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Cavity quantum electrodynamic analysis of spasing in nanospherical dimers
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We present a detailed cavity quantum electrodynamic model of a nanospherical dimer and use it to analyze
bright hybrid spasing modes there. Using an approximate numerical scheme, we model the complete spasing
system as an open quantum system under the Lindblad dissipator formalism. We show that while in general the
longitudinal dimer setups display higher intensity spasing as compared with transverse dimers, the latter actually
consistently lead to output with higher coherence. Intriguingly, and somewhat counterintuitively, we find that
transverse dimers only reach peak output at an intermediate dimer separation at which field confinement is not
the strongest. We show that this is due to low radiative decay rates of transverse dimers with significant dimer
gaps. We also find that transverse dimers outperform longitudinal dimers in terms of output intensity in a weakly
pumped sparse gain medium made of dimers with relatively large separations. Moreover, in all the configurations
considered, we find that the second-order coherence of the spasing output shows a peaked behavior just before
the threshold, suggesting that the coherence is a useful indicator of spasing. Even though the scheme we
describe is focused on dimers, owing to the generic form of the analysis presented, it can be easily extended to
investigate spasing in the bright modes of multiple coupled plasmon sources.
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I. INTRODUCTION

SPASER (surface plasmon amplification by stimulated
emission of radiation) [1] is a device capable of generat-
ing extremely localized coherent plasmons at the nanoscale.
Essentially describable as a nanoscale manifestation of the
laser, such devices have been shown to have applications in
ultramicroscopy [2], detection, and spectroscopy of biolog-
ical and chemical agents [3], and various other biomedical
applications including cancer therapy [4]. Operating at the
nanoscale, a spaser can localize light, bypassing the diffrac-
tion limit when a conventional laser dimension becomes
subwavelength. It achieves this by replacing the photons in
a conventional laser by plasmons, a bosonic manifestation of
the coherent electronic oscillations in materials (most often a
noble metal like silver or gold) under electromagnetic fields.
It replaces the feedback cavity of a laser with a nanoscale
particle or structure capable of supporting the plasmon
modes.

Since the pioneering model of spasers by Bergman and
Stockman [5], there has been considerable interest in studying
and fabricating realistic spasers due to incredible potential of
the technology [4,6–8]. However, it was soon realized that
mainly due to the high dissipation rates within plasmonic
systems [9], the first simplistic models needed to be improved
drastically.

*tharindu.warnakula@monash.edu
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In the past few years, hybrid nanostructures [10] that
utilize electromagnetic field confinement and cooperativity
effects have received significant attention as alternatives to
the simple single nanoobject based spasers of the early days.
Incredible advances have been made in terms of clever ge-
ometric arrangements that enhance the operation of spasers
despite having to endure high intrinsic losses. The types of
systems proposed can be roughly categorized into two do-
mains: the devices operating utilizing the far-field interaction
characteristics of plasmons and the devices operating utilizing
the near-field interactions of plasmons placed next to each
other. Of these, the former has shown immense promise in
recent experimental successes that demonstrate ultranarrow
linewidth lasing in periodically placed plasmon sources [11].
These effects have been theoretically predicted and explained
[12,13]. However, due to the required spacing between plas-
mon sources, the sizes of these devices run well into the
micrometer range. The second type of systems, that utilize the
interaction of the near fields of plasmons, do not suffer from
this size expansion. The first of these models was proposed in
[14] where an interacting chain of spheres was analyzed using
an electrodynamic formalism. The field enhancement and
other desirable properties, including spasing, were predicted
[15]. While these characterizations have been able to predict
most of the behavior of nanosphere dimer based spasers, the
analyses, however, have been limited to the classical and
semiclassical domains and a fully quantum theory capable
of handling such hybrid systems has been lacking until now.
Quantum statistical effects play a key role within structures
especially at the nanoscale, and the nature of these effects
has not been studied in dimer setups. As a first step to filling
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this void, we make a complete quantum characterization of
a dimer based spaser also taking into account dissipation
processes that heavily affect spasing output.

We perform our analysis using the standard dipole approx-
imation. We also simplify our analysis by working within
the quasistatic approximation, neglecting retardation effects.
While dimers are simple as compared to the more complex
spasing setups practically used nowadays, our technique can
be extended to any hybrid setup supporting bright modes.
We study the performance of a spaser made of a silver
nanosphere dimer and also compare the spasing output to
one composed of a single nanosphere. We only focus on the
so-called bright plasmonic modes due to them being easily
excitable using an external electric field. It has been shown
that dipole modes in two isolated nanospheres hybridize when
they are in close proximity, forming a dipole-active “bright”
mode, and a dipole-inactive “dark” mode [16]. It is only the
dipole active modes of the plasmons that can be coupled
efficiently to and hence can be conveniently pumped by a
linearly polarized electric field. We also analytically calculate
both the couplings to individual gain medium chromophores
in a three-dimensional (3D) gain distribution and the total
radiative decays in the dimer system.

We perform our quantum analysis in the density matrix for-
malism. Such an approach is essential to account for intrinsic
quantum effects in the setup. Even though, sometimes, com-
putational cost is prohibitive in handling density matrix meth-
ods, some recent advances have enabled solving associated
equations in polynomial time by exploiting their symmetry
attributes [17]. Extension of Lamb’s theory of lasing has also
been successful in approximately solving the density matrix
for coupled cavity-gain systems to high accuracy using the
so-called reduced density matrix (RDM) approach [18]. With
these tools, a new wave of advances and results regarding the
behavior of spasing systems under quantum conditions have
been obtained [17–20]. We utilize the RDM approach to solve
the quantum density matrix in this work.

Our analysis can probe into some of the key characteristics
of spasing systems composed of multiple nanoparticles placed
next to each other. In particular, we study the full spasing
curves, the plasmon probability distributions, as well as the
second-order coherence of the generated surface plasmons to
analyze the variation of spasing with dimer separation. We
also analyze the effect of the gain medium distribution on the
characteristics of dimer based spasers.

This paper is organized as follows: In Sec. II, we present
the full theoretical model and the analytic derivations we
use to model the spasing system. In Sec. III, we present the
results derived through the equations of Sec. II and discuss the
implications of the results for spasers and designers of spasers.
We conclude our presentation by discussing possible future
improvements and changes to the theoretical framework we
present.

II. MODEL

In this section, we present the background details of the
spasing model considered in this paper. We first explore the
concept of plasmonic resonances of single metallic spheres
(which we refer to as singlets). Then, we move onto the
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FIG. 1. The two dimer setups (a) transverse and (b) longitudinal.
We orient the external electric field and hence the dipole moments
along the z axis as shown. The y axis can be determined from the
right-hand rule.

collective resonances of spherical dimers. We study the dimer
systems as described by the coupled dipole approximation
under the quasistatic limit, where one sphere’s influence on
the other can be simplified to be that of a point dipole placed
at the origin of the first sphere. We study two configurations,
longitudinal and transverse, of the dimer system based on the
orientation of the external pumping field relative to the axis
joining the spheres.

