]−Hint[A<+A>]

=
∫

[dA<]e−H0[A<]Z>
0 〈e−Hint[A<+A>]〉>0 ≡

∫
[dA<]e−H<[A<],

(A4)

where Z>
0 = ∫

[dA>]e−H0[A>] is the harmonic part of the
partition function of the short-scale modes with the quadratic
Hamiltonian,

H0[A>] =
∫

r

[
1

2
[K−1(∂iA

>
j )2 + B∂iA

>
j ∂ jA

>
i ]+ α

2
(∇ · A>)2

]
,

(A5)
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and the coarse-grained effective Hamiltonian H<[A<] of the long-scale modes given by

H<[A<] = H0[A<] − ln〈e−Hint[A<+A>]〉>0 − ln Z>
0 . (A6)

We drop the last term, − ln Z>
0 , which is a field-independent correction to the free energy that does not affect the flow of the

coupling constants. We then compute H<[A<] in terms of corrections to elastic constants μ, λ and dislocation fugacity gb arising
from coarse-graining − ln〈e−Hint[A<+A>]〉>0 .

We expand 〈e−Hint[A<+A>]〉>0 to second order in gb,

〈e−Hint[A<+A>]〉>0 = 〈egb
∑

n=1,2,3

∫
r cos(bn·A)〉>0 ≈ 1 + gb

3∑
n=1

∫
r
〈cos(bn · A)〉>0 + g2

b

2

3∑
n=1

3∑
m=1

∫
r1

∫
r2

〈cos[bn · A(r1)] cos[bm · A(r2)]〉>0 ,

(A7)

finding

ln〈e−Hint[A<+A>]〉>0 = gb

3∑
n=1

∫
r
〈cos(bn · A)〉>0 + g2

b

2

3∑
n,m=1

∫
r1

∫
r2

{〈cos[bn · A(r1)] cos[bm · A(r2)]〉>0

−〈cos[bn · A(r1)]〉>0 〈cos[bm · A(r2)]〉>0
}
. (A8)

These are straightforwardly evaluated by Gaussian integration, giving to first order

〈cos(bn · A)〉>0 = 1
2 〈eibn·(A<+A> ) + e−ibn·(A<+A> )〉>0 = e− 1

2 〈(bn·A> )2〉>0 cos(bn · A<) ≡ e− 1
2 G>

nn(0) cos(bn · A<), (A9)

and to second order the connected part,

〈cos[bn · A(r1)] cos[bm · A(r2)]〉>0 − 〈cos[bn · A(r1)]〉>0 〈cos[bm · A(r2)]〉>0
= 1

4 {ei[bn·A<(r1 )+bm·A<(r2 )]〈ei[bn·A>(r1 )+bm·A>(r2 )]〉>0 + ei[bn·A<(r1 )−bm·A<(r2 )]〈ei[bn·A>(r1 )−bm·A>(r2 )]〉>0
+ e−i[bn·A<(r1 )−bm·A<(r2 )]〈e−i[bn·A>(r1 )−bm·A>(r2 )]〉>0 + e−i[bn·A<(r1 )+bm·A<(r2 )]〈e−i[bn·A>(r1 )+bn·A>(r2 )]〉>0 }
− e−G>

nn (0) cos[bn · A<(r1)] cos[bm · A<(r2)]

= 1
2 e−G>

nn (0){[e−G>
nm (v) − 1] cos[bn · A<(r1) + bm · A<(r2)] + [e+G>

nm (v) − 1] cos[bn · A<(r1) − bm · A<(r2)]}, (A10)

where v = r1 − r2, and we have defined

G>
nm(r1 − r2) ≡ bn

i bm
j 〈A>

i (r1)A>
j (r2)〉>0 . (A11)

For 0 < v < a, we approximate the short-scale averaged correlation function by its value at v = 0,

〈A>
i (r)A>

j (r)〉>0 =
∫ >

q
〈Ai(q)Aj (−q)〉>0 =

∫ �

�/b

qdq

(2π )2

∫ 2π

0
dθ

K

q2

(
δi j − qiq j

q2

)
= K

2π
ln b

(
δi j − 1

2
δi j

)
= K

4π
ln bδi j . (A12)