Next, we present the quantization procedure for both con-
figurations and derive the quantized electric field operators
and the associated coupling constants to external dipoles. We
move onto calculating the radiative decay rates of the two
setups afterward. While we treat the dimer modes and the
decays of the dimer modes separately, we note there exist
schemes such as the quasinormal mode (QNM) [21] approach
and the generalized normal mode (GENOME) [22] approach
that unify the treatment of the mode and the decays exactly
through elegant utilization of complex mode frequencies and
permittivities, respectively. Quantization of these modes gives
us the quantum operators of the damped system along with the
decays. On the other hand, our approach quantizes the free
undamped mode and adds the dissipations self-consistently
through Lindblad terms. While these two approaches yield
similar results in the small dissipation limit, the method we
use also has the advantage of simplicity and ease of analytical
characterization and insight.

Finally, we model the two different spasing setups as
open quantum systems consisting of plasmonic dimer systems
coupled to a gain medium, that is immersed in an external
environment. We use the Lindblad formalism to model the in-
teractions between the quantum systems and external environ-
ment, enabling us to model both dissipation and decoherence.

Throughout this section, we will denote the center coordi-
nate of the spheres by r1 and r2, and their separation along
the axis joining the centers to be D. As shown in Fig. 1,
the radii of the spheres will be taken to be equal to R and
the relative permittivity of the metal will be denoted by εm.
In this work, we mainly consider the metal to be silver and
use the permittivities given by Jiang et al. [23]. These values
are an improvement over the often-used Johnson and Christy
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[24] measurements and have been derived under extremely
controlled settings. We denote the relative permittivity of the
medium in which the system is placed in by εb. In both
the transverse and longitudinal setups, we will consider the
external electric field to be oriented along the z direction. This
forces the dipole moments in both setups to be oriented along
the z direction. For the transverse setup, the two spheres will
be placed along the x axis causing the electric field to be per-
pendicular to the axis joining the spheres. In the longitudinal
setup, the spheres are arranged along the z direction and the
electric field is parallel to the axis joining the spheres.

A. Plasmonic resonances in isolated metallic sphere

Metallic spheres are perhaps the most extensively studied
structure as far as spasing is concerned. The structure of
the surface charge distributions on metallic spheres in the
presence of external fields and the nature of the plasmonic
resonances that arise were known and explored for a long
time [25]. The modes of induced surface charge distributions
in metallic spheres can be shown to have the structure of
spherical harmonics [26]. While these harmonics give rise to
an infinite number of modes, the three lowest-order dipole
modes corresponding to three orthogonal directions generally
determine the dynamics and hence have been studied almost
exclusively in the field of spasing [27]. While the higher-order
multipoles have been shown to add significant effects to the
spasing mode under certain conditions, we get away by not
considering such modes by setting conditions just right for
sustaining spasing in dominant dipole modes. In particular,
we choose energy-level parameters as well as pumping pa-
rameters such that they will be completely decoupled from
these multipoles. Due to the orthogonality of the charge
distributions, we will also only be concerned with the charge
distribution oscillations oriented along the z direction.

The dipole moment arising in a spherical metal nanopar-
ticle in the presence of an external electric field E0(t ) =
Re{E0e−iωt } can be given as [28]

P = αR3E0, (1)

where R is the radius of the sphere and the polarizability of the
metallic sphere is given by α = εm−εb

εm+2εb
. Note that we use the

quasistatic approximation and, hence, the field is independent
of the position vector r and the amplitude can be given by
the constant vector E0. The resonance condition for such a
nanosphere is determined by the real part of the denominator
equaling to zero, Re{εm} = −2εb. For a sphere placed inside a
vacuum, this condition is the well-known resonance condition
Re{εm} = −2. This dipole moment in turn induces an electric
field outside the sphere given by

Einduced = [3(P · r)r − |r|2P]

|r|5 . (2)

B. Plasmonics resonances in metallic sphere dimers

Next, we turn to the problem of analyzing the resonances
in metal sphere dimers. Using Eqs. (1) and (2), we can assign
dipole moments to each of the two spheres and calculate the
retarded electric fields at each sphere due to the other. Requir-
ing the field values to be self-consistent gives us a solution for

the dipole moments of each of the spheres. Subsequently, we
use these dipole moment values to quantize the electric field
in the dimer system. This approach only considers the dipole
modes of the dimer system and neglects all other higher-order
modes.

1. Plasmonic resonances in transverse dimers

We first present the quantization procedure for a silver
nanosphere dimer with the dimer axis placed perpendicular
to the direction of the external electric field [Fig. 1(a)]. We
assume the size of the system to be much smaller compared
to the wavelength of light and hence the complete system sees
an external electric field value independent of position r given
by E0(t ) = Re{E0e−iωt }ẑ, where E0 is the constant amplitude
of the electric filed in the z direction. We specifically choose
this directionality of the external electric field to focus on
the dipole moments and the plasmon oscillations along the
z direction. The total electric field within the system can
be written in the time harmonic approximation as E(r, t ) =
Re{E(r)e−iωt }. The two spheres have identical polarizability
values α, radii R, permittivities εm, separation D, and dipole
moments in the z direction denoted by P1 and P2. Given E1

and E2 to be the electric field amplitudes in the z direction on
the two spheres, for the electric field outside the two spheres
we can write

E(r) = E0 + α[E1G(r; r1) + E2G(r; r2)], (3)

using the dyadic Green’s function forms G(r; rd ):

G(r; rd ) = R3{3[ẑ · (r − rd )](r − rd ) − |r − rd |2ẑ}
|r − rd |5 , (4)

for d = 1, 2. The center coordinates of the spheres are given
by r1 = [−D/2, 0, 0] and r2 = [D/2, 0, 0]. At the exact lo-
cations of the spheres, Eq. (3) gives E1 = E0 − P2

D3 and E2 =
E0 − P1

D3 . Using P1 = αR3E1 and P2 = αR3E2, we can write
two simultaneous linear equations for E1 and E2. Solving
these would give us the exact values of the dipole moments
to be

P1 = P2 = αR3E0

1 + αR3

D3

. (5)

Comparing this equation to (1), this equation can be inter-
preted as a modification of the effective polarizability of the
nanospheres to αeff = α

1+ αR3

D3

. The electric fields inside the two

spheres (d = 1, 2) can be given by [28]

Ed,internal = Ed
3εb

εm + 2εb
= Edα

3

εm − εb
≈ −αEd . (6)

The last approximation is valid near resonance due to the fact
that Re{εm} ≈ −2εb.

Next, we turn to the problem of quantizing the dimer elec-
tromagnetic field. Currently we have derived the electric field
as generated by an external field. To derive the localized plas-
mon field, we need to find the localized solution of Maxwell’s
equations. To do this, following [29], we stimulate the system
with an impulse of the form Eimpulse = E0δ(t )ẑ instead of a
constant external field. After t = 0, the response that remains

085439-3



THARINDU WARNAKULA et al. PHYSICAL REVIEW B 100, 085439 (2019)

in the system will be exactly the localized solution

Edimer(r, ω) = αE0

1 + αR3

D3

[G(r; r1) + G(r; r2)]. (7)

The Drude model for permittivities of silver, given the
plasma frequency ωp and decay rate γ0 and the core permit-
tivity εcore, can be written as [1]

εm = εcore − ω2
p

ω(ω + iγ0)
. (8)

Assuming this model holds with εcore = 1, and assuming that
the external environment to be the vacuum (εb = 1), we can
write the effective polarizability αeff as

αeff = εm − εb

(εm − εb)
(
1 + R3

D3

) + 3εb

= ω2
F

ω2
F

(
1 + R3

D3

) − (ω2 + iωγ0)
. (9)

Here, ωF = ωp/
√

2εb + 1 = ωp/
√

3 is the Fröhlich fre-

quency in the vacuum. Defining ω0 =
√

(1 + R3

D3 )ωF and
making the standard approximation ω ∼ ωF ∼ ω0 � γ0, this
allows us to rewrite Eq. (9) as

αeff ≈ ωF /2

(ω0 − ω) − iγ0/2
.

Using this, we can rewrite Eq. (7) as

Edimer(r, ω) = ωF E0/2

ω0 − iγ0/2 − ω
[G(r; r1) + G(r; r2)]. (10)

This equation exactly predicts a resonant system with fre-
quency ω0 and damping γ0/2. In the time domain this trans-
lates to

Edimer(r, t ) = ωF E0

2
[G(r; r1) + G(r; r2)] sin(ω0t )e−γ0t/2.

(11)
For a singlet nanosphere, the dipole resonance frequency

is located at the Fröhlich frequency (ωF ). But for the bright
mode of a transverse dimer, we see that the earlier analysis
predicts a shifting of the resonance frequency. Furthermore,
we see that this shift is exactly a blueshift. In the following
analysis, we ignore decay rate and only reintroduce it later
as part of the open quantum system model. We also note
that while this result was derived with the assumption of
εcore = 1, for silver, this is not valid in general. The general
expression only clutters the presentation with no added rigor,
so we have opted for the simpler result. In particular, the
general expression does not alter the form of the quantized
field equation nor the calculated field intensities and coupling
rate values.

As mentioned earlier, since we excite the system with a
field in the z direction, we only consider the dipole mode
oriented along the z direction. Since the dipole modes are
orthogonally directed, such a procedure is justified and easily
generalized to the case of a field in an arbitrary direction.
Defining β = ωF E0

2 , the total energy W in this mode can be

calculated as

W = β2

8π
sin2(ω0t )W (D), (12)

where

W (D) =
∫

|G(r; r1) + G(r; r1)|2Re

{
d

dω
(ωε)

∣∣∣∣
ω=ω0

}
d3r,

(13)
The extra derivative factor in the expression precisely

accounts for the energy in dispersive media [30]. Note that
this integration extends over infinite space. Defining normal-

ization factor N =
√

8π h̄ω0
W (D) , and normalized amplitude B = β

N

enables us to write the total potential energy stored in the
electric field as

W = h̄ω0B2 sin2(ω0t ). (14)

This expresses the potential energy of the electric field in a
form reminiscent of electric field energy of an electromagnetic
field. If we were quantizing a general electromagnetic field,
the next step would be to compute the energy stored in
the magnetic field and form the complete Hamiltonian. The
magnetic and electric components of the electromagnetic field
would then act as conjugate operator variables of a harmonic
oscillator system. But in the near field of the dimer setup, the
magnetic field is close to zero. A significant portion of the
energy is actually stored in the kinetic motion of the electron
cloud composing the plasmon [31]. However, estimating this
proportion of energy stored outside of the electric field is not
a trivial task. We handle this difficulty by considering the fact
that, disregarding the dissipations, the total energy stored in
the system should be constant and hence the energy stored
in the electric field and the energy in the kinetic portions of
the system including the current flows within each sphere
must add up to a constant value [32]. For total energy to be
conserved at all times t , the kinetic energy term must be of the
form [29]

K = h̄ω0B2 cos2(ω0t ). (15)

This implies that our system is identical to a harmonic oscil-
lator system with potential energy and kinetic energy being
continually converted to each other in a periodic manner. In-
troducing the variable A(t ) = B sin ω0t , the total Hamiltonian
thus takes the form

H = h̄

ω0
(ω0

2A2 + Ȧ2). (16)

This Hamiltonian takes the exact form of the quantum
harmonic oscillator with conjugate variables A and 2h̄A/ω.
Making the identification x̂ = A and p̂ = 2h̄A/ω, we can
transform to the position and momentum picture of the simple
harmonic oscillator. x̂ and p̂ obey the usual commutation re-
lation [x̂, p̂] = ih̄. Defining the bosonic annihilation operator
as â = x̂ + i

2h̄ p̂, the Hamiltonian can finally be put in the
form H = h̄ω0(â†â + 1

2 ). Using the newly defined creation
and annihilation operators, we can cast the electric field in the
form

Edimer(r) = 1
2 N[G(r; r1) + G(r; r2)](â† + â). (17)
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Next we turn toward the question of the coupling between
the dimer plasmon system and a dipole degree of freedom
of a nearby chromophore. The interaction energy of a dipole
interacting with an electric field Ê can be given by Hint = −P̂ ·
Ê, where P̂ is the dipole moment operator of the chromophore.
Assuming the dipole to originate from a two-level electronic
transition, we could express the dipole moment operator as
P̂ = μ(σ10 + σ01)ẑ, where μ is the transition dipole moment
and σ10, σ01 are the raising and lowering operations for the
electronic transition. Using (17) and applying the rotating-
wave approximation to consider only the energy-conserving
terms bring us to the final expression for the interaction
Hamiltonian

Hint(r) = h̄g(r)(σ10â + â†σ01), (18)

where the coupling constant g(r) can be expressed as

g(r) = − 1
2μN[G(r; r1) + G(r; r1)]. (19)

2. Plasmonic resonances in longitudinal dimers

Now, we turn to the question of longitudinal dimers. The
equations and formulas applying to the longitudinal dimers
remain approximately equal to the transverse. The main differ-
ence arises from the geometry of the setup, where, as dictated
by Eq. (2), the electric fields at the position of the spheres
can be expressed as E1 = E0 + 2P2

D3 and E2 = E0 + 2P1
D3 . These

equations give

P1 = P2 = αR3E0

1 − 2 αR3

D3

. (20)

The effective polarizability of the dimers gets modified to
αeff = α

1−2 αR3

D3

. Using this form and following a similar pro-

cedure as we did in Eqs. (9) and (10), the electric field of the
dimer system in the frequency domain can thus be obtained as

Edimer(r, ω) = ωF E0/2

ω0 − iγ0/2 − ω
[G(r; r1) + G(r; r1)], (21)

where ω0 =
√

1 − 2 R3

D3 ωF . Note that in the above equations,
the G(r; r1) and G(r; r2) differ from that of the transverse
setup by virtue of the difference in r1 and r2. For the lon-
gitudinal setup, r1 = [0, 0, D/2] and r2 = [0, 0,−D/2]. The
total energy in the electric field can be shown to have the same
form as the transverse configuration given in Eq. (12), and
after performing the quantization, we can derive the final form
of the coupling constant g(r) as

g(r) = − 1
2μN[G(r; r1) + G(r; r2)]. (22)

C. Dissipation in plasmonic dimer setups

Next, we turn to the question of calculating the plasmon
decay rate γpl. The decay is due to two main causes: the
Ohmic dissipations within the metal γ0, and the radiative
dissipation caused by radiation into the far field γr . The Ohmic
dissipation is a property of the metal and can be extracted
from the permittivity of the metal. In this work, we use the
dissipative rate as predicted by the Drude dielectric model
[33] for silver. The radiative dissipations, on the other hand,

Z Z

θ θ
D

δ

ф

1 2

FIG. 2. The phase lag between the electromagnetic radiation
emitted by the two sphere dipoles in a general polar angle direction
θ and azimuthal angle φ.

depend on the electric fields in the system and hence need to
calculated.