For v > a, we have the real space correlation function [2],

〈Ai(r1)Aj (r2)〉 =
∫

d2q

(2π )2
〈Ai(q)Aj (−q)〉 · eiq·(r1−r2 ) =

∫
d2q

(2π )2

K

q2

(
δi j − qiq j

q2

)
· eiq·v = − K

4π

(
ln

v

a
δi j − viv j

v2

)
. (A13)

Therefore, we can evaluate G>
nm(r1 − r2) explicitly, finding

G>
nm(r1 − r2) ≈

⎧⎪⎨
⎪⎩

K
4π

bn · bm ln b for 0 < v < a,

− K
4π

[
bn · bm ln v

ba − (bn·v)(bm·v)
v2

]
for a < v < ba,

0 for v > ba.

(A14)

This thus gives to second-order in gb,

ln〈e−Hint[A<+A>]〉>0 =gb

∑
n

e− 1
2 G>

nn(0)
∫

r
cos(bn · A<) + g2

b

4

∑
n,m

e−G>
nn (0)

{∫
r1

∫
r2

[e−G>
nm (r1−r2 ) − 1]

× cos[bn · A<(r1) + bm · A<(r2)] +
∫

r1

∫
r2

[e+G>
nm (r1−r2 ) − 1] × cos[bn · A<(r1) − bm · A<(r2)]

}
.

(A15)

The above double integral,
∫

d2r1
∫

d2r2(· · · ) simplifies using the fact that G>
nm(r1 − r2) is short-ranged, vanishing for

|r1 − r2| larger than b/� ∼ ba, since G>
nm(r) is defined to be composed of Fourier modes only within a thin momentum-shell,
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�/b < q < �. Consequently, [e±G>
nm (r1−r2 ) − 1] is also small everywhere but in the range |r1 − r2| ∼ b/� ∼ ba. To utilize these

observations, we change variables {r1, r2} to their sum and difference,

r = 1
2 (r1 + r2), v = r1 − r2, (A16)

obtaining

bn · A<(r1) + bm · A<(r2) ≈ (bn + bm) · A<(r) (A17)

and

bn · A<(r1) − bm · A<(r2) = bn · A<
(

r + v
2

)
− bm · A<

(
r − v

2

)
≈ (bn − bm) · A<(r) + 1

2
(bn + bm) · (v · ∇)A<(r).

(A18)

This allows the following simplifications of (A15),

ln〈e−Hint[A<+A>]〉>0 ≈ gb

∑
n

e− 1
2 G>

nn(0)
∫

r
cos(bn · A<) + g2

b

4

∑
n,m

e−G>
nn (0)

{∫
r

∫
v
[e−G>

nm (v) − 1] cos[(bn + bm) · A<(r)]

+[e+G>
nm (v) − 1

]
cos

[(
(bn − bm) + 1

2
(bn + bm)(v · ∇)

)
· A<(r)

]}
. (A19)

Comparing (A19) to the component of the long-scale Hamiltonian H[A<], we can extract the corresponding corrections for the
coupling constants K−1, B, and gb. To this end, ignoring the field-independent terms, we obtain

ln〈e−Hint[A<+A>]〉>0 ≈ gb

∑
n

e− 1
2 G>(0)

∫
r

cos(bn · A<) + g2
b

4

∑
n,m

e−G>(0)

{∫
r

∫
v
[e−G>

nm (v) − 1] cos[(bn + bm) · A<(r)]

+
∫

r

∫
v
[e+G>

nm (v) − 1]

[
cos[(bn − bm) · A<] − 1

8
[(bn + bm) · (v · ∇)A<]2 cos[(bn − bm) · A<]

]}

= gb

∑
n

e− 1
2 G>(0)

∫
r

cos(bn · A<) + g2
b

∫
r
{I23 cos[b1 · A<(r)] + I13 cos[b2 · A<(r)] + I12 cos[b3 · A<(r)]}

−g2
b

8

∑
n

e−G>(0)
∫

r

∫
v
[e+G>

nn (v) − 1][bn · (v · ∇)A<]2 + other irrelevant terms. (A20)

We note that above, we have written G>
nn(0) simply as G>(0), since it takes the same value for all elementary Burgers vectors

bn, n = 1, 2, 3. Further simplifications lead to the desired form

ln〈e−Hint[A<+A>]〉>0 ≈
∫

r

{∑
n

[
gbe− 1

2 G>(0)+ J1g2
b

]
cos(bn · A<) − g2

b

2
[J2(∂iA

<
j )2 + J3∂iA

<
j ∂ jA

<
i + J3(∇ · A<)2]