We first focus on the singlet setup. The radiative decay rate
can be calculated using the radial component of the Poynting
vector in the far field. The time-averaged power radiated per
unit solid angle per unit time can be given by [28]

d〈W 〉
d�

= c

8π
k4|P|2 sin2(θ ). (23)

This can be integrated to give the total power radiated per
unit time to be d〈W 〉

dt = ck4

3 |P|2. Finally, the dissipation rate for
a singlet can be calculated as γr = 1

〈W 〉
d〈W 〉

dt . 〈W 〉 is the time-
averaged power of the electrical field.

For a transverse dimer, the above derivation should be
modified due to the existence of interference between the
fields of the two spheres. To account for this, we consider
the phase differences between the radiation waves emitted by
the two spheres at a specific polar angle θ and azimuthal angle
φ. As seen in Fig. 2, the radiation emitted in the direction
(θ, φ) by sphere number 2 is exactly δ distance ahead of the
radiation emitted by sphere 1, where δ is given by

δ = D sin(θ ) cos(φ). (24)

This corresponds to a phase difference φtr = kδ =
2πD sin(θ ) cos(φ)

λ
. Hence, the radiated electric field of sphere 2

in a certain radial direction with respect to sphere 1 can
be written as Erad

2 (θ, φ) = Erad
1 (θ, φ)eiφtr . The total radiated

electric field can thus be written

Erad(θ, φ) = Erad
1 (θ, φ)(1 + eiφtr ). (25)

This radiation, in the far field, can be interpreted as emanating
from a dipole placed at the position of dipole 1, but with
a dipole moment scaled by the factor (1 + eiφtr ). Using this
interpretation, we can write the effective dipole moment in
the direction (θ, φ) as

Peff(θ, φ) = P(1 + eiφtr ). (26)

Going back to Eq. (23), the rate of radiative power dissipation
per solid angle can be modified to

d〈W 〉
d�

= c

8π
k4|P|2 sin2(θ )|(1 + eiφtr )|2. (27)
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FIG. 3. The energy-level diagram for a single three-level gain
medium chromophore is shown. The operators shown perform the
transitions between the levels as indicated by the arrows.

Noting that |1 + eiφtr |2 = 4 cos2 ( φtr

2 ), we can write
Eq. (27) as

d〈W 〉
d�

= c

2π
k4|P|2 sin2(θ ) cos2

(
πD sin(θ ) cos(φ)

λ

)
. (28)

Integrating this over all solid angles gives us the final value
for the energy radiated per unit time. We can follow the exact
same argument to calculate the radiative dissipation rate for
the longitudinal setup. The phase difference turns out to be
kD cos(θ ) and the expression for the energy radiated per unit
solid angle per unit time is

d〈W 〉
d�

= c

2π
k4|P|2 sin2(θ ) cos2

(
πD cos(θ )

λ

)
. (29)

D. Gain medium

We model the gain medium as a collection of three-level
chromophores. This allows one of the electronic transitions
to couple to the pumping field and the other transition to
couple to the dimer plasmons, giving us control over the
two transitions independently. The structure of the electronic
levels is depicted in Fig. 3. The pumping electric field is
coupled to the 0-2 transition while the 0-1 transition is coupled
to the plasmons.

We assume that a rapid nonradiative decay takes place from
level 2 to level 1. We also assume all the dipole moments of
the chromophores to be aligned in the ẑ direction and the
dipole transitions to be in resonance with the correspond-
ing plasmons. For a chromophore indexed by n, we define
the quantum state by a ket vector |u : n〉, with u = 0, 1, 2,
depending on the level. The transition operator from level
v to u can then be defined as σ n

uv = |u : n〉〈v : n|. The 0-2
electronic transition has a dipole moment of 16 Debye and the
0-1 transition has moment 14.4 Debye in all results presented
in this paper. We assign a nonradiative decay rate of 0.1 eV
between levels 3 and 2, following similar theoretical analyses
done on three-level spasing models [18]. We assume all other
decay channels within the gain chromophores to be negligibly
weak.

E. Quantum model

Now, we turn to modeling the complete spaser. A spaser
consists of a gain medium transition coupled resonantly to
a plasmonic mode. The plasmonic mode is furnished by the
dimer setups while the gain medium transition is coupled to
the 0-1 transition in our three-level gain chromophores. We
start modeling of the system with the closed-system Dicke
Hamiltonian [34] under the rotating-wave approximation

Ĥ = h̄ωplâ
†â free Hamiltonian of plasmon mode

+ h̄ω10

N∑
n=1

σ̂ n
11 free Hamiltonian of level 1 electrons

+ h̄ω20

N∑
n=1

σ̂ n
22 free Hamiltonian of level 2 electrons

+ P12Ep

N∑
n=1

(
eiωpumpt σ̂ n

01 + H.c.
)

pumping Hamiltonian

+ h̄gn
(
σ n

10â + â†σ n
01

)
interaction Hamiltonian.

Here, ωpl is the plasmon resonance frequency and â†â is
the plasmon number operator. The second and third terms
represent the total energy of the chromophores. The energy
contribution of the nth chromophore is equal to h̄ω20, h̄ω10, or
0 depending on whether the chromophore is in state |2 : n〉,
|1 : n〉, or |0 : n〉, respectively. σ n

uv indicates the transition
operator from state v to u in the nth chromophore. The ωuv

indicates the energy gap between chromophore energy levels
u and v. The fourth term represents the coherent pumping by
an external electric field polarized in the z direction, with an
amplitude Ep and at a frequency ωpump. P12 is the dipole mo-
ment of the chromophore 2-1 transition. We consider both the
pumping field and the dipole moments of the chromophores
to be constant for all the chromophores. The final term in
the Hamiltonian represents the interaction energy between the
chromophore system and the plasmon mode where the gn

represents the coupling strength of the nth chromophore with
the plasmon mode.

Using this Hamiltonian, we can derive the equation of
motion for the density matrix of the quantum system as

˙̂ρ = 1

ih̄
[Ĥ, ρ̂]. (30)

The model we have described above is also referred to as the
closed Dicke model and it has been used to describe numerous
cavity quantum electrodynamic systems. But, it does not take
into account the various incoherent dissipations and decays a
realistic system undergoes due to it being placed in an external
environment. To account for these, we use the open Dicke
model. In the open Dicke model, under the Born-Markov
approximation, the equation of motion (30) is modified with
the addition of the so-called Lindblad superoperators, which
have nonunitary evolution characteristics. The superoperator
is constructed using the quantum operators describing the
incoherent dissipative transitions (Âd ) along with the average
rates at which these occur (γd ). In the interaction picture,
the quantum density matrix evolution equation thus takes the
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form [35]

˙̂ρ = 1

ih̄
[Ĥ , ρ̂] +

∑
d

D[Âd ]ρ̂. (31)

The superoperator can be generally represented as
D[Âd ]ρ = γ

2 (2ÂdρÂ†
d − ρÂd Â†

d − Â†
d Âdρ). Using different

forms for Âd allows us to include considerations for processes
such as plasmon decay (Âd = â) and decay of electrons of
chromophores from level v to level u (Âd = σ̂ n

uv) in our model.
Specifically, we model the decay of plasmons with Â1 = â,
and the fast nonradiative decay of electrons from level 2 to 1
with Â2 = σ̂ n

12.
Solving these equations gives us access to the full density

matrix that contains the complete information of the system.
To consider how to solve this system of equations, let us first
consider the size of a wave vector that describes the system.
Assuming the plasmon modes may be truncated at a highest
possible occupation number value of M, there are M + 1
different possible values of the plasmon occupation number.
For N chromophores each with three energy levels, there are
3N possible configurations. This implies that a wave vector
describing the system will have a size equal to 3N (M + 1).
The density matrix in turn will have dimensions 6N (M +
1)2. This is a computationally impossible bound to handle
and solve exactly. In recent years, much progress has been
made toward solving equations of this form efficiently [19].
As presented in [17], if the assumptions of identical chro-
mophores and incoherent pumping of chromophores are valid,
the problem could be cast into a problem of size O(N4M )
and numerically exactly solved. But, in many realistic setups,
these assumptions may be too restrictive. Another practically
useful and faster method of approximately solving the system
involves using the reduced density matrix (RDM) approach
[20]. It obtains a closed set of equations for the steady-state
density matrix of the system using reasonable approximations.
The main equation solved is the reduced density matrix for
plasmon number states ρμ,ν , in terms of coupled individual
chromophore density matrices ρn

uμ,vν , where n identifies the
particular chromophore and u, v = 0, 1, 2 denote the energy
level of the electron of that chromophore:

∂

∂t
ρμν = −i(μ − ν)ωplρμν − γpl

μ + ν

2
ρμν (32)

+ γpl

√
(μ + 1)(ν + 1)ρμ+1ν+1

−
N∑

n=1

ign
(√

μρn
1μ−1,0ν − √

νρn
0μ,1ν−1

)

+
N∑

n=1

ign
(√

ν + 1ρn
1μ,0ν+1 −

√
μ + 1ρn

0μ+1,1ν

)
.

This method has shown to provide approximately useful
values for the density matrix equations for a three-level gain
medium in a wide range of parameters with just O(NM ) time
complexity [18]. In this work, we use the RDM approach due
to the convenience and also its ability to handle heteroge-
neous gain media. We refer the reader to [18] for a complete
treatment on the method and the associated derivation of
equations.
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FIG. 4. The extinction efficiencies for 10-nm singlet (black),
transverse dimer (red), and longitudinal dimer (blue) setups for two
dimer separations. (a) D = 25 nm; (b) D = 30 nm.

III. RESULTS AND DISCUSSION

Here, we present our results on the various important
quantities and factors affecting spasing in the dimer setup.
For all the simulations presented henceforth, we assume εb =
1. This is realistic for a sufficiently sparse distribution of
solid chromophores around the plasmonic medium. In cases
where this assumption may not be valid, the Maxwell-Garnett
formula [36] should be used to calculate the effective value of
the permittivity of the external environment.

A. Extinction cross sections and resonance frequency

First, we turn to the extinction profiles of the spasing setups
to extract the resonance frequencies. The extinction efficiency
for dimer setups can be given by [37]

Cext = 4πk

Sd E2
0

∑
i

Im{E0.Pi}. (33)

Here, the cross-sectional area Sd = πR2 + 2RD for transverse
dimers and Sd = πR2 for longitudinal dimers. The sum runs
over the two dipoles. We note here that since our formulation
only considers the near field, the extinction cross sections
presented are equivalent to absorption cross sections. Fig-
ure 4 plots the extinction cross sections for singlet, transverse
dimer, and longitudinal dimer configurations for 10-nm silver
spheres at a dimer gap of D = 25 and 30 nm. As expected, the
resonance peak redshifts for transverse dimers and blueshifts
for longitudinal dimers at larger separation values. The effi-
ciencies also slightly decrease at larger separation. As far as
the linewidths are concerned, all dimer setups have similar
or comparable linewidth as calculated as a FWHM value of
≈11 nm. This is as predicted by Eqs. (10) and (21), where we
see that the linewidth for both dimer setups are equal to the
singlet linewidth γ0/2.

The transverse dimer bright mode, being an antibonding
mode, experiences a blueshift while the longitudinal dimer
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FIG. 5. The predicted resonance frequencies for 10-nm trans-
verse dimer (red) and longitudinal dimer (blue) configurations by
the formula we derive (solid lines) and the predictions of the full
multipole theory (dashed lines).

experiences a redshift on account of its bright mode being a
bonding mode. The equations we derived for the resonance
frequency during the quantization of the dimer systems also
predict a similar pattern. To study the accuracy of these
formulas derived in the dipole approximation, in Fig. 5 we
plot the resonance frequencies as predicted by the formu-

las ω0 =
√

1 − 2 αR3

D3 ωF for the longitudinal dimer and ω0 =√
1 + αR3

D3 ωF for the transverse, with those as predicted by the
full multipole calculations of plasmon hybridization theory
[38]. The multipole predictions are derived assuming a Drude
model with plasma frequency ωp = 9 eV for 10-nm silver
spheres. We observe that the formulas do in fact predict the
resonance frequencies reasonably well for separations D >

25 nm. At shorter distances, the effects of multipoles and
other electron cloud distortion based effects play a significant
role. Transverse and longitudinal dimers actually experience
asymmetric shifting of the resonance frequency due to the
presence of the factor of 2 in the formula for the longitu-
dinal resonance frequency. Considering differently polarized
external electric fields will allow the extraction of similar
resonance frequency shifts for the dark modes within the
dipole approximation as well.

From here on, we use the frequencies at the resonance
peaks in the extinction spectra as the resonance frequencies of
the various dimer setups. We do this to base our calculations
on experimentally verified values rather than the formula we
have derived which carries the intrinsic inaccuracies of the
Drude model. We have verified through separate calculations
that these peaks do indeed correspond to the zeros of the real
part of the denominator of the effective polarizability αeff.