}
, (A21)

where the coefficients J1, J2, and J3 are defined as

J1 = I12 = I13 = I23 ≡ 1

2
e−G>(0)

∫
v

[
e−G>

12(v) − 1
] = πa2

[
e

K
16π I0

(
K

8π

)
+
(

K

16π
− 1

)]
δl, (A22a)

J2 = 1

4

3∑
n=1

(bn
2)2e−G>(0)

∫
v
v2

1

[
e+G>

nn (v) − 1
] = πa6

4

{
e

K
8π

[
3

2
I0

(
K

8π

)
− 3

4
I1

(
K

8π

)]
+ 3

2

(
K

16π
− 1

)}
δl, (A22b)

J3 = 1

4
e−G>(0)

∑
n

bn
1bn

2

∫
v
v1v2

(
e+G>

nn(v) − 1
) = 3πa6

16
e

K
8π I1

(
K

8π

)
δl. (A22c)

Above I0(x), I1(x) are modified Bessel functions, we have dropped higher harmonic operators, and we have taken δl ≡ ln b 
1.

The above analysis now allows us to identify the renormalized couplings K−1
R , BR, and gbR ,

K−1
R (b) = K−1 + J2g2

b, (A23a)

BR(b) = B + J3g2
b, (A23b)

gbR (b) = gbe− 1
2 G>(0) + J1g2

b, (A23c)
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obtained to second-order in gb. The corresponding RG differential flow equations for the dimensionless couplings K
−1

(l ) =
K−1/a2, B(l ) = B/a2, gb(l ) = gba2 are then given by

dK
−1

(l )

dl
= 3π

8

{
e

K
8π

[
I0

(
K

8π

)
− 1

2
I1

(
K

8π

)]
+ K

16π
− 1

}
g2

b, (A24a)

dB(l )

dl
= 3π

16
e

K
8π I1

(
K

8π

)
g2

b, (A24b)

dgb(l )

dl
=
(

2 − K

8π

)
gb + π

[
e

K
16π I0

(
K

8π

)
+
(

K

16π
− 1

)]
g2

b. (A24c)

Near the melting critical point, K
−1

(l → ∞) = 1
16π

,
gb(l → ∞) = 0, we define the reduced temperature, x(l ) =
16π

K
− 1, and fugacity, y(l ) = e−Ecs = 1

2 gb. Near the melting
point, their flow equations are given by

dx(l )

dl
= 12π2e2[2I0(2) − I1(2)]y2 ≡ 12π2c1y2, (A25a)

dy(l )

dl
= 2xy + 2πeI0(2)y2 ≡ 2xy + 2πc2y2, (A25b)

where c1 = e2[2I0(2) − I1(2)] = 21.937 . . . and c2 =
eI0(2) = 6.1965 . . . are numerical constants, consistent
with Halperin and Nelson [2].

Following a standard analysis [1,2], the characteristic cor-
relation length ξxtal-hex near the critical point at T → T −

m can
be extracted from the above RG flows, giving

ξxtal-hex(T ) ∼ ae−c/|T −Tm|ν , (A26)

with the hexagonal lattice exponent given by ν = 0.3696 . . .

and c is a nonuniversal constant.
Using the expressions of K and B in terms of the dimen-

sionless Lamé elastic constants μ = μa2 and λ = λa2,

K
−1 = 1

4

(
1

μ
+ 1

μ + λ

)
, (A27a)

B = 1

4

(
1

μ
− 1

μ + λ

)
, (A27b)

the RG flow equations for the inverse shear modulus, μ−1(l ),
and the inverse bulk modulus, [μ(l ) + λ(l )]−1, near the criti-
cal point are then given by

dμ−1(l )

dl
= 3πe2I0(2)y2(l ), (A28a)

d[μ(l ) + λ(l )]−1

dl
= 3πe2[I0(2) − I1(2)]y2(l ). (A28b)

APPENDIX B: ELASTICITY OF 2D CRYSTAL SUBJECT TO
AN EXTERNAL STRESS FIELD

As the crystal is subject to an external stress tensor field
σ e

i j (r), we need to add an external term into the elastic energy
functional

H = 1
2Ci j,kl ui jukl − σ e

i jui j . (B1)