B. Coupling strength

The coupling strength, as given by Eqs. (19) and (22),
between the plasmon setup and the gain medium dictates
much of the characteristics of spasing including the threshold.
Next, we investigate the strength of the coupling between
the dimer setups and a gain chromophore placed at different
locations. We also study the coupling strength between a
singlet nanosphere and a chromophore placed at different
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FIG. 6. Coupling strengths for a chromophore with 1 Debye
moment along the z axis, placed at different distances from singlet
and dimer plasmon setups. Solid lines plot the two dimer setups,
transverse (red) and longitudinal (blue) with the chromophore placed
on the dimer axis. The dashed lines represent the singlet with the
chromophore placed along the metal nanoparticle dipole moment
(blue) and placed perpendicular to the dipole moment (red).

locations. The separate configurations we study are elucidated
in the inset of Fig. 7.

All these quantities are plotted in Fig. 6 for silver spheres of
radii 10 and 20 nm and separation values D = 25 and 45 nm,
respectively. As can be seen, when the spheres in a dimer are
close enough (low D values), the field confinement in-between
the two spheres is great enough to support coupling strengths
exceeding the singlet setup. We also observe that the larger
spherical nanoparticles support the greater enhancement of
the coupling relative to the singlet setup while the smaller
nanoparticles have higher absolute values of the coupling
strength. Figure 6 also indicates that the longitudinal dimer
setup has the better coupling characteristics and has the po-
tential to form the basis for better spasing setups.

Next we study the impact of the separation D on the cou-
pling. Figure 7 plots the variation of the coupling strength of
a chromophore of moment 1 Debye placed at the midpoint of
a dimer setup consisting of metal nanospheres of radius R =
10 nm. As can be seen, the longitudinal setup again has greater
coupling strength at the mid-point as compared to the trans-
verse setup. For reference, we have also included the coupling
constants for a chromophore placed at the same distance away
from a singlet setup. As we discovered earlier, the longitudinal
chromophore placement in the singlet configuration performs
much better as compared to the transverse placement, but not
as well as the longitudinal dimer configuration. This again
demonstrates the benefits of the dimer setup as compared to
the singlet as far as spasing is concerned.

085439-8



CAVITY QUANTUM ELECTRODYNAMIC ANALYSIS OF … PHYSICAL REVIEW B 100, 085439 (2019)

25 35 45 55 650

0.4

0.8

1.2

1.6

D (nm)

C
ou

pl
in

g 
R

at
e 

(T
H

z)

(a) (b)

(c) (d)
(a)

(b)

(c)

(d)

FIG. 7. The coupling strength (g) of the dimer longitudinal and
transverse setup to a chromophore placed at the midpoint of the
dimer axis (solid lines) for various dimer separation values (D).
The radius of the nanospheres are set at R = 10 nm. The singleton
coupling strengths for chromophores placed at the same distance are
shown by the dashed lines. The inset depicts the placement of the
gain chromophore (black circle) in each case.

C. Radiative damping rate

Next, we turn our attention toward modeling the total
dissipations within the dimer systems. We model Ohmic
losses γ0, using the Drude dissipation parameter. We use the
experimental data for silver from [23] and perform a curve
fitting to obtain the value of γ0. We obtain γ0 = 47.1 meV ∼
11.1 THz. Since the Ohmic losses in the system for silver are
constant between different configurations, we only study the
change of the radiative dissipation component γr .

Using Eqs. (12), (28), and (29) we can present the radiative
dissipation rate for dimer setups with resonance wavelength λ

as

γr = 32π4cR6

W (D)

I (D/λ)

λ4
, (34)

where I (D/λ) = ∫∫
4 sin3(θ ) cos2( πD sin(θ ) cos(φ)

λ
)dθ dφ

for transverse configurations and I (D/λ) = ∫∫
4 sin3

(θ ) cos2( πD cos(θ )
λ

)dθ dφ for longitudinal configurations
with W (D) given by Eq. (13). The I terms can be associated
with the effects of interference between the two dipoles and
W term is proportional to the total average power of the dimer
system. We plot W against dimer separation for 10-nm dimer
setups in Fig. 8(b). As can be seen, the proportional changes
in power is extremely small and hence can be considered
negligible. To understand why this is justified, consider the
electrical energy of an isolated sphere Ws. For spheres placed
close by in transverse configuration, the interaction energy
WI ∝ WsR3/D3 [28]. Hence, the proportional change in W (D)
between two spheres placed at infinity and spheres placed at
distance D can be given by �W = R3/2D3. As we saw earlier
the proportional change in λ−4, �λ−4 = (1 + R3/D3)2 − 1.
Since 2R3/D3 + R6/D6 � R3/2D3, we conclude that the
change in W (D) is negligible. A similar argument can be
followed for the longitudinal case. The key factors governing
the dissipation rate hence are the interference I and the
resonance wavelength λ.

We plot the change in radiative dissipation rate for trans-
verse and longitudinal dimers with dimer separation in
Fig. 8(a). We first notice that the radiative dissipation rates
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FIG. 8. The radiative dissipation rates (a) and mean power (b) for
transverse (red) and longitudinal (blue) dimer setups composed on
nanospheres of radius 10 nm at various dimer separations. In both
graphs, the solid green line indicates the level for a singlet with the
same radius.

for the sizes of nanospheres we consider dominate the Ohmic
losses. At the smallest dimer gap we study (5 nm), the trans-
verse dimer shows higher radiative dissipation as compared to
the longitudinal.

However, more interestingly, the interference and reso-
nance frequency shifts manifest interesting properties as spac-
ing between the nanospheres is increased. In general, the
transverse setups display a steady decline for the range of
spacings we study. The longitudinal setup on the other hand
goes through a maximum and starts declining. As can be seen
in the figure, in the extremely close configurations (small D),
the transverse dimer radiates energy at a higher rate as com-
pared to the longitudinal dimer. But, at a certain separation,
the transverse setup dips steeply below the longitudinal curve
and continues downward. This implies the reduction of the
transverse dimer radiative dissipation at larger separations.
This can be understood in terms of the two key terms in
Eq. (34). The I (D/λ) term diminishes for larger values of
D while the λ−4 term also diminishes due to the redshift of
the resonance frequency for larger separations. These two
effects combine to account for the reduction in transverse
dimer dissipation rate.

For the longitudinal dimer, while I (D/λ) diminishes for
larger separations, the resonance frequency experiences a
blueshift, causing the λ−4 term to actually dominate for
smaller separations causing the peaked behavior we observe.
For larger separations, however, the interference term dom-
inates causing reduction of dissipation. Hence, heuristically,
we can say that the radiation interference and resonance fre-
quency shifts cooperatively cause reduction in radiative dis-
sipation in transverse dimers, while for longitudinal dimers,
those two effects act in opposition resulting in a peaked be-
havior for intermediate dimer separations before interference
dominates to bring down total dissipations.
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We note that a similar analysis was performed in [39], but
the interference effects were neglected resulting in a radiative
dissipation that only depended on hybridized resonance wave-
length λ. Reference [40] also performs a similar analysis by
calculating the linewidth of scattered spectra of dimers. The
results there agree with our predictions qualitatively but the
analysis therein is performed approximately which results in
a prediction of λ−2 dependence of the radiative dissipation.
We attribute this discrepancy to the fact that only the kinetic
energy of oscillating charges were considered in [40], whereas
detailed energy balance in plasmonic systems requires the
consideration electrical energy = kinetic energy + magnetic
energy [31].

D. Spasing characteristics

Next, we approach the question of modeling the action of
a spaser, the plasmonic component of which is formed by a
dimer setup composed of 10-nm radius silver nanospheres.
As previous results demonstrated, the main characteristics of
a dimer setup is the the higher coupling rate to gain chro-
mophores in the dimer gap and the higher radiative dissipa-
tions. We present results that demonstrate the effects of these
two key differences between the two dimer configurations as
well as between the dimer setups and the singlet setup.

Nonlinear quantum effects come into play when the dimer
gap is extremely small due to to the quantum nature of
the electrons, nonlocal screening effects, and tunneling of
electrons [41]. In addition to that, as we observed earlier in
the hybridized resonance frequency calculations, the dipole
approximation fails to account for the resonance frequency
shifts in a dimer for extremely small separations. Hence, in
all our simulations, we maintain a gap (D − 2R) of at least
5 nm between the metal spheres. At this separation level, it has
been shown that the bright mode of the dimer is sufficiently
separated from other higher-order modes [42,43] except for
the corresponding dark mode. However, due to the symmetry
of the excitation source (plane wave) and the gain medium,
we can neglect the antisymmetric dark mode excitation. Due
to these reasons, in what follows, we model the dimer as a
single-mode spasing system operating in the bright mode.

The main setup we use for the simulation and characteriza-
tion of the spasing properties is shown in the inset of Fig. 9
as an example for the transverse spasing setup. We study
the singlet setup, transverse dimer setup, and the longitudinal
dimer setup, each of which is surrounded by a cuboid-shaped
discrete gain medium distribution and we maintain a gain
chromophore number density of 0.125 cm−3. For gain chro-
mophores with molecular sizes spanning the angstrom range,
this value is realistic and it also allows us to make the sparsity
assumption for the gain medium. We take the lengths of the
gain medium extent in the three directions to be Lx, Ly, and Lz

with the chromophores stationed at the grid points. Note that
the gain medium cuboid is always centered at the midpoint of
the dimer axis. We assume that the chromophore 0-1 transition
is exactly in resonance with the plasmons in each of our
simulations with the second electronic level lying a further
0.1 eV higher from level 1 of the chromophores. This value
allows the 1-2 electronic transition to be decoupled from the
higher-order multipoles for the plasmons we consider and
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FIG. 9. The mean plasmon numbers (blue) and the second-order
coherence values (red) for dimer and singlet configurations consist-
ing of 10-nm nanospheres. The transverse dimer curves are denoted
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the singlet configurations by the dashed lines. The dimer separation
is maintained at 5 nm. Inset shows the distribution of chromophores
for a transverse dimer setup. The chromophore distribution extents
along the x and z directions are shown as Lx and Lz:

also is commensurate with values used in similar theoretical
investigations done on three-level spasing models [18].

The two main metrics we use to analyze spasing behavior
are the mean plasmon number which quantifies the strength
of the spasing and the second-order coherence of the plasmon
distribution, which quantifies the quality of the spasing as
a measure of coherence of the plasmons created. Solving
for the plasmon density matrix grants us access to the full
probability distribution of plasmon excitation and, hence, the
calculation of both quantities is quite straightforward. The
mean plasmon number Npl = 〈â†â〉 can be calculated using
the reduced density matrix elements solutions from Eq. (32)
as

Npl =
∑

μ

μρμμ. (35)

A higher mean plasmon number is indicative of higher
intensity spasing. Similarly, the second-order coherence g2

pl =
〈â†â†ââ〉
〈â†â〉2 can be calculated as

g2
pl =

∑
μ μ(μ − 1)ρμμ

N2
pl

. (36)

A second-order coherence value of 1 signifies a perfectly
coherent stimulated emission output while it reaches values
of 2 for random noise. Hence, ideally, values closer to 1 are
preferred in spasing.

We start off by comparing three spasing curves for spasers
made of chromophore setups with Lx = Ly = Lz = 50 nm for
10-nm silver spheres in Fig. 9. The three curves are longitudi-
nal setup with D = 25 nm, transverse setup with D = 25 nm,
and a singlet setup. We also plot the second-order coherence
values in the same graphs.

As we can clearly see, the singlet setup outperforms the
dimer setups both in terms of quantity (mean plasmon num-
ber) and quality (second-order coherence) at almost all simu-
lated pumping power values. We also observe that, in general,
the longitudinal spasing setup has higher intensity spasing

085439-10



CAVITY QUANTUM ELECTRODYNAMIC ANALYSIS OF … PHYSICAL REVIEW B 100, 085439 (2019)

output as compared to the transverse setup. However, in terms
of second-order coherence, the transverse configuration seems
to consistently have the more ideally coherent output.

Looking closer, we see that for small pumping values, the
singlet performs best, followed by the transverse dimer and
the longitudinal dimer, respectively. At this early stage, the
spasing output seems to increase linearly with the pumping
power while, more interestingly, the second-order coherence
increases as well. This increase in second-order coherence is
indicative of the fact that actual stimulated emission has not
set in as of yet in the system and that the emission in that range
corresponds only to amplified spontaneous emission. This
also demonstrates that the linear increase in spasing output
by itself is not a reliable indicator of spasing.

However, at a certain pumping value we observe a sudden
decrease of second-order coherence for all three setups. This
occurs at an electric field strength of E0 = 4 × 104 Vm−1 for
the dimer setups and at E0 = 2 × 104 Vm−1 for the singlet.
This decline of second-order coherence is soon followed by
a visible increase in the slope of the spasing curves. This
visible “kink” in the spasing curve is much less pronounced
as compared to conventional lasing systems. However, this
may be considered a clear sign of the threshold of spas-
ing systems due to the simultaneous decrease in the value
of the second-order coherence. A previous quantum study
on the nature of spasing concluded that the spaser showed
thresholdless behavior due to the lack of a clear spasing
transition from spontaneous and stimulated emission [19].
This difference is due to our assumption that the 1-0 tran-
sition of the gain elements having negligible decay rates.
For larger decay rates, the amplified spontaneous emission
is suppressed by the chromophore decays causing less am-
plification along with less buildup of incoherent plasmonic
population. Hence, for sufficiently low gain decay rates,
spasing systems do display threshold behavior. A similar
behavior of the second-order coherence was predicted for
lasing in the bad cavity limit using a Fokker-Planck approach
[44]. Functionally, spasing systems and bad cavity lasers are
similar due to the very high plasmonic dissipations in spasing
setups.

Beyond threshold, singlet curve shows the steeper gradi-
ent while the longitudinal dimer curve, lagging behind the
transverse dimer curve up until this point, increases with a
higher gradient than the transverse setup. Concurrently, we
see the second-order coherence values of all three setups
decrease rapidly to reach values close to 1 for high pump
powers.