In the presence of topological defects, the distortion field
u(r) is not single-valued. It and the associated strain tensor

can be decomposed into the single-valued elastic phonon and
the singular part,

ui = ũi + us
i , (B2)

ui j = ũi j + us
i j . (B3)

To include these topological and phonon degrees of freedom,
we focus on the partition function (taking kBT = 1, i.e.,
measuring coupling constants in units of thermal energy),

Z =
∫

[du]e− ∫
r H[u] =

∫
[du]

∫
[dσi j]e

− ∫
r H[u,σi j ], (B4)

where the trace over u(r) in the partition function (as in
summing/integrating over the degrees of freedom of the
theory) implicitly includes both phonons and topological de-
fects by allowing non-single-valued distortions. In the second
form, above, we decoupled the elastic energy by introducing
a Hubbard-Stratonovich tensor field—the symmetric stress
tensor σi j (r) with the resulting Hamiltonian density given by

H[u, σi j] = 1
2C−1

i j,klσi jσkl + iσi jui j − σ e
i jui j

= 1
2C−1

i j,klσi jσkl + i
(
σi j + iσ e

i j

)(
∂iũ j + us

i j

)
, (B5)

and C−1
i j,kl = − λ

4μ(μ+λ)δi jδkl + 1
2μ

δikδ jl for a 2D hexagonal
lattice.

Tracing over the single-valued phonons ũ enforces the
divergenceless stress constraint,

∂i
(
σi j + iσ e

i j

) = 0, (B6)

solved with a scalar Airy stress potential, φ(r),

σi j = εikε jl∂k∂lφ − iσ e
i j . (B7)

Expressing the Hamiltonian density in terms of φ(r), and
integrating by parts in the second linear term, we utilize the
defects conditions, Eqs. (9) and (11),

εikε jl∂l∂kus
i j = εikε jl∂l∂k

(
∂iu

s
j − εi jθ

s
)
, (B8a)

= εki∂kbi(r) + εki∂k∂iθ (r), (B8b)

= ẑ · ∇ × b + 2π

6
s(r), (B8c)

to obtain

H[φ] = 1
2C̃−1

i j,kl

(
∂i∂ jφ − iεiaε jbσ

e
i j

)(
∂k∂lφ − iεkcεldσ

e
kl

)
+ i 1

2εikε jl∂k∂lφ
(
∂iu

s
j + ∂ ju

s
i

)
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= 1
2C̃−1

i j,kl∂i∂ jφ∂k∂lφ + i 1
2εikε jl∂k∂lφ

(
∂iu

s
j − ∂ ju

s
i

)
+iεikε jl∂k∂lφ∂ ju

s
i − 1

2C−1
i j,klσ

e
i jσ

e
kl − i ˜̃C−1

i j,kl∂i∂ jφσ e
kl

= 1
2C̃−1

i j,kl∂i∂ jφ∂k∂lφ + iφ(2πs + ẑ · ∇ × b)

− 1
2C−1

i j,klσ
e
i jσ

e
kl − i ˜̃C−1

i j,kl∂i∂ jφσ e
kl

≡ Hint[φ] + Hext[φ], (B9)

where C̃i j,kl = εiaε jbεkcεldCab,cd , ˜̃Ci j,kl = εiaε jbCab,kl , and we
have used integration by parts. The total elastic energy func-
tional is therefore composed of an internal part and an external
part, with the internal part

Hint = 1
2C̃−1

i j,kl∂i∂ jφ∂k∂lφ + iφ(2πs + ẑ · ∇ × b)

+Ecs s
2 + Ecbb

2, (B10)

where we have added the dislocation and disclination core
energies Ecb and Ecs to account for their short-scales, and the
external part

Hext = − 1
2C−1

i j,klσ
e
i jσ

e
kl − i ˜̃C−1

i j,kl∂i∂ jφσ e
kl . (B11)

Alternatively, we can also start by formulating the elastic
energy in terms of both the full strain tensor ∂iu j and the bond
angle θ (r),

H = 1
2Ci j,kl (∂iu j − θεi j )(∂kul − θεkl ) + 1

2 K (∂iθ )2

−σ e
i j (∂iu j − θεi j ), (B12)

and we get the same result following the procedure of
Sec. II C.
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