Next, we study the spasing output variation with dimer
separation. Figure 10(a) displays the mean plasmon num-
ber of the spasing setups for transverse (red) and longitu-
dinal (blue) configurations composed of 10-nm nanospheres
pumped with an electric field E0 = 1 × 105 Vm−1 with a
cubic gain medium distribution of size 100 nm on each side.
In general, we observe that the transverse setup exhibits
higher intensity spasing. As the separation is increased, the
transverse dimer shows a generally increasing behavior. The
longitudinal dimer, on the other hand, experiences a reduction
in emissions before recovering for larger separation values.
This can be understood by three key factors affecting the
spasing output as separation is increased:
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FIG. 10. Variation of the mean plasmon number with the sep-
aration between dimers for transverse (red) and longitudinal (blue)
configurations. The nanosphere radius is R = 10 nm and the gain
medium distribution has Lx = Ly = Lz = 100 nm.

(1) the change in radiative dissipation rate;
(2) the reduction in field confinement in the dimer hot spot

(electric field leakage);
(3) the increase in the proportion of chromophores in the

dimer hotspot.
For a transverse dimer, as discussed previously, inter-

ference effects and resonance frequency redshift causes the
radiative dissipations to decrease with increasing dimer sep-
aration. This acts to increase spaser output. However, the in-
creased dimer gap also allows a higher proportion of the gain
medium to access the dimer hot spot and strongly couple to
the plasmons generated. But, this comes with the downside of
the decrease in intensity of the hot spot due to leakage. Hence,
factors 2 and 3 act in opposition to each other. Figure 10
suggests that, in general, the radiative dissipation rate and
the increasing chromophores within the dimer gap dominate,
causing a general increase in spasing output for transverse
dimers. However, for larger separations, the spaser output
plateaus, showing the influence of the electric field leakage.

For longitudinal dimers, the radiative dissipation shows a
peaked behavior before reducing for large separations. Similar
to the transverse case, the reduction in field confinement and
increase in the proportion of gain chromophores strongly
coupled to the plasmons act in opposition to one another when
spaser output intensity is concerned. However, as shown in
Fig. 10, the longitudinal dimer output first decreases and then
recovers to increase with increasing separation. The lowest
spaser output almost perfectly coincides with the radiative dis-
sipation minimum (see Fig. 8), which indicates that radiative
dissipation is the dominant force determining the spasing out-
put for smaller separations. However, for larger separations,
the longitudinal setup shows a plateauing behavior similar
to the transverse setup due to the reduction in electric field
confinement.

We perform the same analysis for a dimer spaser setup
pumped with a field E0 = 5 × 106 Vm−1 in Fig. 10(b) [a field
2500-fold more intense as compared to that of Fig. 10(a)]. We
again clearly see a similar pattern of behavior for transverse
and longitudinal configurations.

Finally, we present the variation of the spaser output with
the size of the gain medium. Figure 11 displays the variation
of the spaser emission intensity and second-order coherence
value for the two dimer configurations as well as the singlet
configuration with the length of a cubic gain medium. The
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FIG. 11. The variation of the mean plasmon number (blue) and
second-order coherence (red) for transverse dimer (solid line), longi-
tudinal dimer (dotted line), and singlet (dashed line) setups with the
size of the surrounding cubic gain medium. The shown size indicates
the length of one side of the gain medium cube. The nanospheres are
of 10-nm radius and the separation D = 5 nm for the dimer setups.
The pump field is held constant at E0 = 5 × 106 Vm−1.

displayed size is the length of one side of the cube. We
observe the dramatic increase in the spasing output inten-
sity as well as the decrease of the second-order coherence
value to 1. It has been observed in other studies done on
spasing in three-level gain media that the spasing output
tends to follow a linear variation with the number of gain
chromophores given that the gain chromophores are identical
[18]. In our case, we observe that the spasing output displays
a subcubic dependence on the gain medium length. This is
due to the fact that while the number of chromophores grows
as the cube of the length, the chromophores are not identical
and the couplings of chromophores from further away is much
weaker compared to the ones closer to the plasmon.

We also note that for smaller gain medium distributions
the transverse dimer spaser output is higher than that of the
longitudinal. But, as the size of the gain medium and the
number of chromophores increase, the longitudinal dimer
overtakes the transverse.

IV. CONCLUSION

In this paper, we have developed the complete cavity quan-
tum electrodynamic model of a nanosphere dimer spaser op-
erating in the bright plasmonic modes. We perform canonical
quantization of the two main dimer configurations and deduce
the couplings of the system with gain media chromophores.
We also calculate the blueshifted and redshifted resonance
frequencies of the dimer setups as compared to the singlet
setup within the dipole approximation.

We analytically calculate the radiative dissipations in
dimer setups, showing interesting characteristics under vary-
ing dimer separations, with effects governed by the resonance
frequency shift and the interference between the two dimer
radiation patterns.

As expected through the results of semiclassical analyses
done previously, longitudinal dimers display better field con-
finement and hence better spasing characteristics in general
as compared to transverse dimers. Our results confirm that
for small dimer gap, large pumping power, and large gain
media chromophore numbers, longitudinal dimers do perform
better than transverse dimers under the same conditions. How-
ever, transverse dimers outperform longitudinal dimers signif-
icantly at lower pump power values, larger dimer separations,
and smaller number of gain media chromophores.

We also find that, while the longitudinal configuration does
indeed show optimal spasing at the smallest separation we
study, remarkably, transverse dimers show increasing spasing
output as dimer separation is increased. So, we discover
that, despite its weak field confinement, the transverse dimer
actually performs much better than the longitudinal dimer in
applications when restrictions are imposed on pump power,
dimer separation, and chromophore number. We also show
that in all circumstances, transverse dimer setups produce
higher coherent spasing output when compared to longitudi-
nal dimers under the same conditions.

These results suggest that in biological environments, or
other restrictive environments, where pump power needs to
be weak while there is no avenue to increase the gain medium
extent or the concentration of the chromophores, transverse
dimers may actually be the most suitable option. These ob-
servations also suggest that to achieve maximal spasing in
coupled nanosphere based structures, the spacing between
spheres along the direction of the external field should be
minimal while the spacing in the directions perpendicular
should have an optimal spacing as prescribed by the radiation
profile.

We also find that, for quantum spasing systems, a visible
threshold in the spasing curve does not exist in general. This
has been observed in other studies [19]. However, we do
observe a sudden increase in the coherence of the spasing
output, which signals the onset of stimulated emission for
the parameter ranges we use. We also observe a subsequent
minor increase in the gradient of the spasing curve, which
also signifies the onset of spasing. This observation has not
been reported for quantum spasing systems.

We finally note that while the method we present is focused
on dimers, the same methodology can be used to analyze more
complex setups of interacting nanospheres such as trimer,
tetramer, or even more esoteric setups. We do, however, need
to emphasize that our use of the dipole approximation will
not hold true for extremely large or small separations of
spheres, due to far-field effects in the first instance, and due
to higher-order multipole effects in the second. The single-
mode analysis we have presented of the spaser also needs
to be modified for dimer setups with extremely small gaps,
due to the overlap of higher-order modes with the dipole
bright spasing mode. Dark modes may also be incorporated
by considering differently polarized incident light fields.
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